Vol. 30 ECCB 2014, pages i371-i378
doi:10.1093/bioinformatics/btu442

FastHap: fast and accurate single individual haplotype
reconstruction using fuzzy conflict graphs

Sepideh Mazrouee™ and Wei Wang

Computer Science Department, University of California Los Angeles (UCLA), 3551 Boelter Hall, Los Angeles,

CA 90095-1596, USA

ABSTRACT

Motivation: Understanding exact structure of an individual’s haplo-
type plays a significant role in various fields of human genetics.
Despite tremendous research effort in recent years, fast and accurate
haplotype reconstruction remains as an active research topic, mainly
owing to the computational challenges involved. Existing haplotype
assembly algorithms focus primarily on improving accuracy of the
assembly, making them computationally challenging for applications
on large high-throughput sequence data. Therefore, there is a need to
develop haplotype reconstruction algorithms that are not only accur-
ate but also highly scalable.

Results: In this article, we introduce FastHap, a fast and accurate
haplotype reconstruction approach, which is up to one order of mag-
nitude faster than the state-of-the-art haplotype inference algorithms
while also delivering higher accuracy than these algorithms. FastHap
leverages a new similarity metric that allows us to precisely measure
distances between pairs of fragments. The distance is then used in
building the fuzzy conflict graphs of fragments. Given that optimal
haplotype reconstruction based on minimum error correction is
known to be NP-hard, we use our fuzzy conflict graphs to develop a
fast heuristic for fragment partitioning and haplotype reconstruction.
Availability: An implementation of FastHap is available for sharing on
request.

Contact: sepideh@cs.ucla.edu

1 INTRODUCTION

All diploid organisms have two homologous copies of each
chromosome, one inherited from each parent. The two DNA
sequences of a homologous chromosome pair are usually not
identical to each other. The most common DNA sequence vari-
ants are single nucleotide polymorphism (SNP). We refer to the
sites at which the two DNA sequences differ as heterozygous
sites. Current high-throughput sequencing technologies (Eid
et al., 2009) are incapable of reading the DNA sequence of an
entire chromosome. Instead, they produce a huge collection of
short reads of DNA fragments. The process of inferring two
DNA sequences (i.e. haplotypes) from a set of reads is referred
to as haplotype assembly, which has become a crucial computa-
tional task to reconstruct one’s genome from these reads.
Haplotype assembly methods usually involve three main
stages before reconstruction phase. First, a sequence aligner is
used to align the reads to the reference genome. Then, only the
read alignments at the heterozygous sites are kept for haplotype
reconstruction. Last, reads that span multiple heterozygous sites
are used to infer the alleles belonging to each haplotype.

*To whom correspondence should be addressed.

The quality of the reconstructed haplotypes may be dramatically
affected by errors in sequencing and alignment. The objective,
therefore, is to design algorithms that mitigate this impact and
rebuild the most likely copies of each chromosome accurately.
This has led to development of accurate haplotype reconstruc-
tion algorithms in the past few years. We are, however, observing
a critical shift in sequencing technology where larger datasets
with longer reads and higher coverage become available. This
shift necessitates the development of algorithms that not only
reconstruct haplotypes accurately but also require low computa-
tion time and can scale to large datasets. In this article, we intro-
duce a new framework for fast and accurate haplotype assembly.

1.1 Motivation and related work

The past decade has witnessed much research effort on enhan-
cing accuracy of haplotype assembly methods. The research,
however, lacks a method that is not only accurate but also fast
enough that can be used widely on large-scale datasets. In
particular, current trends in sequencing technologies demon-
strate that the sequence read lengths are being extended signifi-
cantly and access to reads of up to several thousand base pair
long will become a reality in near future.

Haplotype assembly approaches can be divided into two cate-
gories: (i) fragment partitioning; (ii) SNP partitioning. The frag-
ment partitioning techniques partition the set of fragments into
two disjoint sets each representing one copy of the haplotype.
Examples of such techniques are FastHare (Panconesi and Sozio,
2004) and the greedy heuristic in (Levy et al., 2007). The SNP
partitioning approaches such as HapCut (Bansal and Bafna,
2008), HapCompass (Aguiar and Istrail, 2012) and the approach
in (He et al., 2010) rely on partitioning the SNPs into two disjoint
sets and finding those variants whose corresponding haplotype
bits need to be flipped to improve minimum error correction
(MECQ). In any of the two scenarios, an iterative process is
involved. From a computational complexity point of view, the
main drawback with existing techniques is that they perform
much computation during each iteration of the algorithm.

HapCut (Bansal et al., 2008) is an example of the algorithms
that use SNP partitioning technique to minimize MEC criterion.
The process involves iteratively reconstructing a weighted graph
and finding a max-cut of the graph. Clearly, most of the
computation occurs in a loop. The algorithm has proved to be
fairly accurate at the cost of high computation. The greedy heur-
istic algorithm in (Levy et al., 2007) is a fragment partitioning
approach. The iteration, however, involves two major computing
tasks: (i) reconstructing a partial haplotype based on the frag-
ments that are already assigned to a partition; (ii) calculating
distance between unassigned fragments and each one of the

© The Author 2014. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits
non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

mailto:sepideh@cs.ucla.edu
one
 (HTS)
,
prior to
utilized
paper
l
1
2
,
 (minimum error correction)
1
2
XPath error Undefined namespace prefix

S.Mazrouee and W.Wang

haplotype copies. FastHare (Panconesi and Sozio, 2004) is an-
other fragment partitioning algorithm. It sorts all fragments
based on their positions before execution of the iterative
module. Computationally intensive tasks that occur iteratively
in FastHare include (i) reconstruction of a partial haplotype
based on the fragments that are already assigned to a partition;
(ii) calculating distance between the current fragment and each
one of the two haplotype copies.

