CS145: INTRODUCTION TO DATA MINING

2: Vector Data: Prediction

Instructor: Yizhou Sun

yzsun@cs.ucla.edu

October 4, 2017

Methods to Learn

	Vector Data	Set Data	Sequence Data	Text Data
Classification	Logistic Regression; Decision Tree; KNN SVM; NN			Naïve Bayes for Text
Clustering	K-means; hierarchical clustering; DBSCAN; Mixture Models			PLSA
Prediction	Linear Regression GLM			
Frequent Pattern Mining		Apriori; FP growth	GSP; PrefixSpan	
Similarity Search			DTW	

How to learn these algorithms?

- Three levels
 - When it is applicable?
 - Input, output, strengths, weaknesses, time complexity
 - How it works?
 - Pseudo-code, work flows, major steps
 - Can work out a toy problem by pen and paper
 - Why it works?
 - Intuition, philosophy, objective, derivation, proof

Vector Data: Prediction

Vector Data

- Linear Regression Model
- Model Evaluation and Selection
- Summary

Example

	Sex	Race	Height	Income	Marital Status	Years of Educ.	Liberal- ness
R1001	M	1	70	50	1	12	1.73
R1002	М	2	72	100	2	20	4.53
R1003	F	1	55	250	1	16	2.99
R1004	M	2	65	20	2	16	1.13
R1005	F	1	60	10	3	12	3.81
R1006	M	1	68	30	1	9	4.76
R1007	F	5	66	25	2	21	2.01
R1008	F	4	61	43	1	18	1.27
R1009	M	1	69	67	1	12	3.25

A matrix of $n \times p$:

- n data objects / points
- p attributes / dimensions

$$\begin{bmatrix} x_{11} & \dots & x_{1f} & \dots & x_{1p} \\ \dots & \dots & \dots & \dots \\ x_{i1} & \dots & x_{if} & \dots & x_{ip} \\ \dots & \dots & \dots & \dots \\ x_{n1} & \dots & x_{nf} & \dots & x_{np} \end{bmatrix}$$

Attribute Type

- Numerical
 - E.g., height, income
- Categorical / discrete
 - E.g., Sex, Race

Categorical Attribute Types

- Nominal: categories, states, or "names of things"
 - Hair_color = {auburn, black, blond, brown, grey, red, white}
 - marital status, occupation, ID numbers, zip codes

Binary

- Nominal attribute with only 2 states (0 and 1)
- Symmetric binary: both outcomes equally important
 - e.g., gender
- Asymmetric binary: outcomes not equally important.
 - e.g., medical test (positive vs. negative)
 - Convention: assign 1 to most important outcome (e.g., HIV positive)

Ordinal

- Values have a meaningful order (ranking) but magnitude between successive values is not known.
- Size = {small, medium, large}, grades, army rankings

Basic Statistical Descriptions of Data

- Central Tendency
- Dispersion of the Data
- Graphic Displays

Measuring the Central Tendency

Mean (algebraic measure) (sample vs. population):

Note: *n* is sample size and *N* is population size.

- Weighted arithmetic mean:
- Trimmed mean: chopping extreme values

Median:

- Middle value if odd number of values, or average of the middle two values otherwise
- Estimated by interpolation (for grouped data):

$$median = L_1 + (\frac{n/2 - (\sum freq)l}{freq_{median}}) width$$

- Mode
 - Value that occurs most frequently in the data
 - Unimodal, bimodal, trimodal
 - Empirical formula: $mean mode = 3 \times (mean median)$

$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$	$\mu = \frac{\sum x}{N}$
$\overline{x} = \frac{\sum_{i=1}^{n} w_i x_i}{\sum_{i=1}^{n} w_i x_i}$	
$\sum_{i=1}^{n} w_{i}$	

i=1

age	frequency
$\overline{1-5}$	200
6 - 15	450
16-20	300
21 - 50	1500
51 - 80	700
81–110	AA

Symmetric vs. Skewed Data

 Median, mean and mode of symmetric, positively and negatively skewed data

Measuring the Dispersion of Data

- Quartiles, outliers and boxplots
 - Quartiles: Q₁ (25th percentile), Q₃ (75th percentile)
 - Inter-quartile range: IQR = Q₃ − Q₁
 - Five number summary: min, Q₁, median, Q₃, max
 - Outlier: usually, a value higher/lower than 1.5 x IQR
- Variance and standard deviation (sample: s, population: σ)
 - Variance: (algebraic, scalable computation)

