CS145: INTRODUCTION TO DATA MINING

5: Vector Data: Support Vector Machine

Instructor: Yizhou Sun

yzsun@cs.ucla.edu

October 18, 2017

Announcements

- Homework 1
 - Due end of the day of this Thursday (11:59pm)

- Reminder of late submission policy
 - original score * $1(t \le 24)e^{-(\ln(2)/12)*t}$
 - E.g., if you are t = 12 hours late, maximum of half score will be obtained; if you are 24 hours late, 0 score will be given.

Methods to Learn: Last Lecture

	Vector Data	Set Data	Sequence Data	Text Data
Classification	Logistic Regression; Decision Tree; KNN SVM; NN			Naïve Bayes for Text
Clustering	K-means; hierarchical clustering; DBSCAN; Mixture Models			PLSA
Prediction	Linear Regression GLM*			
Frequent Pattern Mining		Apriori; FP growth	GSP; PrefixSpan	
Similarity Search			DTW	

Methods to Learn

	Vector Data	Set Data	Sequence Data	Text Data
Classification	Logistic Regression; Decision Tree; KNN SVM; NN			Naïve Bayes for Text
Clustering	K-means; hierarchical clustering; DBSCAN; Mixture Models			PLSA
Prediction	Linear Regression GLM*			
Frequent Pattern Mining		Apriori; FP growth	GSP; PrefixSpan	
Similarity Search			DTW	

Support Vector Machine

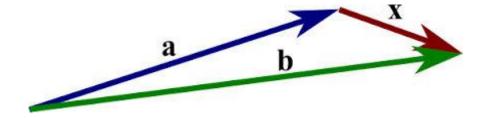
Introduction

- Linear SVM
- Non-linear SVM
- Scalability Issues*
- Summary

Math Review

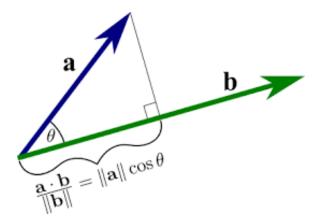
Vector

 $\bullet \mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n)$



• Subtracting two vectors: x = b - a

- Dot product
 - $\cdot \boldsymbol{a} \cdot \boldsymbol{b} = \sum a_i b_i$



- Geometric interpretation: projection
- If \boldsymbol{a} and \boldsymbol{b} are orthogonal, $\boldsymbol{a} \cdot \boldsymbol{b} = 0$

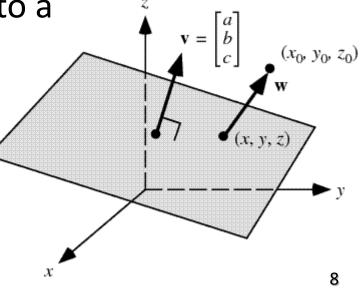
Math Review (Cont.)

Plane/Hyperplane

- $a_1x_1 + a_2x_2 + \dots + a_nx_n = c$
- Line (n=2), plane (n=3), hyperplane (higher dimensions)
- Normal of a plane
 - $\mathbf{n} = (a_1, a_2, ..., a_n)$
 - a vector which is perpendicular to the surface

Math Review (Cont.) z

- Define a plane using normal n = (a, b, c) and a point (x_0, y_0, z_0) in the plane:
 - $(a,b,c) \cdot (x_0 x, y_0 y, z_0 z) = 0 \Rightarrow$ $ax + by + cz = ax_0 + by_0 + cz_0 (= d)$
- Distance from a point (x_0, y_0, z_0) to a plane ax + by + cz = d
 - $\frac{\left| (x_0 x, y_0 y, z_0 z) \cdot \frac{(a, b, c)}{\left| |(a, b, c)| \right|} \right|}{\frac{\left| ax_0 + by_0 + cz_0 d \right|}{\sqrt{a^2 + b^2 + c^2}}$



 (x_0, y_0, z_0)

(x, y, z)

Linear Classifier

• Given a training dataset $\{x_i, y_i\}_{i=1}^N$

 A separating hyperplane can be written as a linear combination of attributes

$$\mathbf{W} \bullet \mathbf{X} + \mathbf{b} = \mathbf{0}$$

where $W=\{w_1, w_2, ..., w_n\}$ is a weight vector and b a scalar (bias)