1.2 Contributions

Our goal in this article is to develop a framework for fast and
accurate haplotype reconstruction. Our approach consists of
four steps: (i) we measure dissimilarity of every pair of fragments
using a new distance metric; (i) we build a weighted graph, called
fuzzy conflict graph, using the introduced dissimilarity measure;
(iii) we use the fuzzy conflict graph to construct an initial parti-
tion of the fragments through an iterative process; (iv) we refine
the initial partitioning to further improve the overall MEC of the
constructed haplotypes. More specifically, our contributions in
this article can be summarized as follows.

Inter-fragment distance: We introduce a new distance metric,
called inter-fragment distance, which quantifies dissimilarity
between pairs of fragments. This distance measure is carefully
developed to not only assign small values to the fragments that
match perfectly and large values to completely different frag-
ments but also neutralize the effect of missing alleles on final
partitioning of the fragments.

Fuzzy conflict graph: We introduce the notion of fuzzy conflict
graphs that are built based on the inter-fragment distances. In
our graph model, each node represents a fragment and edge
weights are corresponding dissimilarity measures between por-
tions of fragments.

Fragment partitioning algorithm: We present a two-phase com-
putationally simple heuristic algorithm for haplotype reconstruc-
tion. The first phase uses a fuzzy conflict graph to build an initial
fragment partition. In the next phase, the initial partition is
further refined to achieve additional improvements in the overall
MEC performance of the reconstructed haplotypes.

Validation using real data: We demonstrate the effectiveness of
the proposed techniques using HuRef dataset, a dataset that has
been widely used in haplotype assembly literature recently.
Specifically, we compare our method with several previously
published algorithms in terms of accuracy (MEC measures)
and scalability (execution time) performance. Our results show
that FastHap significantly outperforms the previous algorithms
by providing a speedup of one order of magnitude while
delivering comparable or better accuracies.

Our objective is to build a fast haplotype assembly model
where computationally intensive tasks are executed before exe-
cution of the iterative process. Our algorithm has the following
major differences compared with the previous work: (i) our
dissimilarity measure is a novel distance metric that precisely
quantifies contribution of each individual fragment for haplo-
type assembly; (ii) we perform all distance calculations at the
beginning of the algorithm and leave only computationally
simple tasks to the iterative section; (iii) we perform haplotype
reconstruction outside the iterative part of our algorithm.

2 MATERIALS AND METHODS

2.1 Problem statement and assumptions

We assume that the input to the haplotype assembly algorithm is a 2D
array containing only heterozygous sites of the aligned fragments, called
variant matrix, X, of size m x n, where m denotes the number of fragments
(aligned DNA short reads) and 7 represents the number of SNPs that the
union of all fragments cover. In the following discussion, we use x; to
refer to the allele of fragment f; at SNP ;. x;; € {0, 1, —}, where 0 and 1
encode two observed alleles and — denotes that fragment f; does not cover
the SNP site s;. If there are more than two alleles observed at a given site,
the two most common alleles are encoded with 0 and 1, and the remaining
allele(s) are encoded by —. It is expected that most cells in X are filled with
— because, in practice, each aligned fragment covers only a few SNP sites,
limited by the fragment length (As discussed previously, the trend is that
much longer DNA reads will be available as a result of recent techno-
logical advancements in genome sequencing).

Algorithm 1 FastHap high-level overview

Initialization:

Calculate inter-fragment distance between every pair of fragments
(Section 2.2)

Store inter-fragment distances in A (Section 2.2)

Use A to construct a fuzzy conflict graph (Section 2.3)

Phase (I): Partitioning
Partition fragments into two disjoint sets C; and C, (Section 2.4 and
Algorithm 2)

Phase (II): Refinement

while (MEC score improves) do
Find fragment f with highest MEC value
Assign f to the opposite partition

end while

One of the most popular approaches for haplotype assembly is to
construct haplotypes based on partitioning of the fragments in variant
matrix. In this case, the haplotype assembly problem consists of two
steps, namely fragment partitioning and fragment merging, described as
follows. While the fragment partitioning phase aims to group rows of the
variant matrix into two partitions, C; and C,, fragment merging is
intended to combine the fragments residing in each partition, through a
SNP-wise consensus process, and form two haplotypes /; and /,
associated with Cy and C,, respectively. The resulting haplotype is typic-
ally denoted by H = {hy, h,}. The main objective of the haplotype
assembly is, therefore, to come up with a partitioning such that the
amount of error is minimized. Our focus in this article is on minimizing
the MEC objective function. As mentioned previously, this problem is
proved to be NP-hard (Cilibrasi et al., 2005). Thus, our goal is to
develop a heuristic algorithm for the haplotype assembly problem. Our
solution relies on a novel inter-fragment distance measure, a graph
model for inter-fragment dissimilarity assessment and a fast graph parti-
tioning algorithm. A high-level overview of FastHap is shown in
Algorithm 1.

2.2 Inter-fragment distance
Given two variables x, y € {0, 1, —}, we define the operator ® as follows.
0 if x=y
x@y=4 1 if x#y&x,ye{0,1} (@)

0.5 otherwise

i372

prior to
:
1
2
paper
 as follows
1
2
3
4
paper
that
u
p
prior to
to
1
2
3
two-dimensional
since
1

paper
,

FastHap

DeriNiTION 1 (Inter-fragment distance). Given a variant matrix Xxn
where x;; € {0, 1, =}, we define inter-fragment distance, A(f;, fi), between

Sfragments f; = {xu, Xi, ..., Xiny and fr = {Xp1, Xi2,- -, Xpn} DY
. 1<
Afi fi)= 7=) (X ® xig) (®)
ik =1

where T} denotes the number of columns (SNPs) that are covered by
either f; or f; in X. In fact, Ty is a normalization factor that allows us to
normalize the distance between the two fragments such that the resulting
distance ranges from 0 to 1 (i.e. 0 < A(f, fi) < D).

