# CS145: INTRODUCTION TO DATA MINING

7: Vector Data: K Nearest Neighbor

**Instructor: Yizhou Sun** 

yzsun@cs.ucla.edu

October 22, 2017

## **Methods to Learn: Last Lecture**

|                            | Vector Data                                              | Set Data           | Sequence Data   | Text Data            |
|----------------------------|----------------------------------------------------------|--------------------|-----------------|----------------------|
| Classification             | Logistic Regression;<br>Decision Tree; KNN<br>SVM; NN    |                    |                 | Naïve Bayes for Text |
| Clustering                 | K-means; hierarchical clustering; DBSCAN; Mixture Models |                    |                 | PLSA                 |
| Prediction                 | Linear Regression GLM*                                   |                    |                 |                      |
| Frequent Pattern<br>Mining |                                                          | Apriori; FP growth | GSP; PrefixSpan |                      |
| Similarity Search          |                                                          |                    | DTW             |                      |

# **Methods to Learn**

|                            | Vector Data                                              | Set Data           | Sequence Data   | Text Data            |
|----------------------------|----------------------------------------------------------|--------------------|-----------------|----------------------|
| Classification             | Logistic Regression;<br>Decision Tree; KNN<br>SVM; NN    |                    |                 | Naïve Bayes for Text |
| Clustering                 | K-means; hierarchical clustering; DBSCAN; Mixture Models |                    |                 | PLSA                 |
| Prediction                 | Linear Regression GLM*                                   |                    |                 |                      |
| Frequent Pattern<br>Mining |                                                          | Apriori; FP growth | GSP; PrefixSpan |                      |
| Similarity Search          |                                                          |                    | DTW             |                      |

# **K Nearest Neighbor**

Introduction



- kNN
- Similarity and Dissimilarity
- Summary

## Lazy vs. Eager Learning

- Lazy vs. eager learning
  - Lazy learning (e.g., instance-based learning): Simply stores training data (or only minor processing) and waits until it is given a test tuple
  - Eager learning (the above discussed methods): Given a set of training tuples, constructs a classification model before receiving new (e.g., test) data to classify
- Lazy: less time in training but more time in predicting
- Accuracy
  - Lazy method effectively uses a richer hypothesis space since it uses many local linear functions to form an implicit global approximation to the target function
  - Eager: must commit to a single hypothesis that covers the entire instance space

## **Lazy Learner: Instance-Based Methods**

- Instance-based learning:
  - Store training examples and delay the processing ("lazy evaluation") until a new instance must be classified
- Typical approaches
  - k-nearest neighbor approach
    - Instances represented as points in, e.g., a Euclidean space.
  - Locally weighted regression
    - Constructs local approximation

# **K Nearest Neighbor**

- Introduction
- kNN  $\leftarrow$
- Similarity and Dissimilarity
- Summary

## The k-Nearest Neighbor Algorithm

- All instances correspond to points in the n-D space
- The nearest neighbor are defined in terms of a distance measure, dist(X<sub>1</sub>, X<sub>2</sub>)
- Target function could be discrete- or real- valued
- For discrete-valued, k-NN returns the most common value among the k training examples nearest to  $x_q$
- Vonoroi diagram: the decision surface induced by 1-NN for a typical set of training examples





# **kNN** Example

X = (length, lightness)

 $Classes = \{salmon, sea bass, eel\}$ 

Task: Identify fish given its (length, lightness)



K=5: 3 sea bass, 1 eel, 1 salmon  $\Rightarrow$  sea bass

# **kNN Algorithm Summary**

- Choose K
- For a given new instance  $X_{new}$  , find K closest training points w.r.t. a distance measure
- Classify  $X_{new} = \text{majority vote among}$ the K points

## Discussion on the k-NN Algorithm

- k-NN for real-valued prediction for a given unknown tuple
  - Returns the mean values of the *k* nearest neighbors
- <u>Distance-weighted</u> nearest neighbor algorithm
  - Weight the contribution of each of the k neighbors according to their distance to the query  $x_a$ 
    - Give greater weight to closer neighbors  $e.g., w_i = \frac{1}{d(x_q, x_i)^2}$
    - $y_q = \frac{\sum w_i y_i}{\sum w_i}$ , where  $x_i$ 's are  $x_q$ 's nearest neighbors  $w_i = \exp(-d(x_q, x_i)^2/2\sigma^2)$
- Robust to noisy data by averaging k-nearest neighbors
- <u>Curse of dimensionality</u>: distance between neighbors could be dominated by irrelevant attributes
  - To overcome it, axes stretch or elimination of the least relevant attributes

## Selection of k for kNN

- The number of neighbors k
  - Small k: overfitting (high var., low bias)
  - Big k: bringing too many irrelevant points (high bias, low var.)