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} = \frac{1}{n-1} \left[\sum_{i=1}^{n} x_{i}^{2} - \frac{1}{n} \left(\sum_{i=1}^{n} x_{i} \right)^{2} \right] \quad \sigma^{2} = \frac{1}{N} \sum_{i=1}^{n} (x_{i} - \mu)^{2} = \frac{1}{N} \sum_{i=1}^{n} x_{i}^{2} - \mu^{2}$$

• Standard deviation s (or σ) is the square root of variance s^2 (or σ^2)

Graphic Displays of Basic Statistical Descriptions

- **Histogram**: x-axis are values, y-axis repres. frequencies
- Scatter plot: each pair of values is a pair of coordinates and plotted as points in the plane

Histogram Analysis

- Histogram: Graph display of tabulated frequencies, shown as bars
- It shows what proportion of cases fall into each of several categories
- Differs from a bar chart in that it is the area of the bar that denotes the value, not the height as in bar charts, a crucial distinction when the categories are not of uniform width
- The categories are usually specified as non-overlapping intervals of some variable. The categories (bars) must be adjacent

Scatter plot

- Provides a first look at bivariate data to see clusters of points, outliers, etc
- Each pair of values is treated as a pair of coordinates and plotted as points in the plane

Positively and Negatively Correlated Data

- The left half fragment is positively correlated
- The right half is negative correlated

Uncorrelated Data

Scatterplot Matrices

Matrix of scatterplots (x-y-diagrams) of the k-dim. data [total of (k2/2-k) scatterplots]

Vector Data: Prediction

- Vector Data
- Linear Regression Model
- Model Evaluation and Selection
- Summary

Linear Regression

- Ordinary Least Square Regression
 - Closed form solution
 - Gradient descent
- Linear Regression with Probabilistic
 Interpretation

The Linear Regression Problem

- Any Attributes to Continuous Value: $\mathbf{x} \Rightarrow \mathbf{y}$
 - {age; major; gender; race} \Rightarrow GPA

• {income; credit score; profession} ⇒ loan

• {college; major; GPA} \Rightarrow future income

• . . .

Example of House Price

Living Area (sqft)	# of Beds	Price (1000\$)
2104	3	400
1600	3	330
2400	3	369
1416	2	232
3000	4	540
Y		ļ
$\mathbf{x} = (x_1, x_2, x_3)$	У	

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2$$

Illustration

Formalization

- Data: n independent data objects
 - y_i , i = 1, ..., n
 - $x_i = (x_{i1}, x_{i2}, ..., x_{ip})^T$, i = 1, ..., n
 - A constant factor is added to model the bias term, i. e. , $x_{i0}=1$
 - New x: $\mathbf{x}_i = (x_{i0}, x_{i1}, x_{i2}, ..., x_{ip})^{T}$
- Model:
 - y: dependent variable
 - x: explanatory variables
 - $\boldsymbol{\beta} = (\beta_0, \beta_1, ..., \beta_p)^T$: weight vector
 - $y = \mathbf{x}^T \mathbf{\beta} = \beta_0 + x_1 \beta_1 + x_2 \beta_2 + \dots + x_p \beta_p$

A 3-step Process

- Model Construction
 - Use training data to find the best parameter β , denoted as $\widehat{\beta}$
- Model Selection
 - Use validation data to select the best model
 - E.g., Feature selection
- Model Usage
 - Apply the model to the unseen data (test data):

$$\hat{y} = \mathbf{x}^T \widehat{\boldsymbol{\beta}}$$

Least Square Estimation

Cost function (Total Square Error):

$$\bullet J(\boldsymbol{\beta}) = \frac{1}{2} \sum_{i} (\boldsymbol{x}_{i}^{T} \boldsymbol{\beta} - y_{i})^{2}$$

• Matrix form:

•
$$J(\boldsymbol{\beta}) = (X\boldsymbol{\beta} - \boldsymbol{y})^T (X\boldsymbol{\beta} - \boldsymbol{y})/2$$

$$or ||X\boldsymbol{\beta} - \boldsymbol{y}||^2/2$$

$$\begin{bmatrix} 1, x_{11} & \dots & x_{1f} & \dots & x_{1p} \\ \dots & \dots & \dots & \dots \\ 1, x_{i1} & \dots & x_{if} & \dots & x_{ip} \\ \dots & \dots & \dots & \dots & \dots \\ 1, x_{n1} & \dots & x_{nf} & \dots & x_{np} \end{bmatrix}$$

$$\begin{bmatrix} y_1 \\ \vdots \\ y_i \\ \vdots \\ y_n \end{bmatrix}$$

 $X: n \times (p+1)$ matrix

y: $n \times 1$ vector

Ordinary Least Squares (OLS)

•Goal: find $\widehat{\beta}$ that minimizes $J(\beta)$

•
$$J(\boldsymbol{\beta}) = \frac{1}{2} (X\boldsymbol{\beta} - y)^T (X\boldsymbol{\beta} - y)$$

= $\frac{1}{2} (\boldsymbol{\beta}^T X^T X \boldsymbol{\beta} - y^T X \boldsymbol{\beta} - \boldsymbol{\beta}^T X^T y + y^T y)$

- Ordinary least squares
 - Set first derivative of $J(\beta)$ as 0

$$\bullet \frac{\partial J}{\partial \boldsymbol{\beta}} = \boldsymbol{\beta}^T \mathbf{X}^T \mathbf{X} - \mathbf{y}^T \mathbf{X} = 0$$

$$\bullet \Rightarrow \widehat{\beta} = (X^T X)^{-1} X^T y$$

Gradient Descent

 Minimize the cost function by moving down in the steepest direction

Arrows point in minus gradient direction towards the minimum

Batch Gradient Descent

Move in the direction of steepest descend

Repeat until converge {

$$\boldsymbol{\beta}^{(t+1)} := \boldsymbol{\beta}^{(t)} - \eta \frac{\partial J}{\partial \boldsymbol{\beta}} |_{\boldsymbol{\beta} = \boldsymbol{\beta}^{(t)}}$$
, e.g., $\eta = 0.01$

Where
$$J(\boldsymbol{\beta}) = \frac{1}{2} \sum_{i} (\boldsymbol{x}_{i}^{T} \boldsymbol{\beta} - y_{i})^{2} = \sum_{i} J_{i}(\boldsymbol{\beta})$$
 and
$$\frac{\partial J}{\partial \boldsymbol{\beta}} = \sum_{i} \frac{\partial J_{i}}{\partial \boldsymbol{\beta}} = \sum_{i} \boldsymbol{x}_{i} \ (\boldsymbol{x}_{i}^{T} \boldsymbol{\beta} - y_{i})$$

Stochastic Gradient Descent

• When a new observation, *i*, comes in, update weight immediately (extremely useful for large-scale datasets):

```
Repeat {  \mbox{for i=1:n } \{ \\  \mbox{}  \mbo
```

If the prediction for object i is smaller than the real value, β should move forward to the direction of x_i

Probabilistic Interpretation

Review of normal distribution

• X ~
$$N(\mu, \sigma^2)$$
 \Rightarrow $f(X = x) = \frac{1}{2\pi\sigma^2} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$

"Bell Curve"

Standard Normal Distribution

19.1% 19.1%

2-Score -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

Standard -4 σ -3 σ -2 σ -1 σ 0 +1 σ +2 σ +3 σ +4 σ

Cumulative Percent

1% 5% 10% 20 30 40 50 60 70 80 90% 95% 99%

Probabilistic Interpretation

- Model: $y_i = x_i^T \beta + \varepsilon_i$
 - $\varepsilon_i \sim N(0, \sigma^2)$
 - $y_i | x_i, \beta \sim N(x_i^T \beta, \sigma^2)$
 - $E(y_i|x_i) = x_i^T \beta$
- Likelihood:
 - $L(\boldsymbol{\beta}) = \prod_i p(y_i|x_i,\beta)$

$$= \prod_{i} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\{-\frac{\left(y_i - x_i^T \boldsymbol{\beta}\right)^2}{2\sigma^2}\}$$

- Maximum Likelihood Estimation
 - find $\widehat{\beta}$ that maximizes $L(\beta)$
 - arg max L = arg min J, Equivalent to OLS!