The inter-fragment distance metric is developed with the goal of mea-
suring the cumulative dissimilarity between each pair of fragments across
all SNP sites. The intuition behind (1) and (2) is as follows. At a given
SNP site s;, if two fragments f; and f;. both cover it, the per-site distance is
0 if they take the same allele (suggesting they may likely belong to the
same partition) and 1 if they take opposite alleles (suggesting they may
likely belong to different partitions). We assign 0.5 distance if the SNP
is only covered by one of the two fragments to neutralize the contribu-
tion of the missing element. If the SNP is not covered by either fragment,
0 distance is cumulated at this site. An additional benefit of this
approach is that we need to examine only SNPs covered by either
of the two fragments. From a computing complexity point of
view, this can reduce the execution time of the distance calculation
significantly.

Figure la shows a set of fragments spanning eight SNP sites. The
resulting inter-fragment distances are shown in a symmetric distance
matrix in Figure 1b. Intuitively, A (the distance measure between two
fragments) is smaller for those fragments that need to be grouped to-
gether and larger for those that we prefer to be placed in different par-
titions. When distance between the two fragments is 0.5, the two
fragments alone do not provide sufficient information as how they
need to be partitioned.

DeriNiTiON 2 (Pivot distance). Given a variant matrix Xpx,, the pivot
distance between any pair of fragments in {f;, f>,..., fu} is A = 0.5.

The pivot A allows us to decide whether the two fragments are dissimi-
lar enough to be placed in separate partitions. A pair of fragments with

a) Variant Matrix X c) Fuzzy Conflict Graph (G)
s1|s2|s3|safss|se6|s7]s8

f1 o o 0 -

f2 - o 1 1

3 1 1 - -

fa 0 1 1

15 HE 1)1

| 1]o0 1

7 oo -|-|-]-]o

8 1 1 1 -

f9 1 1 o

f10 o 1 0 -

b) Inter-Fragment Distance Matrix A

f1 2 f3 fa 5 f6 7 8

f1 04 0.5 0.6 0.63 0.5 04 1

f2 0.5 0.5 0.5 0.4 0.6 0.6 0.5 0.6

B 063 | 05 |05 | 05| 05 | o5 | os

“ 03705 037] 04 | 04 | 0 d) Resulting partition and MEC
5 05 05 037 0.37 0.63

f6 05 | 05 | 04 | oS X = {f1,{2,{3,f4,5,f6,f7,18,f9,f10}
rs 06 | 04 | 04 C1 = {f1,f2,13,f6,f10}

® 05 | oss C2 = {f4,f5,7,8,f9}

9 0s MEC =4

f10 - Reconstruction rate = 100%

Fig. 1. An example of variant matrix with 8 SNP sites (a), corresponding
distance matrix (b), the fuzzy conflict graph associated with the variant
matrix (¢) and results of applying FastHap on the data (d). The graph in
(c) shows only edges with non-pivot distances

an inter-fragment distance greater than X is more likely to be placed in
different partitions, although the final partitioning assignment is made
after all pairs of fragments are examined through a partitioning
algorithm. In Section 2.3, we will present a graph model that enables
us to perform fragment partitioning by linking similar and dissimilar
fragments through a weighted graph based on inter-fragment distance
values.

2.3 FastHap graph model

In this section, we present a graph model based on the inter-fragment
distance defined in (2). In Section 2.4, we will discuss how this graph
model can be used to partition the fragments into two disjoint sets and
construct haplotypes accordingly.

DEeriNiTioN 3 (Fuzzy conflict graph). Given a variant matrix X composed
of m fragments {f;, f>, ..., f} spanning n SNP sites, a fuzzy conflict graph
that models dissimilarity between pairs of fragments is a complete graph G
represented by the tuple (V,E,W). In this graph, V = {1, 2, ..., m} is a set
of m vertices representing the fragments in X; each edge e, is associated with
a weight w; equal to the distance between the corresponding fragments in X.

The conflict graph introduced in this article, fuzzy conflict graph, is
different from that used in previous research [e.g. the fragment conflict
graph in (Lancia et al., 2001)]. A conflict graph has been conventionally
defined as a non-weighted graph. Let us call it a binary conflict graph,
which represents any pair of fragments with at least one mismatch in the
variant matrix. For example, according to (Lancia et al., 2001), a conflict
graph is a graph with an edge for each pair of fragments in conflict where
two fragments are in conflict if they have different values in at least one
column in the variant matrix X. There are a number of shortcomings with
respect to using a binary conflict graph for haplotype assembly. The
major problem with the conventional conflict graph is that it does not
take into account the number of SNP sites for which the two fragments
exhibit a mismatch. Two fragments are considered in conflict even if there
is a mismatch at only one SNP site. In contrast, our fuzzy conflict
graph aims to measure the amount of mismatch across all SNP
sites of every pair of fragments. For example, consider the
three fragments f; ={——000———}, fg={——111———} and

fio={——010— ——} in Figure 1. In a binary conflict graph, all the

vertices are connected because there is at least one mismatch between
every pair of fragments: three mismatches between f; and fg;, one
mismatch between f; and fjy and two mismatches between fg and fio.
The binary conflict graph, however, treats all three edges equally. Our
fuzzy conflict graph assigns weights of 1, 0.33 and 0.66 to these edges,
respectively, to lead the partitioning algorithm to group f; and fio
together.

