## A GENTLE TUTORIAL ON GRAPH NEURAL NETWORKS AND ITS APPLICATION TO PROGRAMMING LANGUAGE

#### Yizhou Sun

Department of Computer Science
University of California, Los Angeles
<a href="mailto:yzsun@cs.ucla.edu">yzsun@cs.ucla.edu</a>

August 17, 2020

#### **Outline**

Introduction



Graph Neural Networks

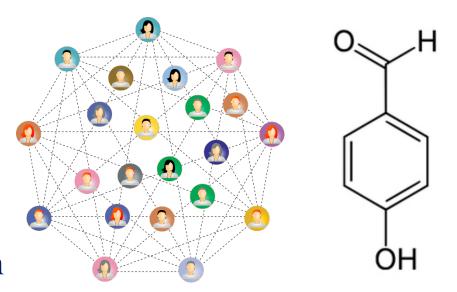
Downstream Tasks for Graphs

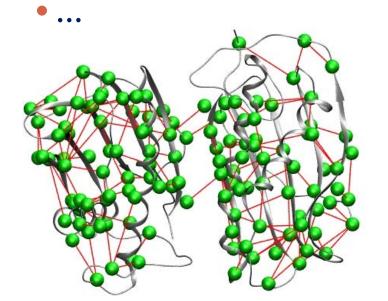
Applications in PL

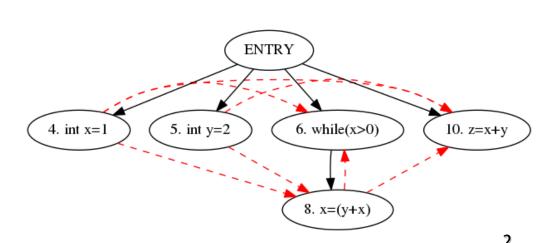
Discussions

## **Graph Analysis**

- Graphs are ubiquitous
  - Social networks
  - Proteins
  - Chemical compounds
  - Program dependence graph

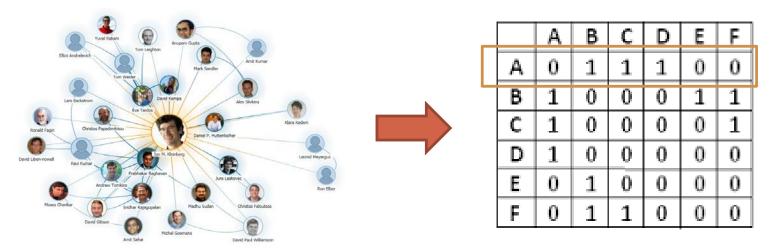






## Representing Nodes and Graphs

- Important for many graph related tasks
- Discrete nature makes it very challenging
- Naïve solutions

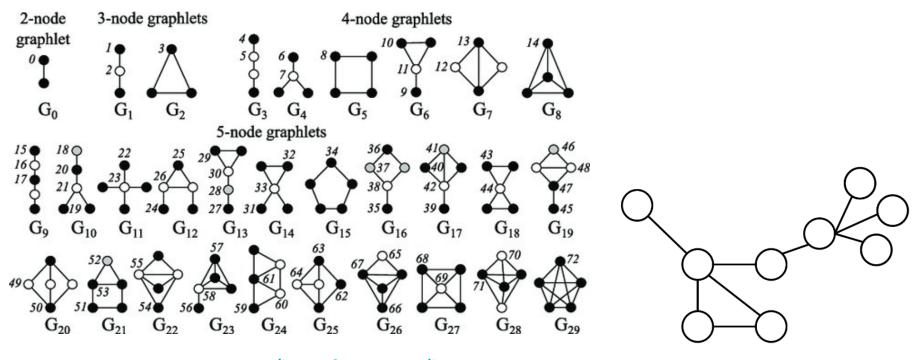


#### **Limitations:**

Extremely High-dimensional
No global structure information integrated
Permutation-variant