More discussions:

http://scott.fortmann-roe.com/docs/BiasVariance.html

# **K Nearest Neighbor**

- Introduction
- kNN
- Similarity and Dissimilarity
- Summary

## **Similarity and Dissimilarity**

#### Similarity

- Numerical measure of how alike two data objects are
- Value is higher when objects are more alike
- Often falls in the range [0,1]
- Dissimilarity (e.g., distance)
  - Numerical measure of how different two data objects are
  - Lower when objects are more alike
  - Minimum dissimilarity is often 0
  - Upper limit varies
- Proximity refers to a similarity or dissimilarity

## **Data Matrix and Dissimilarity Matrix**

#### Data matrix

- n data points with p dimensions
- Two modes

$$\begin{bmatrix} x_{11} & \cdots & x_{1f} & \cdots & x_{1p} \\ \cdots & \cdots & \cdots & \cdots \\ x_{i1} & \cdots & x_{if} & \cdots & x_{ip} \\ \cdots & \cdots & \cdots & \cdots \\ x_{n1} & \cdots & x_{nf} & \cdots & x_{np} \end{bmatrix}$$

- Dissimilarity matrix
  - n data points, but registers only the distance
  - A triangular matrix
  - Single mode

$$\begin{bmatrix} 0 & & & & & \\ d(2,1) & 0 & & & \\ d(3,1) & d(3,2) & 0 & & \\ \vdots & \vdots & \vdots & & \\ d(n,1) & d(n,2) & \dots & \dots & 0 \end{bmatrix}$$

## **Proximity Measure for Nominal Attributes**

- Can take 2 or more states, e.g., red, yellow, blue, green (generalization of a binary attribute)
- Method 1: Simple matching
  - m: # of matches, p: total # of variables

$$d(i,j) = \frac{p-m}{p}$$

- Method 2: Use a large number of binary attributes
  - creating a new binary attribute for each of the M nominal states

## **Proximity Measure for Binary Attributes**

A contingency table for binary data

Object jObject jObject i 0 sum q r q+r s+t sum q+s r+t p

- Distance measure for symmetric binary variables:
- Distance measure for asymmetric binary variables:
- Jaccard coefficient (similarity measure for asymmetric binary variables):

$$d(i,j) = \frac{r+s}{q+r+s+t}$$

$$d(i,j) = \frac{r+s}{q+r+s}$$

$$sim_{Jaccard}(i, j) = \frac{q}{q + r + s}$$

# Dissimilarity between Binary Variables

Example

| Name | Gender | Fever | Cough | Test-1 | Test-2 | Test-3 | Test-4 |
|------|--------|-------|-------|--------|--------|--------|--------|
| Jack | M      | Y     | N     | P      | N      | N      | N      |
| Mary | F      | Y     | N     | P      | N      | P      | N      |
| Jim  | M      | Y     | P     | N      | N      | N      | N      |

- Gender is a symmetric attribute
- The remaining attributes are asymmetric binary
- Let the values Y and P be 1, and the value N 0

$$d(jack, mary) = \frac{0+1}{2+0+1} = 0.33$$

$$d(jack, jim) = \frac{1+1}{1+1+1} = 0.67$$

$$d(jim, mary) = \frac{1+2}{1+1+2} = 0.75$$

## **Standardizing Numeric Data**

- z-score:  $z = \frac{x \mu}{\sigma}$ 
  - X: raw score to be standardized,  $\mu$ : mean of the population,  $\sigma$ : standard deviation
  - the distance between the raw score and the population mean in units of the standard deviation
  - negative when the raw score is below the mean, "+" when above
- An alternative way: Calculate the mean absolute deviation

$$s_f = \frac{1}{n}(|x_{1f} - m_f| + |x_{2f} - m_f| + ... + |x_{nf} - m_f|)$$
 where 
$$m_f = \frac{1}{n}(x_{1f} + x_{2f} + ... + x_{nf}).$$
 
$$z_{if} = \frac{x_{if} - m_f}{s_f}$$
 standardized measure (z-score):