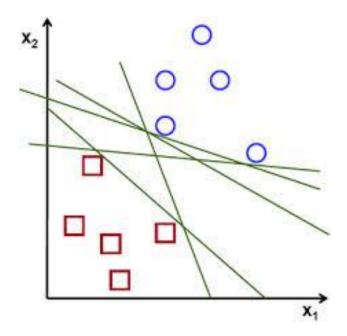
For 2-D it can be written as

$$W_0 + W_1 X_1 + W_2 X_2 = 0$$

Classification:

$$W_0 + W_1 X_1 + W_2 X_2 > 0 => y_i = +1$$

 $W_0 + W_1 X_1 + W_2 X_2 \le 0 => y_i = -1$



Recall

 Is the decision boundary for logistic regression linear?

Is the decision boundary for decision tree linear?

Simple Linear Classifier: Perceptron

$$\mathbf{x} = (\mathbf{1}, x_1, x_2, \dots, x_d)^T$$
 $\mathbf{w} = (\omega_0, \omega_1, \omega_2, \dots, \omega_d)^T$ $y = \{1, -1\}$ $\alpha \in (0, 1]$ (learning rate)

Initialize $\mathbf{w} = \mathbf{0}$ (can be any vector) Repeat:

- For each training example (\mathbf{x}_i, y_i) :
 - Compute $\hat{y}_i = \text{sign}(\mathbf{w}^\mathsf{T} \mathbf{x_i})$
 - if $(y_i \neq \hat{y_i})$ $\mathbf{w} = \mathbf{w} + \alpha(y_i \mathbf{x_i})$

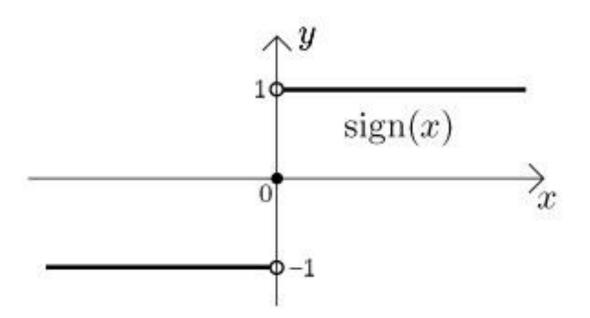
Until
$$(y_i = \hat{y_i} \quad \forall i = 1 \dots N)$$

Return w

Loss function: $\max\{0, -y_i * w^T x_i\}$

More on Sign Function

$$sign(x) = \begin{cases} 1, & x > 0; \\ 0, & x = 0; \\ -1, & x < 0. \end{cases}$$



Example

x0 x1	x2	true	w	predicted	w	
	AI	AZ.	label	before update	label	after update
1	0	1	Y	(0.0, 0.0, 0.0)	N	(0.9, 0.0, 0.9)
1	1	1	N	(0.9, 0.0, 0.9)	Y	(0.0, -0.9, 0.0)
1	0	0	Y	(0.0, -0.9, 0.0)	N	(0.9, -0.9, 0.0)
1	1	0	Y	(0.9, -0.9, 0.0)	N	(1.8, 0.0, 0.0)
1	0	1	Y	(1.8, 0.0, 0.0)	Y	(1.8, 0.0, 0.0)
1	1	1	N	(1.8, 0.0, 0.0)	Y	(0.9, -0.9, -0.9)
1	0	0	Y	(0.9, -0.9, -0.9)	Y	(0.9, -0.9, -0.9)
1	1	0	Y	(0.9, -0.9, -0.9)	N	(1.8, 0.0, -0.9)
1	0	1	Y	(1.8, 0.0, -0.9)	Y	(1.8, 0.0, -0.9)
1	1	1	N	(1.8, 0.0, -0.9)	Y	(0.9, -0.9, -1.8)
1	0	0	Y	(0.9, -0.9, -1.8)	Y	(0.9, -0.9, -1.8)
1	1	0	Y	(0.9, -0.9, -1.8)	N	(1.8, 0.0, -1.8)