#### Even more challenging for graph representation

#### Ex. Graphlet-based feature vector



Source: DOI: <u>10.1093/bioinformatics/btv130</u>

| ممم | & | <b>99</b> | 88 | 88 | $\Xi$ |  |
|-----|---|-----------|----|----|-------|--|
| 12  | 1 | 4         | 1  | 6  | 0     |  |

Requires subgraph isomorphism test: NP-hard

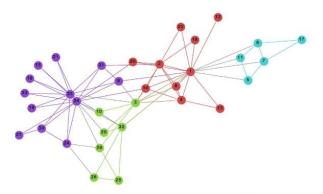
Source:

https://haotang1995.github.io/projects/robust \_graph\_level\_representation\_learning\_using\_g raph\_based\_structural\_attentional\_learning4

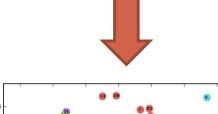
## **Automatic representation Learning**

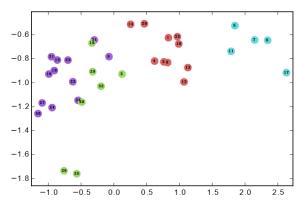
- Map each node/graph into a low dimensional vector
  - $\phi: V \to \mathbb{R}^d \text{ or } \phi: \mathcal{G} \to \mathbb{R}^d$
- Earlier methods
  - Shallow node embedding methods inspired by word2vec
    - DeepWalk [Perozzi, KDD'14]
    - LINE [Tang, WWW'15]
    - Node2Vec [Grover, KDD'16]

 $\phi(v) = U^T x_v$ , where U is the embedding matrix and  $x_v$  is the one-hot encoding vector









(b) Output: representations

Source: DeepWalk

#### Limitation of shallow embedding techniques

- Too many parameters
  - Each node is associated with an embedding vector, which are parameters
- Not inductive
  - Cannot handle new nodes
- Cannot handle node attributes

## From shallow embedding to Graph Neural Networks

- The embedding function (encoder) is more complicated
  - Shallow embedding
    - $\phi(v) = U^T x_v$ , where U is the embedding matrix and  $x_v$  is the one-hot encoding vector
  - Graph neural networks
    - $ullet \phi(v)$  is a neural network depending on the graph structure

#### **Outline**

Introduction

Graph Neural Networks



Downstream Tasks for Graphs

Applications in PL

Discussions

#### **Notations**

- •An attributed graph G = (V, E)
  - V: vertex set
  - *E*: edge set
  - A: adjacency matrix
  - $X \in \mathbb{R}^{d_0 \times |V|}$ : feature matrix for all the nodes
  - N(v): neighbors of node v
  - $h_{v}^{l}$ : Representation vector of node v at Layer l
    - Note  $h_v^0 = x_v$
  - $H^l \in R^{d_l \times |V|}$ : representation matrix

#### The General Architecture of GNNs

For a node v at layer t

$$h_v^{(t)} = f\left(\underline{h_v^{(t-1)}}, \left\{\underline{h_u^{(t-1)}} | u \in \mathcal{N}(v)\right\}\right)$$

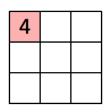
representation vector from previous layer for node v

representation vectors from previous layer for node v's neighbors

- A function of representations of neighbors and itself from previous layers
  - Aggregation of neighbors
  - Transformation to a different space
  - Combination of neighbors and the node itself