Using mean absolute deviation is more robust than using standard deviation

#### **Example:**

### **Data Matrix and Dissimilarity Matrix**



#### **Data Matrix**

| point      | attribute1 | attribute2 |
|------------|------------|------------|
| <i>x1</i>  | 1          | 2          |
| <i>x</i> 2 | 3          | 5          |
| <i>x3</i>  | 2          | 0          |
| <i>x4</i>  | 4          | 5          |

#### **Dissimilarity Matrix**

(with Euclidean Distance)

|            | <i>x1</i> | <i>x</i> 2 | <i>x3</i> | <i>x4</i> |
|------------|-----------|------------|-----------|-----------|
| <i>x1</i>  | 0         |            |           |           |
| <i>x</i> 2 | 3.61      | 0          |           |           |
| <i>x</i> 3 | 2.24      | 5.1        | 0         |           |
| <i>x4</i>  | 4.24      | 1          | 5.39      | 0         |

#### Distance on Numeric Data: Minkowski Distance

Minkowski distance: A popular distance measure

$$d(i,j) = \sqrt[h]{|x_{i1} - x_{j1}|^h + |x_{i2} - x_{j2}|^h + \dots + |x_{ip} - x_{jp}|^h}$$

where  $i = (x_{i1}, x_{i2}, ..., x_{ip})$  and  $j = (x_{j1}, x_{j2}, ..., x_{jp})$  are two pdimensional data objects, and h is the order (the distance so defined is also called L-h norm)

- Properties
  - d(i, j) > 0 if  $i \neq j$ , and d(i, i) = 0 (Positive definiteness)
  - d(i, j) = d(j, i) (Symmetry)
  - $d(i, j) \le d(i, k) + d(k, j)$  (Triangle Inequality)
- A distance that satisfies these properties is a metric

## Special Cases of Minkowski Distance

- h = 1: Manhattan (city block, L₁ norm) distance
  - E.g., the Hamming distance: the number of bits that are different between two binary vectors

$$d(i,j) = |x_{i_1} - x_{j_1}| + |x_{i_2} - x_{j_2}| + ... + |x_{i_p} - x_{j_p}|$$

h = 2: (L<sub>2</sub> norm) Euclidean distance

$$d(i,j) = \sqrt{(|x_{i1} - x_{j1}|^2 + |x_{i2} - x_{j2}|^2 + ... + |x_{ip} - x_{jp}|^2)}$$

- $h \to \infty$ . "supremum" ( $L_{max}$  norm,  $L_{\infty}$  norm) distance.
  - This is the maximum difference between any component (attribute) of the vectors

$$d(i,j) = \lim_{h \to \infty} \left( \sum_{f=1}^{p} |x_{if} - x_{jf}|^h \right)^{\frac{1}{h}} = \max_{f} |x_{if} - x_{jf}|$$

# **Example: Minkowski Distance**

| point      | attribute 1 | attribute 2 |
|------------|-------------|-------------|
| <b>x1</b>  | 1           | 2           |
| <b>x2</b>  | 3           | 5           |
| <b>x</b> 3 | 2           | 0           |
| <b>x4</b>  | 4           | 5           |



#### Dissimilarity Matrices

#### Manhattan (L<sub>1</sub>)

| L         | <b>x</b> 1 | x2 | х3 | <b>x4</b> |
|-----------|------------|----|----|-----------|
| <b>x1</b> | 0          |    |    |           |
| x2        | 5          | 0  |    |           |
| x3        | 3          | 6  | 0  |           |
| x4        | 6          | 1  | 7  | 0         |

#### Euclidean (L<sub>2</sub>)

| L2        | x1   | x2  | х3   | x4 |
|-----------|------|-----|------|----|
| <b>x1</b> | 0    |     |      |    |
| x2        | 3.61 | 0   |      |    |
| x3        | 2.24 | 5.1 | 0    |    |
| x4        | 4.24 | 1   | 5.39 | 0  |

#### **Supremum**

| $L_{\infty}$ | <b>x1</b> | <b>x2</b> | х3 | x4 |
|--------------|-----------|-----------|----|----|
| <b>x1</b>    | 0         |           |    |    |
| x2           | 3         | 0         |    |    |
| х3           | 2         | 5         | 0  |    |
| <b>x4</b>    | 3         | 1         | 5  | 0  |