An example of a fuzzy conflict graph based on the fragments listed in
Figure la is illustrated in Figure lc. For visualization, the edges with a
pivot distance are not shown. The problem of dividing the fragments into
two most dissimilar groups is essentially a max-cut problem (Ausiello,
1999). A max-cut partition may divide the fragments into Cy = {f}, />, f3,

fo, f10} and Cy = {fa, fs, f7, /s, fo} as shown in Figure 1. We note that the

resulting partition may not be unique in its general case. As we will dis-
cuss in more details in Section 2.4, max-cut is an NP-hard problem, and
existing techniques provide solutions that are highly suboptimal. Thus,
we will leverage some properties of our fuzzy conflict graphs to develop a
heuristic approach for fragment partitioning.

2.4 Fragment partitioning

As stated previously, our goal is to partition fragments into two disjoint
sets such that fragments within each group are most similar and can form
a haplotype with minimum MEC. Using the fuzzy conflict graph model
presented in Section 2.3, a weighted max-cut algorithm needs to be used
to find the optimal partition. The max-cut problem, however, is known to

i373

which
(
)
8
(
)
which
in order
paper
(
,
)
that
tiliz
,
,
s
(
)
(
)
-

S.Mazrouee and W.Wang

be NP-hard even when all edge weights are set to one (Garey and
Johnson, 1990). All edges in our fuzzy conflict graph have a positive
weight. There exist heuristic algorithms (Sahni and Gonzales, 1974)
that produce a cut with at least half of the total weight of the
edges of the graph when all edges have a positive weight. In fact, a
simple % — approximate randomized algorithm is to choose a cut at
random. This means that each edge ¢; in the fuzzy conflict graph G is
cut with a probability of % Consequently, the expected weight of the edges
crossing the cut, W(Cy,(y), is given by

1 & 1
W(Cy, Cy) = 5; w =S OPT ?3)

This algorithm can be derandomized to obtain a % — approximate de-
terministic algorithm. There exist two major shortcomings with this par-
titioning algorithm: (i) Unfotunately, derandomization works well only
on unweighted graphs where all edges have equal/unit weights. A similar
approach for a weighted graph is not guaranteed to run in polynomial
time; (ii) the obtained partition is highly suboptimal with an approxima-
tion factor of % Thus, we introduce a novel heuristic algorithm based on
properties of fuzzy conflict graphs.

Algorithm 2 FastHap partitioning algorithm

Require: Fuzzy conflict graph G = (V,E, W)
Ensure: Partition P=[C;, C;] composed of two groups C; and C, of
fragments
(1) Delete edges with pivot weights from G
(2) Sort remaining edges ¢; in G based on their weights w; and store
results in list D
(3) Let ¢;= (i, fx) be the edge with the largest weight in D
(4) Initialize partition by assigning f; and f; to opposite groups
(eg Cr={fi} & C2 = {fi}
while (not all vertices are partitioned) do
(5) Let e;=(f;, fr) be next edge with highest weight in D such that
fiePorfieP
) Let fiepP;, if fieC), then
Ci=CrU{fi}
(7) Let e, =(f;, fx) be next edge with lowest weight in D such that
fiePorfreP
(8) Let f; e P, then if f; e Cj, then C,=C;U({f;}, otherwise
Cy=Cr U {fi}
(9) If none of ¢; and e, exist, assign each remaining fragment to the
more similar set
end while
repeat
(10) Let MEC be the switching error for existing partition
(11) Let f; be the fragment with largest switching error among all
fragments in P
(12) If f; € C; (alternatively f; € C,), move f; from to C, (alterna-
tively to Cy)
(13) Let newMEC bet the switching error for the new partition
until (newMEC > MEC)

C,=Cy U {f}, otherwise

The FastHap partitioning algorithm is shown in Algorithm 2 and
briefly explained as follows. First, the algorithm eliminates all edges
with pivot weights from the fuzzy conflict graph G. Such edges do not
contribute to formation of the final partition. The algorithm then sorts all
edges of the graph (equivalently, pairs of the fragments) based on the
edge weights and stores the results in D. An initial partition is formed by
placing the two fragments with largest inter-fragment distance (associated
with the heaviest edge in G) into two separate partition sets C; and C».
In the next phase, the algorithm alternates between the heaviest and
lightest edges and assigns adjacent vertices (associated with fragments

in X) to the existing partition if either of the vertices is already assigned
to the partition. An edge with highest weight results in placing
the adjacent vertices in different partitions and an edge with lowest
weight attempts to assign the vertices to the same partition in
P. This occurs only if the chosen edge is adjacent to an already parti-
tioned edge.

THEOREM 1. Algorithm 2 terminates in polynomial time.