## **Compare with CNN**

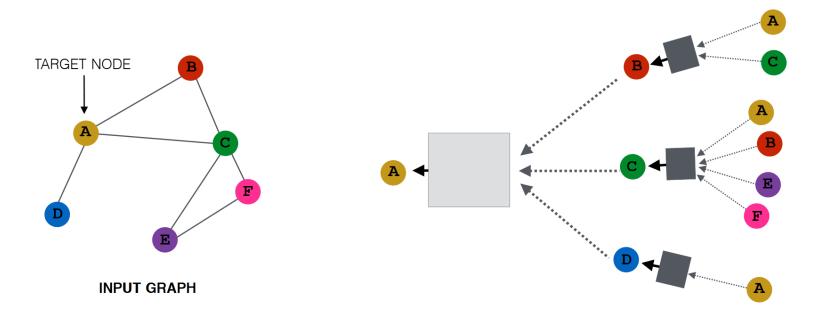
- Recall CNN
  - Regular graph
- GNN



**Image** 

Convolved Feature

Extend to irregular graph structure



## **Graph Convolutional Network (GCN)**

Kipf and Welling, ICLR'17

$$ullet f(H^{(l)},A) = \sigma\left(\hat{D}^{-rac{1}{2}}\hat{A}\hat{D}^{-rac{1}{2}}H^{(l)}W^{(l)}
ight), \widehat{A} = A + I$$

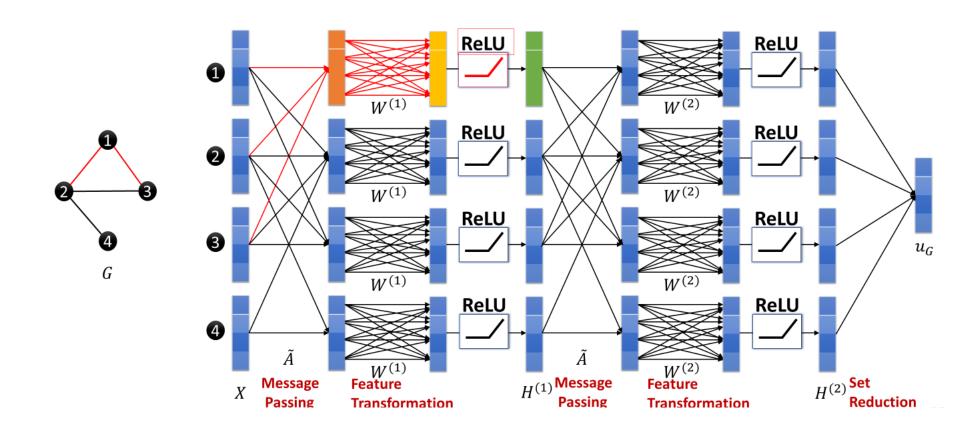
- f: graph filter
- From a node v's perspective

$$\mathbf{h}_{v}^{k} = \sigma \left( \mathbf{W}_{k} \sum_{u \in N(v) \cup v} \frac{\mathbf{h}_{u}^{k-1}}{\sqrt{|N(u)||N(v)|}} \right)$$

 $W_k$ : weight matrix at Layer k, shared across different nodes

# A toy example of 2-layer GCN on a 4-node graph

### Computation graph



## **GraphSAGE**

Inductive Representation Learning on Large Graphs

William L. Hamilton\*, Rex Ying\*, Jure Leskovec, NeurIPS'17

$$\mathbf{h}_{\mathcal{N}(v)}^{k} \leftarrow \text{AGGREGATE}_{k}(\{\mathbf{h}_{u}^{k-1}, \forall u \in \mathcal{N}(v)\})$$

$$\mathbf{h}_{v}^{k} \leftarrow \sigma\left(\mathbf{W}^{k} \cdot \text{CONCAT}(\mathbf{h}_{v}^{k-1}, \mathbf{h}_{\mathcal{N}(v)}^{k})\right)$$

A more general form

$$\mathbf{h}_{v}^{k} = \sigma\left(\left[\mathbf{W}_{k} \cdot \overline{\mathbf{AGG}\left(\left\{\mathbf{h}_{u}^{k-1}, \forall u \in N(v)\right\}\right)}, \mathbf{B}_{k}^{k} \mathbf{h}_{v}^{k-1}\right]\right)$$