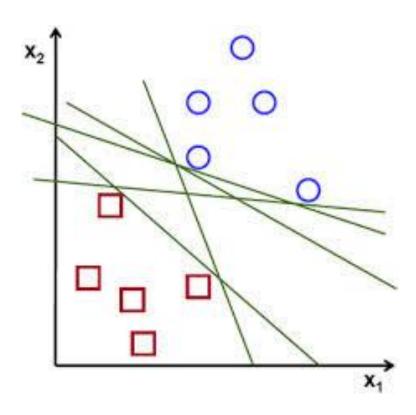
Support Vector Machine

- Introduction
- Linear SVM

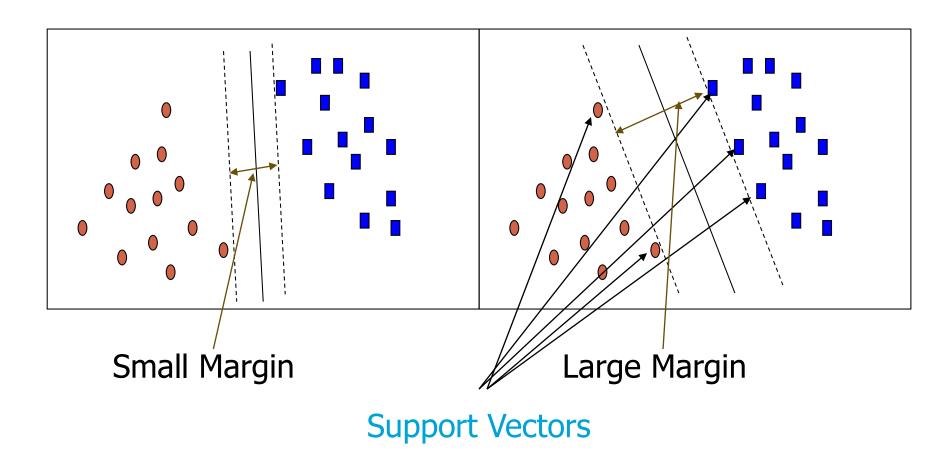
- Non-linear SVM
- Scalability Issues*
- Summary

Can we do better?

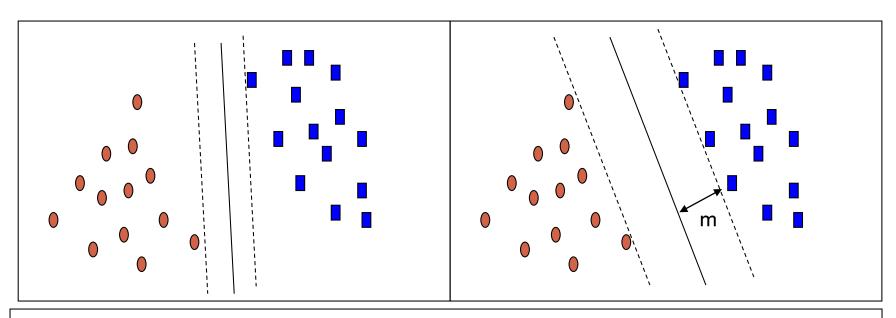
• Which hyperplane to choose?



SVM—Margins and Support Vectors



SVM—When Data Is Linearly Separable



Let data D be $(\mathbf{X}_1, \mathbf{y}_1)$, ..., $(\mathbf{X}_{|D|}, \mathbf{y}_{|D|})$, where \mathbf{X}_i is the set of training tuples associated with the class labels \mathbf{y}_i

There are infinite lines (<u>hyperplanes</u>) separating the two classes but we want to <u>find the best one</u> (the one that minimizes classification error on unseen data)

SVM searches for the hyperplane with the largest margin, i.e., maximum marginal hyperplane (MMH)

SVM—Linearly Separable

A separating hyperplane can be written as

$$\mathbf{W} \bullet \mathbf{X} + \mathbf{b} = \mathbf{0}$$

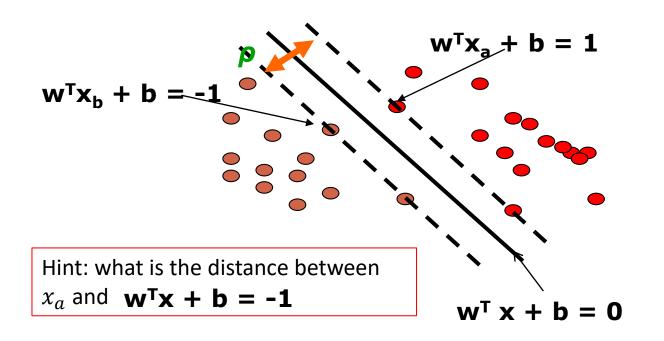
The hyperplane defining the sides of the margin, e.g.,:

H₁:
$$w_0 + w_1 x_1 + w_2 x_2 \ge 1$$
 for $y_i = +1$, and
H₂: $w_0 + w_1 x_1 + w_2 x_2 \le -1$ for $y_i = -1$

- Any training tuples that fall on hyperplanes H₁ or H₂ (i.e., the sides defining the margin) are support vectors
- This becomes a constrained (convex) quadratic optimization problem: Quadratic objective function and linear constraints → Quadratic Programming (QP) → Lagrangian multipliers

Maximum Margin Calculation

- w: decision hyperplane normal vector
- x_i: data point i
- y_i : class of data point i (+1 or -1)



margin:
$$\rho = \frac{2}{||\boldsymbol{w}||}$$

SVM as a Quadratic Programming

Objective: Find **w** and *b* such that $\rho = \frac{2}{||w||}$ is maximized;

Constraints: For all $\{(\mathbf{x_i}, y_i)\}$

$$\mathbf{w}^{\mathsf{T}}\mathbf{x_i} + b \ge 1 \text{ if } y_i = 1$$

$$\mathbf{w}^{\mathbf{T}}\mathbf{x_i} + b \ge 1 \text{ if } y_i = 1;$$

 $\mathbf{w}^{\mathbf{T}}\mathbf{x_i} + b \le -1 \text{ if } y_i = -1$

A better form

Objective: Find w and b such that $\Phi(\mathbf{w}) = \frac{1}{2} \mathbf{w}^T \mathbf{w}$ is minimized;

Constraints: for all $\{(\mathbf{x_i}, y_i)\}: y_i(\mathbf{w^Tx_i} + b) \ge 1$

Solve QP

- This is now optimizing a quadratic function subject to linear constraints
- Quadratic optimization problems are a wellknown class of mathematical programming problem, and many (intricate) algorithms exist for solving them (with many special ones built for SVMs)
- The solution involves constructing a dual problem where a Lagrange multiplier α_i is associated with every constraint in the primary problem:

Lagrange Formulation

Minimize

$$L(\mathbf{w}, \mathbf{b}, \alpha) = \frac{1}{2}\mathbf{w}^\mathsf{T}\mathbf{w} - \sum_{i=1}^N \alpha_i(y_i(\mathbf{w}^\mathsf{T}\mathbf{x}_i + \mathbf{b}) - 1)$$

Take the partial derivatives w.r.t \mathbf{w} , \mathbf{b} :

$$\nabla_{\mathbf{w}} L = \mathbf{w} - \sum_{i=1}^{N} \alpha_i y_i \mathbf{x}_i = 0 \Longrightarrow \mathbf{w} = \sum_{i=1}^{N} \alpha_i y_i \mathbf{x}_i$$
$$\frac{\partial L}{\partial b} = -\sum_{i=1}^{N} \alpha_i y_i = 0$$

Primal Form and Dual Form

Primal

Objective: Find w and b such that $\Phi(\mathbf{w}) = \frac{1}{2} \mathbf{w}^T \mathbf{w}$ is minimized;

Constraints: for all $\{(\mathbf{x_i}, y_i)\}: y_i(\mathbf{w^Tx_i} + b) \ge 1$

Equivalent under some conditions: KKT conditions

Objective: Find $\alpha_1...\alpha_n$ such that

 $\mathbf{Q}(\alpha) = \Sigma \alpha_i - \Sigma \Sigma \alpha_i \alpha_i y_i y_i \mathbf{x}_i^{\mathsf{T}} \mathbf{x}_i$ is maximized and

Dual

Constraints

- (1) $\Sigma \alpha_i y_i = 0$ (2) $\alpha_i \ge 0$ for all α_i
- More derivations:

http://cs229.stanford.edu/notes/cs229-notes3.pdf

The Optimization Problem Solution

The solution has the form:

$$\mathbf{w} = \sum \alpha_i y_i \mathbf{x_i}$$
 $b = y_k - \mathbf{w^T} \mathbf{x_k}$ for any $\mathbf{x_k}$ such that $\alpha_k \neq 0$

