CS145: INTRODUCTION TO DATA MINING

09: Vector Data: Clustering Basics

Instructor: Yizhou Sun

yzsun@cs.ucla.edu

October 27, 2017

Methods to Learn

	Vector Data	Set Data	Sequence Data	Text Data
Classification	Logistic Regression; Decision Tree; KNN SVM; NN			Naïve Bayes for Text
Clustering	K-means; hierarchical clustering; DBSCAN; Mixture Models			PLSA
Prediction	Linear Regression GLM*			
Frequent Pattern Mining		Apriori; FP growth	GSP; PrefixSpan	
Similarity Search			DTW	

Vector Data: Clustering Basics

Clustering Analysis: Basic Concepts

- Partitioning methods
- Hierarchical Methods
- Density-Based Methods
- Summary

What is Cluster Analysis?

- Cluster: A collection of data objects
 - similar (or related) to one another within the same group
 - dissimilar (or unrelated) to the objects in other groups
- Cluster analysis (or clustering, data segmentation, ...)
 - Finding similarities between data according to the characteristics found in the data and grouping similar data objects into clusters
- Unsupervised learning: no predefined classes (i.e., learning by observations vs. learning by examples: supervised)
- Typical applications
 - As a stand-alone tool to get insight into data distribution
 - As a preprocessing step for other algorithms

Applications of Cluster Analysis

- Data reduction
 - Summarization: Preprocessing for regression, PCA, classification, and association analysis
 - Compression: Image processing: vector quantization
- Prediction based on groups
 - Cluster & find characteristics/patterns for each group
- Finding K-nearest Neighbors
 - Localizing search to one or a small number of clusters
- Outlier detection: Outliers are often viewed as those "far away" from any cluster

Clustering: Application Examples

- Biology: taxonomy of living things: kingdom, phylum, class, order, family, genus and species
- Information retrieval: document clustering
- Land use: Identification of areas of similar land use in an earth observation database
- Marketing: Help marketers discover distinct groups in their customer bases, and then use this knowledge to develop targeted marketing programs
- City-planning: Identifying groups of houses according to their house type, value, and geographical location
- Earth-quake studies: Observed earth quake epicenters should be clustered along continent faults
- Climate: understanding earth climate, find patterns of atmospheric and ocean

Vector Data: Clustering Basics

- Clustering Analysis: Basic Concepts
- Partitioning methods
- Hierarchical Methods
- Density-Based Methods
- Summary

Partitioning Algorithms: Basic Concept

Partitioning method: Partitioning a dataset **D** of **n** objects into a set of **k** clusters, such that the sum of squared distances is minimized (where c_j is the centroid or medoid of cluster C_j)

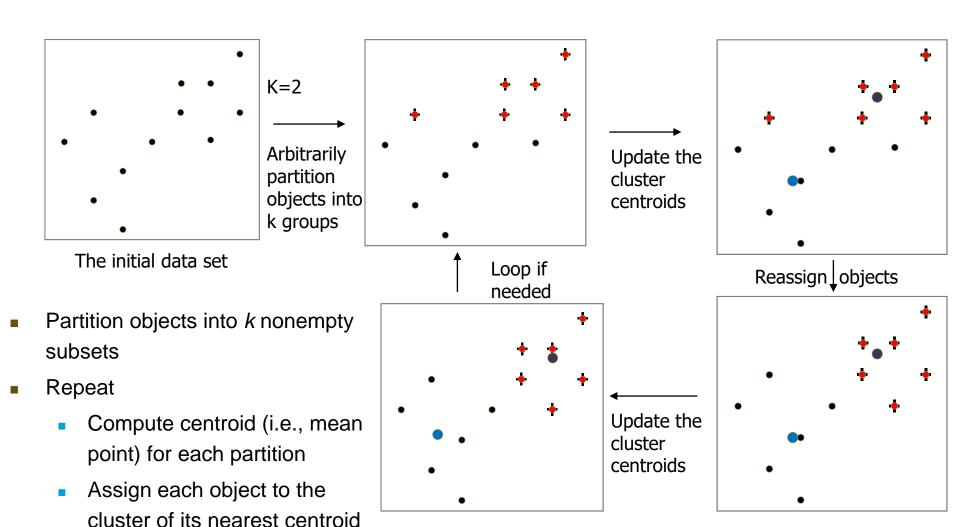
$$J = \sum_{j=1}^{k} \sum_{C(i)=j} d(x_i, c_j)^2$$