#### **More about AGG**

Mean

$$AGG = \sum_{u \in N(v)} \frac{\mathbf{h}_u^{\kappa - 1}}{|N(v)|}$$

- LSTM  $\left(\left[\mathbf{h}_{u}^{k-1}, \forall u \in \pi(N(v))\right]\right)$ 
  - • $\pi(\cdot)$ : a random permutation

Pool

$$AGG = \gamma \left\{ \mathbf{Qh}_u^{k-1}, \forall u \in N(v) \right\}$$

• $\gamma(\cdot)$ : Element-wise mean/max pooling of neighbor set

## **Message-Passing Neural Network**

- Gilmer et al., 2017. Neural Message Passing for Quantum Chemistry. ICML.
- A general framework that subsumes most GNNs
  - Can also include edge information
- Two steps
  - Get messages from neighbors at step k

$$\mathbf{m}_v^k = \sum_{u \in N(v)} M(\mathbf{h}_u^{k-1}, \mathbf{h}_v^{k-1}, \mathbf{e}_{u,v})$$
 e.g., Sum or MLP

• Update the node latent represent based on the msg

$$\mathbf{h}_v^k = U(\mathbf{h}_v^{k-1}, \mathbf{m}_v^k)$$
 e.g., LSTM, GRU

## **Graph Attention Network (GAN)**

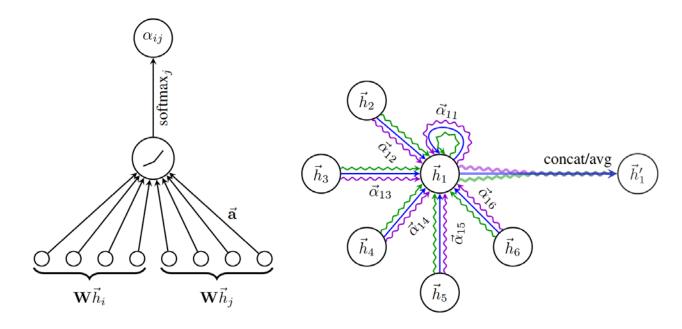
- How to decide the importance of neighbors?
  - GCN: a predefined weight
  - Others: no differentiation
- GAN: decide the weights using learnable attention
  - Velickovic et al., 2018. Graph Attention Networks. *ICLR*.

$$\vec{h}_i' = \sigma \left( \sum_{j \in \mathcal{N}_i} \alpha_{ij} \mathbf{W} \vec{h}_j \right)$$

#### The attention mechanism

### Potentially many possible designs

$$\alpha_{ij} = \frac{\exp\left(\text{LeakyReLU}\left(\vec{\mathbf{a}}^T[\mathbf{W}\vec{h}_i \| \mathbf{W}\vec{h}_j]\right)\right)}{\sum_{k \in \mathcal{N}_i} \exp\left(\text{LeakyReLU}\left(\vec{\mathbf{a}}^T[\mathbf{W}\vec{h}_i \| \mathbf{W}\vec{h}_i]\right)\right)}$$

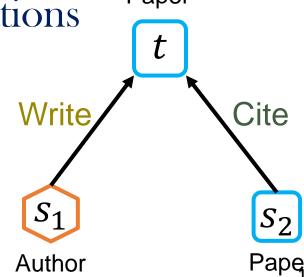


## **Heterogeneous Graph Transformer (HGT)**

- How to handle heterogeneous types of nodes and relations?
  - Introduce different weight matrices for different types of nodes and relations

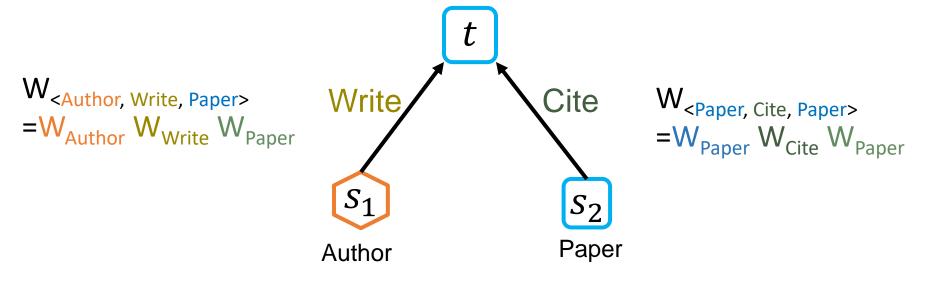
• Introduce different attention weight matrices for different types of nodes and relations