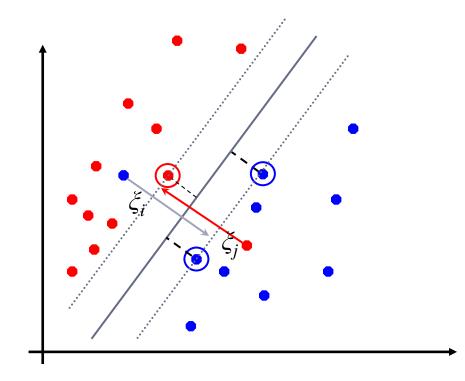
- Each non-zero α_i indicates that corresponding $\mathbf{x_i}$ is a support vector.
- Then the classifying function will have the form:

$$f(\mathbf{x}) = \sum \alpha_i y_i \mathbf{x_i}^{\mathsf{T}} \mathbf{x} + b$$

- Notice that it relies on an inner product between the test point x and the support vectors x_i
 - We will return to this later.
- Also keep in mind that solving the optimization problem involved computing the inner products x_i^Tx_j between all pairs of training points.

Soft Margin Classification

- If the training data is not linearly separable, slack variables ξ_i can be added to allow misclassification of difficult or noisy examples.
- Allow some errors
 - Let some points be moved to where they belong, at a cost
- Still, try to minimize training set errors, and to place hyperplane "far" from each class (large margin)



Soft Margin Classification Mathematically

The old formulation:

Find w and b such that
$$\Phi(\mathbf{w}) = \frac{1}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w}$$
 is minimized and for all $\{(\mathbf{x_i}, y_i)\}$ $y_i (\mathbf{w}^{\mathrm{T}} \mathbf{x_i} + \mathbf{b}) \ge 1$

The new formulation incorporating slack variables:

```
Find w and b such that  \Phi(\mathbf{w}) = \frac{1}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w} + C \sum_{i} \xi_{i}  is minimized and for all \{(\mathbf{x_{i}}, y_{i})\} y_{i}(\mathbf{w}^{\mathrm{T}} \mathbf{x_{i}} + b) \ge 1 - \xi_{i}  and \xi_{i} \ge 0 for all i
```

- Parameter C can be viewed as a way to control overfitting
 - A regularization term (L1 regularization)

Soft Margin Classification – Solution

The dual problem for soft margin classification:

Find $\alpha_1...\alpha_N$ such that

$$\mathbf{Q}(\boldsymbol{\alpha}) = \sum \alpha_i - \frac{1}{2} \sum \sum \alpha_i \alpha_j y_i y_j \mathbf{x_i}^T \mathbf{x_j}$$
 is maximized and

- (1) $\sum \alpha_i y_i = 0$
- (2) $0 \le \alpha_i \le C$ for all α_i
- Neither slack variables ξ_i nor their Lagrange multipliers appear in the dual problem!
- Again, $\mathbf{x_i}$ with non-zero α_i will be support vectors.
 - If $0 < \alpha_i < C$, $\xi_i = 0$
 - If $\alpha_i = C$, $\xi_i > 0$
- Solution to the problem is:

$$\mathbf{w} = \sum \alpha_i y_i \mathbf{x_i}$$

$$b = y_k - \mathbf{w^T} \mathbf{x_k} \text{ for any } \mathbf{x_k} \text{ such that } 0 < \alpha_k < C$$

w is not needed explicitly for classification!

$$f(\mathbf{x}) = \sum \alpha_i y_i \mathbf{x_i}^{\mathsf{T}} \mathbf{x} + b$$

Classification with SVMs

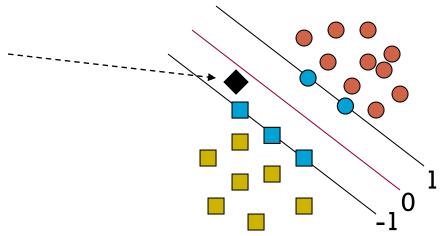
- Given a new point x, we can score its projection onto the hyperplane normal:
 - I.e., compute score: $\mathbf{w}^{\mathsf{T}}\mathbf{x} + b = \sum \alpha_{i} y_{i} \mathbf{x}_{i}^{\mathsf{T}}\mathbf{x} + b$
 - Decide class based on whether < or > 0

• Can set confidence threshold *t*.