#### **Ordinal Variables**

- Order is important, e.g., rank
- Can be treated like interval-scaled
  - replace  $x_{if}$  by their rank  $r_{if} \in \{1, ..., M_f\}$
  - map the range of each variable onto [0, 1] by replacing *i*-th object in the *f*-th variable by

$$z_{if} = \frac{r_{if} - 1}{M_f - 1}$$

 compute the dissimilarity using methods for interval-scaled variables

## **Attributes of Mixed Type**

- A database may contain all attribute types
  - Nominal, symmetric binary, asymmetric binary, numeric, ordinal
- One may use a weighted formula to combine their effects

$$d(i,j) = \frac{\sum_{f=1}^{p} \delta_{ij}^{(f)} d_{ij}^{(f)}}{\sum_{f=1}^{p} \delta_{ij}^{(f)}}$$

• f is binary or nominal:

$$d_{ij}^{(f)} = 0$$
 if  $x_{if} = x_{jf}$ , or  $d_{ij}^{(f)} = 1$  otherwise

- f is numeric: use the normalized distance
- f is ordinal
  - Compute ranks  $r_{if}$  and  $z_{if} = \frac{r_{if}-1}{M_f-1}$  Treat  $z_{if}$  as interval-scaled

## **Cosine Similarity**

• A **document** can be represented by thousands of attributes, each recording the *frequency* of a particular word (such as keywords) or phrase in the document.

| Document  | team | coach | hockey | baseball | soccer | penalty | score | win | loss | season |
|-----------|------|-------|--------|----------|--------|---------|-------|-----|------|--------|
| Document1 | 5    | 0     | 3      | 0        | 2      | 0       | 0     | 2   | 0    | 0      |
| Document2 | 3    | 0     | 2      | 0        | 1      | 1       | 0     | 1   | 0    | 1      |
| Document3 | 0    | 7     | 0      | 2        | 1      | 0       | 0     | 3   | 0    | 0      |
| Document4 | 0    | 1     | 0      | 0        | 1      | 2       | 2     | 0   | 3    | 0      |

- Other vector objects: gene features in micro-arrays, ...
- Applications: information retrieval, biologic taxonomy, gene feature mapping, ...
- Cosine measure: If  $d_1$  and  $d_2$  are two vectors (e.g., term-frequency vectors), then  $\cos(d_1, d_2) = (d_1 \bullet d_2) / ||d_1|| ||d_2||$ ,

where  $\bullet$  indicates vector dot product, | | d | |: the length of vector d

## **Example: Cosine Similarity**

- $cos(d_1, d_2) = (d_1 \cdot d_2) / ||d_1|| ||d_2||$ , where • indicates vector dot product, ||d|: the length of vector d
- Ex: Find the **similarity** between documents 1 and 2.

$$d_I$$
 = (5, 0, 3, 0, 2, 0, 0, 2, 0, 0)  
 $d_2$  = (3, 0, 2, 0, 1, 1, 0, 1, 0, 1)

$$d_{1} \bullet d_{2} = 5 * 3 + 0 * 0 + 3 * 2 + 0 * 0 + 2 * 1 + 0 * 1 + 0 * 1 + 2 * 1 + 0 * 0 + 0 * 1 = 25$$

$$| |d_{1}| | = (5 * 5 + 0 * 0 + 3 * 3 + 0 * 0 + 2 * 2 + 0 * 0 + 0 * 0 + 2 * 2 + 0 * 0 + 0 * 0)^{0.5} = (42)^{0.5} = 6.481$$

$$| |d_{2}| | = (3 * 3 + 0 * 0 + 2 * 2 + 0 * 0 + 1 * 1 + 1 * 1 + 0 * 0 + 1 * 1 + 0 * 0 + 1 * 1)^{0.5} = (17)^{0.5} = 4.12$$

$$\cos(d_{1}, d_{2}) = 0.94$$

# **K Nearest Neighbor**

- Introduction
- kNN
- Similarity and Dissimilarity
- Summary

# **Summary**

- Instance-Based Learning
  - Lazy learning vs. eager learning; K-nearest neighbor algorithm; Similarity / dissimilarity measures