Hu et al., Heterogeneous Graph Transformer, WWW'20



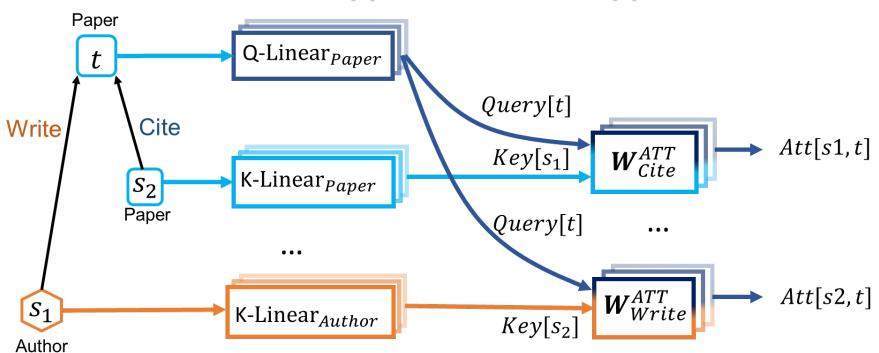
#### **Meta-Relation-based Parametrization**

- Introduce node- and edge- dependent parameterization
  - Leverage meta relation < source node type, edge type, target node type> to parameterize attention and message passing weight.



#### **Meta-Relation-based Attention**

 Attention learning is also parameterized based on node type and link type



#### **Outline**

Introduction

Graph Neural Networks

Downstream Tasks for Graphs



Applications in PL

Discussions

## **Typical Graph Functions**

- Node level
  - Similarity search
  - Link prediction
  - Classification
  - Community detection
  - Ranking

- Graph level
  - Similarity search
  - Frequent pattern mining
  - Graph isomorphism test
  - Graph matching
  - Classification
  - Clustering
  - Graph generation

## 1. Semi-supervised Node Classification

- Decoder using  $z_v = h_v^L$ 
  - Feed into another fully connected layer
  - $\bullet \, \hat{y}_v = \sigma(\theta^T z_v)$
- Loss function
  - Cross entropy loss
  - In a binary classification case
    - $l_v = y_v \log \hat{y}_v + (1 y_v) \log(1 \hat{y}_v)$

## **Applications of Node Classification**

- Social network
  - An account is bot or not
- Citation network
  - A paper's research field
- A program-derived graph
  - The type of a variable

#### 2. Link Prediction

- Decoder using  $z_v = h_v^L$ 
  - Given a node pair (u, v)
  - Determine its probability  $p_{uv} = z_u^T R z_v$
  - R could be different for different relation type
- Loss function
  - Cross entropy loss
    - $l_{uv} = y_{uv} log p_{uv} + (1 y_{uv}) log (1 p_{uv})$

## **Link Prediction Applications**

- Social network
  - Friend recommendation
- Citation network
  - Citation recommendation
- Medical network
  - Drug and target binding or not
- A program-derived graph
  - Code autocomplete

## 3. Graph Classification

- Decoder using  $h_G = g(\{z_v\}_{v \in V})$ 
  - $g(\cdot)$ : a read out function, e.g., sum
  - Feed  $h_G$  into another fully connected layer
  - $\bullet \, \hat{y}_G = \sigma(\theta^T h_G)$
- Loss function
  - Cross entropy loss
  - In a binary classification case
    - $l_G = y_G \log \hat{y}_G + (1 y_G) \log(1 \hat{y}_G)$

