

Motivation

Person search: Searching a specific person in a scene using body appearance

	Pros	Cons
Face	accurate	often not visible
Body	mostly	large variations
	visible	partial occlusio

Related work: People detection/tracking + person re-identification (usually sequential) **Problems**:

Person re-id relies heavily on the preceding people detection results;

> Person search is essentially a verification problem while many person re-id algorithms follow a classification framework

Person Search in a Scene by Jointly Modeling **People Commonness and Person Uniqueness** Yuanlu Xu, Bingpeng Ma, Rui Huang, Liang Lin

Proposal

Philosophy:

People detection algorithms use the most common features, commonness, shared by all human bodies to distinguish them from other objects; Person re-id algorithms need the most distinctive features, uniqueness, that are unique to a certain person to discriminate him/her against other people.

Solution: Jointly solving detection and identification Given a query image Iq and a scene Is, we want to find the possible location L of the queried person, by verifying every sliding window, using an additional set of images of people, T. The *joint* MAP problem is:

> $P(L \mid Iq, Is, T) \propto P(L \mid Is, T) P(L \mid Iq, Is)$ $\propto exp(-D_{com}(L, Is, T)) \cdot exp(-D_{uniq}(L, Iq, Is))$

GMM Encoded Commonness:

 $D_{com}(.)$ measures the deviation of the contents in the current sliding window from the common people appearance, modeled by a GMM trained from 7 **Fisher Vector Encoded Uniqueness:** $D_{unia}(.)$ measures the distance between the query and the current window, in terms of the unique appearances, modeled by Fisher vectors

Datasets:

Dataset	ID #	Query #	Scene #	Target #	Scene Res.
CAMPUS	74	370	214	1519	640×360
EPFL	30	70	80	294	360×288

Results:

Method

Experiments

5 X					
	All	S1	S2	CPFL	
	16.28%	19.96%	27.55%	30.15%	
	13.59%	17.65%	24.47%	27.87%	
nt	12.15%	16.54%	24.12%	29.72%	
eq	11.51%	15.82%	23.96%	29.54%	