Proor. We prove that the algorithm terminates and its running time
is polynomial. Let M be the total number of edges in the given fuzzy
conflict graph, respectively. During each iteration, the algorithm attempts
to assign two edges (those with highest and lowest weights and adjacent
to an already partitioned vertex) to the final partition P. Clearly,
the iterative loop does not repeat more than M’ times. In fact, during
each iteration at least one edge (i.e. ¢; or e, or both) is selected to be added
to the final partition. If the algorithm cannot find such an edge, all
remaining edges are allocated to the final partition and the algorithm
ends. Therefore, the iterations cannot repeat more than M’ times and
the algorithm will terminate after at most M’ iterations. The proof
regarding computing complexity of the algorithm is as follows.
Removal of edges with pivot weight in (1) in Algorithm 2 can be
completed in O(M); the process of sorting the edges in instruction
(2) can be done in O(Mlog M); instruction (3) takes O(1) to complete.
The initialization of the partition in (4) can be done in O(1); (5) detecting
the edge with the highest weight and checking if one of its vertices
(i.e. fragments) is already in the partition P require O(l) and O(M),
respectively, to be completed; (6) assigning the selected edge to the
partition require O(l); similarly, instructions in (7) require O(l) and
O(M) to finish; similar to (6), the instructions in (8) can be done
in O(1). The instructions in (9) have a complexity of O(M); reading
the MEC value of the partition in (10) and (13) takes O(1);
instructions in (11) and (12) can finish in O(M). Given that instructions
in the loop are executed at most M times, the complexity of the algorithm
is O(M?).

2.5 Refinement phase

The second loop in Algorithm 2 shows second phase of the
proposed haplotype reconstruction approach. The idea is to itera-
tively find the fragment that contributes most to the MEC score
and reassign it to the opposite partition. This process repeats as long as
the MEC score improves. Our experimental results show that the first
phase of the algorithm performs most of the optimization in terms of
MEC improvements, leaving minimal improvements for the second
phase.

2.6 Fragment purging

Because the complexity of FastHap is a function of the number of frag-
ments in the variant matrix, it is reasonable to attempt to minimize the
number of such fragments by eliminating any potential redundancy be-
fore execution of the main algorithm. Therefore, FastHap uses a prepro-
cessing phase during its initialization to combine those fragments that are
highly similar. Fortunately, the inter-fragment distance measure provides
a means to assess similarity between every two fragments. The criterion
for combining two fragments f; and f; is based on the inter-fragment
distance A(f;, fr) and a given threshold «. The two fragments are
merged if

Afi fi) < e 4

The purging process is straightforward. It eliminates the shorter frag-
ments from the variant matrix. The value of « needs to be set based on
the quality of data. For the dataset used in our experiments on different

i374

-
1
2
-
e
,
,
 □
s
Since
prior to

FastHap

chromosomes, we set « experimentally and found that «=0.2 provides
the best performance.

3 VALIDATION

3.1 Setup

We used HuRef (VenterInst, 2014), a publicly available dataset,
to demonstrate the effectiveness of FastHap for individual haplo-
type reconstruction. Our goal was to assess performance of
FastHap in terms of both accuracy and speed in comparison
with HapCut (Bansal and Bafna, 2008) and greedy algorithm
in Levy et al. (2007). The main reason for choosing these two
algorithms is that these algorithms have been historically popular
in terms of accuracy and computing complexity. We ran all our
experiments on a Linux x86 server computer. The server had 16
CPU cores of 2.7GHz with 16 GB of RAM. Each algorithm
performed per-block haplotype reconstruction. Each block con-
sisted of the reads that do not cross adjacent blocks. Although
haplotype assembly solutions cannot do more than random
guess between two consecutive variant site that do not share
any fragments, our effort in this article was to provide technol-
ogy that is appropriate for longer reads in each end of paired
alignment and ample insertion size to minimize disconnection
between different haplotype blocks.

3.2 Dataset

The HuRef dataset used for our analysis contains reads for all 22
chromosomes of an individual, J.C. Venter. The data include 32
million DNA short reads generated by Sanger sequencing
method with 1.85 million genome-wide heterozygous sites.
There are too many fairly short reads of ~15bp (each end)
while still tens of thousands of reads are long enough to cover
more than two SNP sites and can be used for haplotype assembly
purposes. In fact, many fragments within each block span several
hundred SNP sites owing to the pair-end nature of the aligned
reads. The variant matrix used for haplotype assembly was
generated based on aligned short reads with paired-end
method for each pair of various length (from 15 to 200 bp each
end) while the insert length follows a normal distribution with a
mean of 1000.

5000

4000

£

3000

Coverage
X
of SNP.

2000

2

1000

12345678 91011121314 15 1617 16 19 20 21 22 1X 5X 10X 15X 20X
Chromosome# Coverage

(a) Coverage for each chromosome (b) Histogram of coverage for

randomly selected chromosome

Fig. 2. Coverage of HuRef dataset; (a) coverage for each chromosome;
numbers vary from 6.49 to 8.72 for various chromosomes with an average
genome-wide coverage of 7.43. (b) Histogram of coverage for chromo-
some 20 as an example; Y-axis shows number of SNPs, with each specific
coverage shown on x-axis

Figure 2a shows read coverage for each chromosome. Read
coverage numbers are calculated by taking an average over the
coverage values of all SNP sites within each chromosome. The
coverage vary from 6.49 reads for chromosome 19 to 8.72 reads
for chromosome 3. The average genome-wide coverage across all
chromosomes is 7.43. Figure 2b shows distribution of the cover-
age for chromosome 20 (exemplary), which includes 39 767 SNP
sites. The coverage numbers range from 1 to 20 reads. Only two
SNP sites had a coverage of 20. The average coverage for
chromosome 20 was 6.83.

Figure 3 shows several statistics on haplotype length of various
chromosomes in HuRef dataset. Figure 3a shows chromosome-
wide haplotype length, equivalent ally total number of SNP sites,
for each chromosome. As mentioned previously, each chromo-
some is divided into non-overlapping blocks. Haplotype length
of such blocks may vary significantly from one chromosome to
another. For example, Figure 3b shows distribution of haplotype
length for a subset of chromosomes with ‘small’, ‘medium’ and
‘large’ haplotypes. For instance, chromosome 8 has a number of
blocks spanning >2500 SNPs. In contrast, haplotypes in chromo-
some 18 barely exceed 1000 SNP sites.