Score > t. yes

Score $\langle -t$ no

Else: don't know



Linear SVMs: Summary

- The classifier is a separating hyperplane.
- The most "important" training points are the support vectors; they define the hyperplane.
- Quadratic optimization algorithms can identify which training points \mathbf{x}_i are support vectors with non-zero Lagrangian multipliers α_i .
- Both in the dual formulation of the problem and in the solution, training points appear only inside inner products:

Find $\alpha_1...\alpha_N$ such that $\mathbf{Q}(\mathbf{\alpha}) = \sum \alpha_i - \frac{1}{2} \sum \alpha_i \alpha_j y_i y_j \mathbf{x_i}^T \mathbf{x_j}$ is maximized and (1) $\sum \alpha_i y_i = 0$

(2) $0 \le \alpha_i \le C$ for all α_i

$$f(\mathbf{x}) = \sum \alpha_i y_i \mathbf{x_i}^{\mathsf{T}} \mathbf{x} + b$$

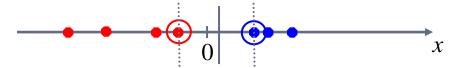
Support Vector Machine

- Introduction
- Linear SVM
- Non-linear SVM

- Scalability Issues*
- Summary

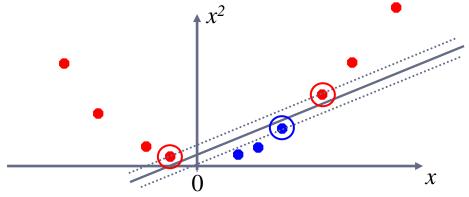
Non-linear SVMs

 Datasets that are linearly separable (with some noise) work out great:



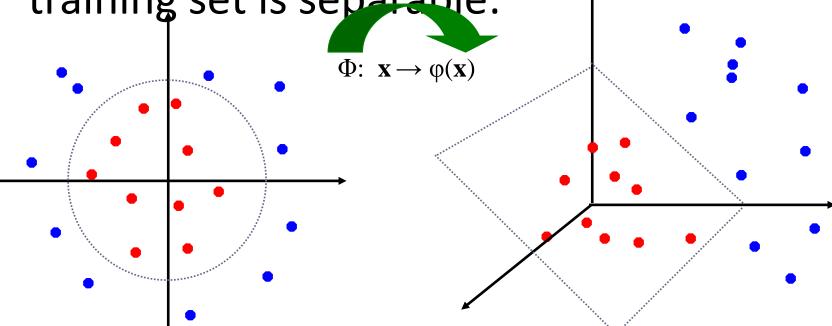
But what are we going to do if the dataset is just too hard?

How about ... mapping data to a higher-dimensional space:



Non-linear SVMs: Feature spaces

•General idea: the original feature space can always be mapped to some higher-dimensional feature space where the training set is separable:



The "Kernel Trick"

- The linear classifier relies on an inner product between vectors $K(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{x}_i^T \mathbf{x}_j$
- If every data point is mapped into high-dimensional space via some transformation Φ : $\mathbf{x} \rightarrow \phi(\mathbf{x})$, the inner product becomes:

$$K(\mathbf{x}_i, \mathbf{x}_i) = \Phi(\mathbf{x}_i)^T \Phi(\mathbf{x}_i)$$

- A *kernel function* is some function that corresponds to an inner product in some expanded feature space.
- Example:

2-dimensional vectors
$$\mathbf{x} = [x_1 \ x_2]$$
; let $K(\mathbf{x_i}, \mathbf{x_j}) = (1 + \mathbf{x_i}^\mathsf{T} \mathbf{x_j})^2$.
Need to show that $K(\mathbf{x_i}, \mathbf{x_i}) = \phi(\mathbf{x_i})^\mathsf{T} \phi(\mathbf{x_i})$:

$$K(\mathbf{x_i}, \mathbf{x_j}) = (1 + \mathbf{x_i}^{\mathsf{T}} \mathbf{x_j})^2 = 1 + x_{i1}^2 x_{j1}^2 + 2 x_{i1} x_{j1} x_{i2} x_{j2} + x_{i2}^2 x_{j2}^2 + 2 x_{i1} x_{j1} + 2 x_{i2} x_{j2} = 1$$