## **Graph Classification Applications**

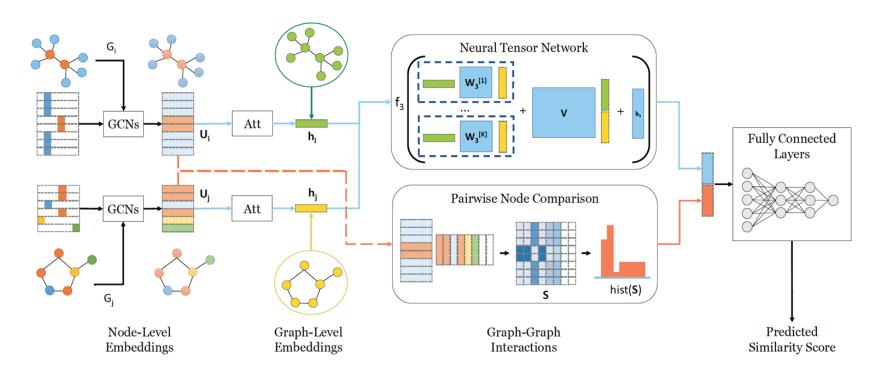
- Chemical compounds
  - Toxic or not.
- Proteins
  - Has certain function or not
- Program-derived graphs
  - Contains bugs or not

## 4. Graph Similarity Computation

- Decoder using  $h_G = g(\{z_v\}_{v \in V})$ 
  - Given a graph pair  $(G_1, G_2)$
  - Determine its score  $s_{G_1G_2} = h_{G_1}^T R h_{G_2}$
- Loss function
  - E.g., Square loss
    - $l_{G_1G_2} = (y_{G_1G_2} s_{G_1G_2})^2$

## A Concrete solution by SimGNN [Bai et al., AAAI 2019]

• Goal: learn a GNN  $\phi$ :  $G \times G \to R^+$  to approximate Graph Edit Distance between two graphs



- Attention-based graph-level embedding
- **2. Histogram** features from pairwise node similarities

## **Graph Similarity Computation Applications**

- Drug database
  - Drug similarity search
- Program database
  - Code recommendation
    - Search ninja code for novice code
    - Search java code for COBOL code



Wanted urgently: People who know a half century-old computer language so states can process unemployment claims

#### **Outline**

Introduction

Graph Neural Networks

Downstream Tasks for Graphs

Applications in PL

Discussions

## **Deep Learning in PL**

#### Programs as sequences

```
public class FooBar {
    int BAZ_CONST = 42;
}
```



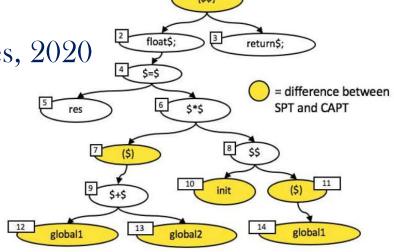
```
"public", "class", "CLASSO", "{", "int", "VARO", "=", "42", ";", "}"
```

Follow NLP techniques

```
float func()
{
    float res = (global1 + global2) * init(global1);
    return res;
}
```

#### Programs as trees

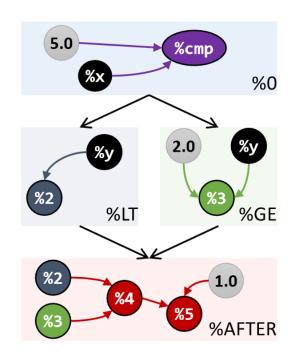
• Ye et al., Context-Aware ParseTrees, 2020