In addition to running FastHap on real HuRef data, we con-
structed several simulated read matrices based on HuRef data
(Bansal and Bafna, 2008). A simulated dataset based on real data
allows us to assess performance of the proposed algorithm and
extend its capabilities by changing various parameters (e.g. error
rate, coverage and haplotype length or block width). To assess
the accuracy of our method, we simulated a pair of chromosome
copies based on real fragments and consensus SNP sites provided
by HuRef data. The variant matrix for each chromosome
on HuRef data was suitably modified to generate an ‘error
free’ matrix at first. This was accomplished by modifying
alleles in each fragment such that it perfectly matches a prede-
fined haplotype. To introduce errors in the variant matrix, each
variant call was flipped with a probability of ¢ ranging from 0 to
0.25. We also modified the variant matrix to produce vari-
ant matrices of different coverage. Another change to the simu-
late variant matrix was to generate blocks of varying haplotype
length ranging from 200 to 1000 SNPs. Such variant
matrices were then used to examine how performance of
different algorithms (i.e. FastHap, Greedy, HapCut) changes

Il Chromosome 8
[Chromosome 17
50 I Chromosome 18

of blocks
w
S

Haplotype length

. ll
Lunnl
100 500 1000 1500 2000 2500
Haplotype length

12345678 91011121314 1516 17 1819 20 21 22
Chromosome#

(a) Haplotype length per chromosome (b) Histogram of haplotype length for
three exemplary chromosomes

Fig. 3. Chromosome-wide haplotype length for each chromosome (a)
and histogram of per-block haplotype length for chromosomes 8, 17
and 18 as examples of chromosomes with ‘small’, ‘medium’ and ‘large’
blocks, respectively (b)

i375

paper
in order
s
di
s
approximately
due
bp -
(
)
(
)
a total of
2
(
)
(
)
over
,
,
In order
,

S.Mazrouee and W.Wang

as a result of changes in error rate, coverage and haplotype
length.

3.3 Results

Table 1 shows speed and accuracy results for all chromosomes
on HuRef dataset. As it can be observed from the timing values,
FastHap is significantly faster than both Greedy and HapCut. In
particular, FastHap is up to 16.4 times faster than HapCut
and up to 15.1 times faster than Greedy. The average speedup
achieved by FastHap is 7.4 and 8.1 compared with Greedy and
HapCut, respectively. In terms of accuracy performance,
FastHap achieves 35.4 and 1.9% improvement in reducing
switch error compared with Greedy and HapCut, respectively.
A number of parameters affect speed performance of different
algorithms. In particular, number of SNP sites within each vari-
ant matrix is an important factor in many well-known algorithms
such as HapCut. One advantage of FastHap is that its perform-
ance is primarily influenced by the number of fragments in the
variant matrix rather than the number of SNP sites. That is, a

Table 1. Comparison of FastHap with Greedy and HapCut in terms of
accuracy (MEC) and execution time using HuRef dataset. Best results in
each column showed in bold

Time Speedup using
(min) FastHap

MEC (accuracy
performance)

Chr Greedy HapCut FastHap versus versus
Greedy HapCut

Greedy HapCut FastHap

1 606 880 183 33 48 29657 19750 19423
2 1001 2446 149 6.7 16.4 22980 14677 14220
3 1809 1053 188 9.6 5.6 16878 10738 11794
4 542 694 63 8.6 11.0 18153 11931 11812
5 1381 3229 282 49 11.4 16590 10630 10362
6 681 750 109 6.2 6.9 15587 9992 9870
7 456 604 76 6.0 7.9 17402 11290 11245
8 5052 4514 334 15.1 13.5 14887 9845 10830
9 2006 1747 293 6.8 6.0 13812 9318 9204
10 667 1445 170 39 8.5 15291 9906 9796
11 332 288 69 4.8 42 12906 8294 8091
12 1303 1638 165 79 9.9 12630 8297 7467
13 428 761 158 2.7 4.8 9312 6131 6143
14 3315 1919 383 8.7 5.0 9734 6360 5725
15 907 1137 208 4.4 5.5 13988 9783 9695
16 157 248 42 3.7 59 12621 8354 8215
17 2223 2790 246 9.0 113 11157 7398 7386
18 698 798 87 8.0 9.2 8578 5043 4846
19 309 501 41 7.5 12.2 8214 5497 4886
20 326 348 32 10.2 10.9 5752 3784 3437
21 482 154 48 10.0 32 6611 4715 4707
22 535 128 39 13.7 33 8295 5864 5875

Overall 25217 28074 3365 74 8.1
Sum over all Average
chromosomes

301035 197597 195029
Sum over all
chromosomes

Note. FastHap achieves speedups of 16.4 and 15.1 compared with HapCut and
Greedy, respectively, is 1.9 and 35.4% more accurate than HapCut and Greedy,
respectively. Statistics on coverage and haplotype length are shown in Figs 2 and 3
and further discussed in Section 3.2.

higher read coverage allows FastHap to generate better accuracy
without significant impact on its running time. In contrast, as the
haplotype length grows, HapCut algorithm runs very slowly
compared with FastHap. As shown in Table 1, HapCut is very
slow when applied to chromosome 8 primarily owing to the large
haplotype length. This is also confirmed through Figure 3b,
which shows that chromosome 8 contains blocks that span
>2500 SNPs. In contrast, chromosome 18, for example, can be
reconstructed much faster when HapCut is used. Figure 3b
shows that most of the blocks for chromosome 18 span <1000
SNP sites.