$$= [1 \ x_{i1}^2 \ \sqrt{2} \ x_{i1} x_{i2} \ x_{i2}^2 \ \sqrt{2} x_{i1} \ \sqrt{2} x_{i2}]^{\mathsf{T}} [1 \ x_{j1}^2 \ \sqrt{2} \ x_{j1} x_{j2} \ x_{j2}^2 \ \sqrt{2} x_{j1} \ \sqrt{2} x_{j2}]$$

$$= \varphi(\mathbf{x_i})^{\mathsf{T}} \varphi(\mathbf{x_i}) \quad \text{where } \varphi(\mathbf{x}) = [1 \ x_1^2 \ \sqrt{2} \ x_1 x_2 \ x_2^2 \ \sqrt{2} x_1 \ \sqrt{2} x_2]$$

SVM: Different Kernel functions

- Instead of computing the dot product on the transformed data, it is math. equivalent to applying a kernel function $K(\mathbf{X}_i, \mathbf{X}_j)$ to the original data, i.e., $K(\mathbf{X}_i, \mathbf{X}_j) = \Phi(\mathbf{X}_i)^T \Phi(\mathbf{X}_j)$
- Typical Kernel Functions

Polynomial kernel of degree $h: K(X_i, X_j) = (X_i \cdot X_j + 1)^h$

Gaussian radial basis function kernel: $K(X_i, X_i) = e^{-\|X_i - X_j\|^2/2\sigma^2}$

Sigmoid kernel: $K(X_i, X_j) = \tanh(\kappa X_i \cdot X_j - \delta)$

 *SVM can also be used for classifying multiple (> 2) classes and for regression analysis (with additional parameters)

Non-linear SVM

- Replace inner-product with kernel functions
 - Optimization problem

Find
$$\alpha_1...\alpha_N$$
 such that

$$\mathbf{Q}(\mathbf{\alpha}) = \sum \alpha_i - \frac{1}{2} \sum \sum \alpha_i \alpha_j y_i y_j \mathbf{K}(\mathbf{x_i, x_j})$$
 is maximized and

- (1) $\sum \alpha_i y_i = 0$ (2) $0 \le \alpha_i \le C$ for all α_i
- Decision boundary

$$f(\mathbf{x}) = \sum \alpha_i y_i \mathbf{K}(\mathbf{x_i, x}) + b$$

Support Vector Machine

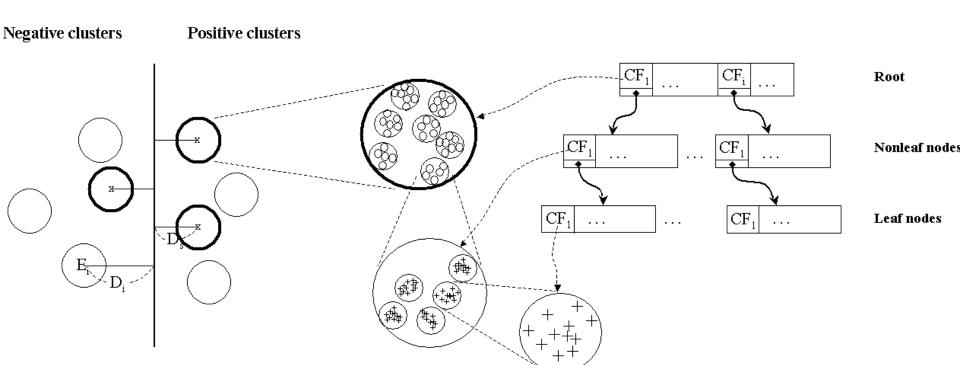
- Introduction
- Linear SVM
- Non-linear SVM
- Scalability Issues*

Summary

*Scaling SVM by Hierarchical Micro-Clustering

- SVM is not scalable to the number of data objects in terms of training time and memory usage
- H. Yu, J. Yang, and J. Han, "<u>Classifying Large Data Sets Using SVM with</u>
 <u>Hierarchical Clusters</u>", KDD'03)
- CB-SVM (Clustering-Based SVM)
 - Given limited amount of system resources (e.g., memory), maximize the SVM performance in terms of accuracy and the training speed
 - Use micro-clustering to effectively reduce the number of points to be considered
 - At deriving support vectors, de-cluster micro-clusters near "candidate vector" to ensure high classification accuracy