Other Practical Issues

- What if X^TX is not invertible?
 - Add a small portion of identity matrix, λI , to it
 - ridge regression or linear regression with I2 norm

$$\sum_{i} (y_i - \mathbf{x}_i^T \boldsymbol{\beta})^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$

- What if some attributes are categorical?
 - Set dummy variables
 - E.g., x = 1, if sex = F; x = 0, if sex = M
 - Nominal variable with multiple values?
 - Create more dummy variables for one variable
- What if non-linear correlation exists?
 - Transform features, say, x to x^2

Vector Data: Prediction

- Vector Data
- Linear Regression Model
- Model Evaluation and Selection

Summary

Model Selection Problem

Basic problem:

 how to choose between competing linear regression models

Model too simple:

• "underfit" the data; poor predictions; high bias; low variance

Model too complex:

• "overfit" the data; poor predictions; low bias; high variance

• Model just right:

balance bias and variance to get good predictions

Bias and Variance

True predictor $f(x): x^T \beta$

- Bias: $E(\hat{f}(x)) f(x)$ Estimated predictor $\hat{f}(x)$: $x^T \hat{\beta}$
 - How far away is the expectation of the estimator to the true value? The smaller the better.
- Variance: $Var\left(\hat{f}(x)\right) = E\left[\left(\hat{f}(x) E\left(\hat{f}(x)\right)\right)^{2}\right]$
 - How variant is the estimator? The smaller the better.
- Reconsider mean square error

•
$$J(\widehat{\boldsymbol{\beta}})/n = \sum_{i} (\boldsymbol{x}_{i}^{T} \widehat{\boldsymbol{\beta}} - y_{i})^{2}/n$$

Can be considered as

•
$$E[(\hat{f}(x) - f(x) - \varepsilon)^2] = bias^2 + variance + noise$$

Note $E(\varepsilon) = 0, Var(\varepsilon) = \sigma^2$

Bias-Variance Trade-off

Example: degree d in regression

$$1. \quad h_{\theta}(x) = \theta_0 + \theta_1 x$$

2.
$$h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2$$

3.
$$h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_3 x^3$$
$$\vdots$$

10.
$$h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_{10} x^{10}$$

High bias (underfit)

"Just right"

High variance (overfit)

http://www.holehouse.org/mlclass/10_Advice_for_applying_machine_learning.html

Example: regularization term in regression

Linear regression with regularization

Model:
$$h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$$

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \frac{\lambda}{2m} \sum_{j=1}^{m} \theta_j^2$$

Large λ High bias (underfit)

$$\lambda = 10000. \ \theta_1 \approx 0, \theta_2 \approx 0, \dots$$

$$h_{\theta}(x) \approx \theta_0$$

Intermediate λ "Just right"

High variance (overfit)

$$\lambda \approx 0$$

Cross-Validation

- Partition the data into K folds
 - Use K-1 fold as training, and 1 fold as testing
 - Calculate the average accuracy best on K training-testing pairs
 - Accuracy on validation/test dataset!
 - Mean square error can again be used: $\sum_i (x_i^T \hat{\beta} y_i)^2 / n$

AIC & BIC*

- AIC and BIC can be used to test the quality of statistical models
 - AIC (Akaike information criterion)
 - $\bullet AIC = 2k 2\ln(\hat{L}),$
 - ullet where k is the number of parameters in the model and \widehat{L} is the likelihood under the estimated parameter
 - BIC (Bayesian Information criterion)
 - BIC = $kln(n) 2ln(\hat{L})$,
 - Where n is the number of objects

Stepwise Feature Selection

- Avoid brute-force selection
 - 2^p
- Forward selection
 - Starting with the best single feature
 - Always add the feature that improves the performance best
 - Stop if no feature will further improve the performance
- Backward elimination
 - Start with the full model
 - Always remove the feature that results in the best performance enhancement
 - Stop if removing any feature will get worse performance

Vector Data: Prediction

- Vector Data
- Linear Regression Model
- Model Evaluation and Selection
- Summary

Summary

- What is vector data?
 - Attribute types
 - Basic statistics
 - Visulization
- Linear regression
 - OLS
 - Probabilistic interpretation
- Model Evaluation and Selection
 - Bias-Variance Trade-off
 - Mean square error
 - Cross-validation, AIC, BIC, step-wise feature selection