Using the simulated data described in Section 3.2, we ran
FastHap on variant matrices of varying error rates and com-
pared the reconstructed haplotypes with the true haplotypes.
With this, we obtained the absolute accuracy results shown in
Table 2. For brevity, results are shown only for 6 error rate
values. The table shows how the absolute accuracy of the ob-
tained haplotype is affected as a result of introduced errors. We
observe that the accuracy numbers are always larger than what
one may expect owing to the error rate. For example, when the
error rate is 20%, one may expect an absolute accuracy of 80%,
but the measured accuracy is 85.7%. This can be interpreted as
follows. As the error rate (i.e. number of flipped variant calls)
increases, some variant calls may become consistent with a dif-
ferent haplotype of higher accuracy.

Figure 4a shows the MEC score per variant call versus the
simulated error rate obtained by each one of the three algo-
rithms. The average MEC (normalized by number of variant
calls) was 2.48, 2.56 and 2.86 for FastHap, HapCut and
Greedy, respectively. The amount of improvement in MEC
using FastHap was 13 and 2.8% compared with Greedy and
HapCut, respectively. Figure 4b shows the running time of the

Table 2. Absolute accuracy of FastHap as a function of error rate

Error rate (¢ in %) 0 5 10 15 20 25
Accuracy on HuRef (%) 100 962 903 86.0 857 80.6

Note. Results are obtained using variant matrix based on HuRef datasets.

2 60!
—=—FastHap lFastHap
Greedy 500} | Greedy
P HapCut [lHapCut

Normalized MEC
Time (min.)
u
S
3

200)
0.5

20 25 5X 7X 10X 15X 20X

10 15
& (error rate %) Coverage

(a) MEC Values (b) Running Time

Fig. 4. Effect of error rate and coverage on performance of different
algorithms. The analysis was performed on chromosome 20 (randomly
selected) of HuRef dataset. (a) Switching error (MEC) of the three algo-
rithms under comparison as a function of error rate; (b) execution time of
the algorithms as a function of coverage

i376

,
to
%
to
to
s
due
(
)
over
tilized
(
)
less that
tilizing
due
that
,
(
)
,
,
%
to
(
)

FastHap

20

800,

FastHap vs. Greed
==
600} [EMHapCut 15

g 500 _%'

< 400) 810
£ &

= 300

200
100

200 400 600 800 1000 200 400 600 800 1000

Haplotype length Haplotype length

(a) Running Time (b) Speedup

Fig. 5. Speed performance of the three algorithms as a function of haplo-
type length. Analysis was performed on chromosome 20 (randomly se-
lected) of HuRef dataset. (a) Execution time as a function of haplotype
length. (b) Amount of speedup achieved by FastHap compared with
Greedy and HapCut

three algorithms as the coverage varies from 5 to 20. For this
experiment, the variant matrix was carefully modified to obtain
the right coverage needed for the analysis. Furthermore, the ob-
tained matrix was first made ‘error free’. We then flipped the
variant calls with a probability of € =0.25 for this analysis.

To assess running time of different algorithms with respect to
changes in haplotype length, variant matrices with different
number of columns were built as explained previously in
Section 3.2. Figure 5a shows execution time of the three algo-
rithms as the partial haplotype length grows from 200 to 1000
SNPs. For this analysis, an injected error rate of €=0.25 was
used. We note that the results are shown only for one block of
data. It can be observed that the running time of HapCut in-
creases significantly as the block width grows. That is, while
HapCut can build a partial haplotype of length 200 in 25s, its
running time increases to 784 s when the length of the haplotype
increases to 1000 SNPs.

To demonstrate superiority of FastHap partitioning algorithm
over a random partitioning, we selected a subset of the dataset at
random. We ran both FastHap and random partitioning algo-
rithms on the same variant matrix 10 times and calculated per-
centage of improvements in MEC achieved by FastHap. The
improvement numbers ranged from 12.17 to 31.64%, with an
average improvement of 19.13%.

4 DISCUSSION AND FUTURE WORK

Development of efficient and scalable algorithms for haplotype
assembly and reconstruction is by large an open research prob-
lem. Presence of error and missing data in the DNA short reads
makes the problem challenging. Current approaches suffer from
limited accuracy and are not scalable for application on large
datasets. In this article, we presented design, implementation and
validation of FastHap, a highly scalable haplotype assembly and
reconstruction method that has shown promising results
compared with the state-of-the-art assembly techniques. We pre-
sented a novel dissimilarity metric that quantifies inter-fragment
distance based on the contribution of individual fragments in
building a final haplotype. The notion of fuzzy conflict graph
was proposed to model the haplotype reconstruction as a max-
cut problem. We then introduced a fast heuristic algorithm for
fragment partitioning based on the fuzzy conflict graphs. The

framework lowers computing complexity of haplotype recon-
struction dramatically while also outperforming accuracy per-
formance of several popular assembly algorithms. In particular,
FastHap is up to one order of magnitude faster than HapCut
(Bansal and Bafna, 2008) and Levy’s greedy approach (Levy
et al., 2007).

In this article, we compared FastHap with two well-
known haplotype reconstruction algorithms, namely Levy’s
greedy algorithm and HapCut. The greedy algorithm is his-
torically known for its high speed while it also outperforms
accuracy of other computationally simple and greedy al-
gorithms such as FastHare (Panconesi and Sozio, 2004).
HapCut, in contrast, is popular for its high accuracy, but
demands much higher computational resources compared with
Greedy.