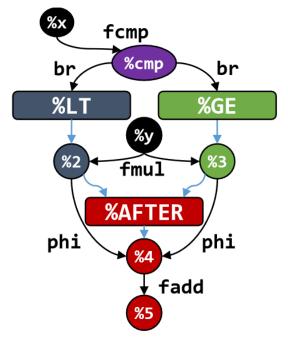


## Programs as graphs

 Ben-Nun et al., Neural Code Comprehension: A Learnable Representation of Code Semantics, NeurIPS 2018

```
double thres = 5.0;
if (x < thres)</pre>
    x = y * y;
else
    x = 2.0 * y;
x += 1.0:
           (a) Source code
%cmp = fcmp olt double %x, 5.0
br i1 %cmp, label %LT, label %GE
LT:
  %2 = fmul double %v, %v
GE:
  %3 = fmul double 2.0, %y
AFTER:
  %4 = phi double [%2,%LT], [%3,%GE]
  %5 = fadd double %4, 1.0
             (b) LLVM IR
```





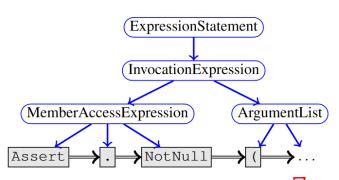
(c) Dataflow basic blocks

(d) Contextual Flow Graph

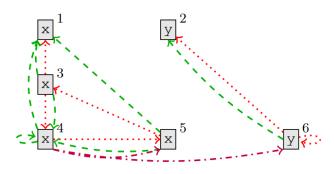
• Then shallow embedding: inst2vec

#### **GNNs in PL**

- Allamanis et al., Learning to represent programs with graphs, ICLR 2018
  - Tasks: (1) predict the name of a variable; (2) predict the right variable for a given location
  - Methodology: Gated GNN



(a) Simplified syntax graph for line 2 of Fig. 1, where blue rounded boxes are syntax nodes, black rectangular boxes syntax tokens, blue edges Child edges and double black edges NextToken edges.



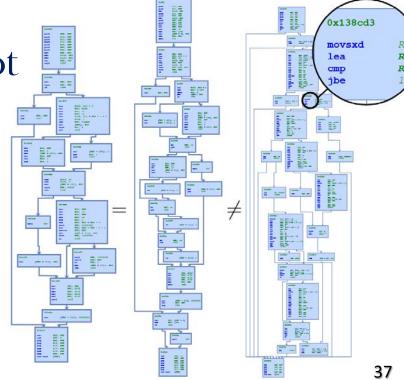
(b) Data flow edges for  $(x^1, y^2) = Foo()$ ; while  $(x^3 > 0) (x^4 = x^5 + y^6)$  (indices added for clarity), with red dotted LastUse edges, green dashed LastWrite edges and dashdotted purple ComputedFrom edges.

## **GNNs in PL (Cont.)**

 Li et al., Graph Matching Networks for Learning the Similarity of Graph Structured Objects, ICML 2019

• Tasks: decide whether two functions are the same or not

 Methodology: extend message passing across different graphs Control flow graph for functions



#### **Outline**

Introduction

Graph Neural Networks

Downstream Tasks for Graphs

Applications in PL

Discussions

## **Open Questions**

- How to represent programs into graphs?
  - Iyer, Sun, Wang, Gottschlich, Software Language Comprehension using a Program-Derived Semantic Graph, arXiv:2004.00768
    - Capture program semantics at many levels of granularity
    - A hierarchical graph

## **Open Questions**

### • Why GNNs work?

- Is the nonlinear transformation necessary?
- Chen et al., Are Powerful Graph Neural Nets Necessary? A Dissection on Graph Classification, arXiv:1905.04579
- A concatenate feature vector from graph propagation, followed by a MLP works equally well, and much faster!

$$X^G = \gamma(G, X) = \left[ \boldsymbol{d}, X, \tilde{A}^1 X, \tilde{A}^2 X, \cdots, \tilde{A}^K X \right],$$

#### Q&A

- Thanks to my collaborators:
  - Yunsheng Bai, Wei Wang, Derek Xu, Hao Ding, Ting Chen, Ziniu Hu, etc...



- Thanks to my funding agencies and industry support:
  - NSF, DARPA, PPDAI, Yahoo!, Nvidia, Snapchat, Amazon, Okawa Foundation