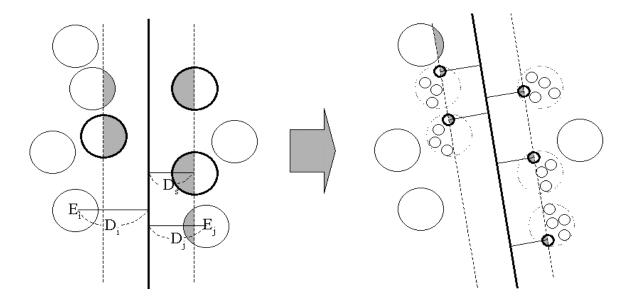
*CF-Tree: Hierarchical Micro-cluster



- Read the data set once, construct a statistical summary of the data (i.e., hierarchical clusters) given a limited amount of memory
- Micro-clustering: Hierarchical indexing structure
 - provide finer samples closer to the boundary and coarser samples farther from the boundary

*Selective Declustering: Ensure High Accuracy

- CF tree is a suitable base structure for selective declustering
- De-cluster only the cluster E_i such that
 - $D_i R_i < D_s$, where D_i is the distance from the boundary to the center point of E_i and R_i is the radius of E_i
 - Decluster only the cluster whose subclusters have possibilities to be the support cluster of the boundary
 - "Support cluster": The cluster whose centroid is a support vector



*CB-SVM Algorithm: Outline

- Construct two CF-trees from positive and negative data sets independently
 - Need one scan of the data set
- Train an SVM from the centroids of the root entries
- De-cluster the entries near the boundary into the next level
 - The children entries de-clustered from the parent entries are accumulated into the training set with the non-declustered parent entries
- Train an SVM again from the centroids of the entries in the training set
- Repeat until nothing is accumulated

*Accuracy and Scalability on Synthetic Dataset

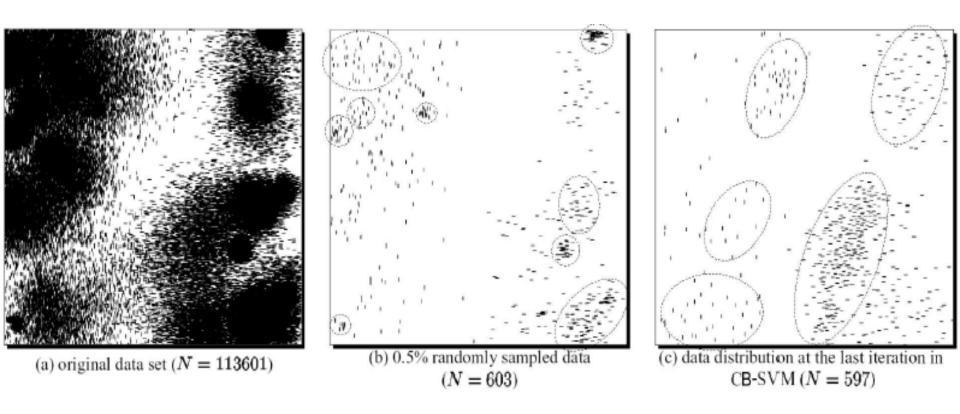


Figure 6: Synthetic data set in a two-dimensional space. '|': positive data; '-': negative data

 Experiments on large synthetic data sets shows better accuracy than random sampling approaches and far more scalable than the original SVM algorithm

Support Vector Machine

- Introduction
- Linear SVM
- Non-linear SVM
- Scalability Issues*
- Summary

Summary

- Support Vector Machine
 - Linear classifier; support vectors; kernel SVM

SVM Related Links

- SVM Website: http://www.kernel-machines.org/
- Representative implementations
 - LIBSVM: an efficient implementation of SVM, multi-class classifications, nu-SVM, one-class SVM, including also various interfaces with java, python, etc.
 - **SVM-light:** simpler but performance is not better than LIBSVM, support only binary classification and only in C
 - **SVM-torch**: another recent implementation also written in C
- From classification to regression and ranking:
 - http://www.dainf.ct.utfpr.edu.br/~kaestner/Mineracao/hwanjoyu-symtutorial.pdf