Because DNA short fragments are used in the process of
haplotype assembly, the number of SNPs that each short read
encompasses is considered to be an important factor. As a
general rule, short reads that cover less than two SNP sites
are eliminated in our analysis. When two or more variant
positions are spanned by a single read, or occur on paired
reads derived from the same shotgun clone, alleles can be
linked to identify larger haplotypes. Current sequencing technol-
ogies provide us with fragments that may or may not span
multiple SNP sites. Although such reads do not link multiple
SNPs, they can provide useful haplotype information for the
SNP they cover. Our approach in this article does not require
a preprocessing phase to eliminate such reads from further
analysis.

FastHap is a heuristic approach and may result in a subopti-
mal solution. Yet, it can provide high-quality phasing of hetero-
zygous variant sites. Unlike many prior works that use a
randomly generate vector to seed the initial haplotype, the start-
ing point of our algorithm is not a completely random pair of
haplotypes but created using our intelligent distance measure. As
demonstrated through our results, this approach would signifi-
cantly improve the time complexity and accuracy of the obtained
haplotypes.

Given the promising speed results that we have achieved using
FastHap, we are planning to further improve the accuracy of our
algorithm. We believe that the algorithm can become much
smarter if a cross-optimization approach is applied where both
fragment and SNP sets are considered for haplotype reconstruc-
tion/refinement.

In this article, we performed per-block analysis of speed and
accuracy. As part of our future work, we plan to study how
haplotypes generated from each block can be effectively com-
bined to form genome-wide haplotypes. We also plan to study
if the errors condensed by MEC values coincide when two haplo-
type reconstruction algorithms are compared.

With recent advancements in the sequencing technologies,
access to long reads of more than few thousand bases is becom-
ing a reality (Huddleston et al., 2014). For example, Pacific
Biosciences™ released an extra-long set of DNA fragments
with average read length of 8849 bp and up to 54X coverage.
The dataset has recently become publicly available
(PacificBiosciences, 2014). This dataset, which contains single-
end long fragments, is expected to be an excellent means to dem-
onstrate huge speed/accuracy benefits that FastHap can provide.

i377

In order
(
)
econds
econds
In
order
%
paper
,
which
ve
very
to
paper
s
to
Since
paper
-
very
paper
over
,

S.Mazrouee and W.Wang

Another example is newly released datasets based on 1000
Genome project (Siva, 2008). These datasets are also large with
high-density SNP sites. Our ongoing work involves application
of FastHap on such datasets.

ACKNOWLEDGEMENT

The authors would like to thank Vikas Bansal and Derek Aguiar
for providing the source code of their software and datasets. Also
special thanks to members of ZarLab-UCLA for their insightful
discussions and comments.

Funding: This work was funded by NIH RO1HGO006703, NIH
P50 GM076468-08 and NSF 11S-1313606.

Conflict of interest: none declared.

REFERENCES

Aguiar,D. and Istrail,S. (2012) Hapcompass: a fast cycle basis algorithm
for accurate haplotype assembly of sequence data. J. Comput. Biol., 19, 577-590.

Ausiello,G. (1999) Complexity and Approximability Properties: Combinatorial
Optimization Problems and Their Approximability —Properties. Springer,
Springer-Verlag New York, Inc. Secaucus, NJ, USA.

Bansal,V. and Bafna,V. (2008) Hapcut: an efficient and accurate algorithm for the
haplotype assembly problem. Bioinformatics, 24, i153-i159.

Bansal,V. et al. (2008) An memc algorithm for haplotype assembly from whole-
genome sequence data. Genome Res., 18, 1336-1346.

Cilibrasi,R. et al. (2005) On the complexity of several haplotyping problems. In:
Algorithms in Bioinformatics. Springer, Springer-Verlag New York, Inc.
Secaucus, NJ, USA, pp. 128-139.

Eid,J. et al. (2009) Real-time DNA sequencing from single polymerase molecules.
Science, 323, 133-138.

Garey,M.R. and Johnson,D.S. (1990) Computers and Intractability; A Guide to the
Theory of NP-Completeness. W. H. Freeman, New York, NY, USA.

He,D. et al. (2010) Optimal algorithms for haplotype assembly from whole-genome
sequence data. Bioinformatics, 26, i183-i190.

Huddleston,J. ef al. (2014) Reconstructing complex regions of genomes using long-
read sequencing technology. Genome Res., 24, 688—696.

Lancia,G. et al. (2001) SNPs problems, complexity, and algorithms. In:
AlgorithmsESA 2001. Springer, pp. 182-193.

Levy,S. et al. (2007) The diploid genome sequence of an individual human. PLoS
Biol., 5, e254.

PacificBiosciences,P. (2014) Human 54x dataset. http://datasets.pacb.com/2014/
Human54x/fast.html.

Panconesi,A. and Sozio,M. (2004) Fast hare: a fast heuristic for single individual
SNP haplotype reconstruction. In: Algorithms in Bioinformatics. Springer,
pp. 266-277.

Sahni,S. and Gonzales,T. (1974) P-complete problems and approximate solutions.
In: Proceedings of the 15th Annual Symposium on Switching and Automata
Theory (Swat 1974). SWAT’74, IEEE Computer Society, Washington, DC,
USA, pp. 28-32.

Siva,N. (2008) 1000 genomes project. Nat. Biotechnol., 26, 256.

VenterInst (2014) Diploid human genome project website, J. Craig Venter Institute.
http://www jcvi.org/cms/research/projects/huref/overview/.

i378

http://datasets.pacb.com/2014/Human54x/fast.html
http://datasets.pacb.com/2014/Human54x/fast.html
http://www.jcvi.org/cms/research/projects/huref/overview/