- Given k, find a partition of k clusters that optimizes the chosen partitioning criterion
 - Global optimal: exhaustively enumerate all partitions
 - Heuristic methods: *k-means* and *k-medoids* algorithms
 - <u>k-means</u> (MacQueen'67, Lloyd'57/'82): Each cluster is represented by the center of the cluster
 - <u>k-medoids</u> or PAM (Partition around medoids) (Kaufman & Rousseeuw'87): Each cluster is represented by one of the objects in the cluster

The K-Means Clustering Method

- Given k, the k-means algorithm is implemented in four steps:
 - Step 0: Partition objects into k nonempty subsets
 - Step 1: Compute seed points as the centroids of the clusters of the current partitioning (the centroid is the center, i.e., *mean point*, of the cluster)
 - Step 2: Assign each object to the cluster with the nearest seed point
 - Step 3: Go back to Step 1, stop when the assignment does not change

An Example of K-Means Clustering



Until no change

Theory Behind K-Means

Objective function

$$J = \sum_{j=1}^{k} \sum_{C(i)=j} ||x_i - c_j||^2$$

Re-arrange the objective function

$$\bullet J = \sum_{j=1}^{k} \sum_{i} w_{ij} ||x_i - c_j||^2$$

- $w_{ij} \in \{0,1\}$
- $w_{ij} = 1$, if x_i belongs to cluster j; $w_{ij} = 0$, otherwise
- Looking for:
 - The best assignment w_{ij}
 - The best center c_i

Solution of K-Means

Iterations

$$J = \sum_{j=1}^{k} \sum_{i} w_{ij} ||x_i - c_j||^2$$

- Step 1: Fix centers c_j , find assignment w_{ij} that minimizes J
 - => $w_{ij} = 1$, $if ||x_i c_j||^2$ is the smallest
- Step 2: Fix assignment w_{ij} , find centers that minimize J
 - => first derivative of J = 0

• =>
$$\frac{\partial J}{\partial c_j}$$
 = $-2\sum_i w_{ij}(x_i - c_j) = 0$

$$\bullet => c_j = \frac{\sum_i w_{ij} x_i}{\sum_i w_{ij}}$$

• Note $\sum_i w_{ij}$ is the total number of objects in cluster j

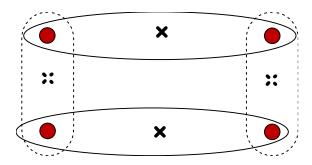
Comments on the K-Means Method

- Strength: Efficient: O(tkn), where n is # objects, k is # clusters, and
 t is # iterations. Normally, k, t << n.
- Comment: Often terminates at a local optimal
- Weakness
 - Applicable only to objects in a continuous n-dimensional space
 - Using the k-modes method for categorical data
 - In comparison, k-medoids can be applied to a wide range of data
 - Need to specify *k*, the *number* of clusters, in advance (there are ways to automatically determine the best k (see Hastie et al., 2009)
 - Sensitive to noisy data and *outliers*
 - Not suitable to discover clusters with *non-convex shapes*

Variations of the *K-Means* Method

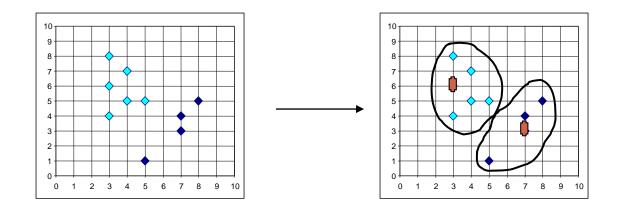
- Most of the variants of the k-means which differ in
 - Selection of the initial k means
 - Dissimilarity calculations
 - Strategies to calculate cluster means

- Using new dissimilarity measures to deal with categorical objects
- Using a <u>frequency</u>-based method to update modes of clusters
- A mixture of categorical and numerical data: k-prototype method

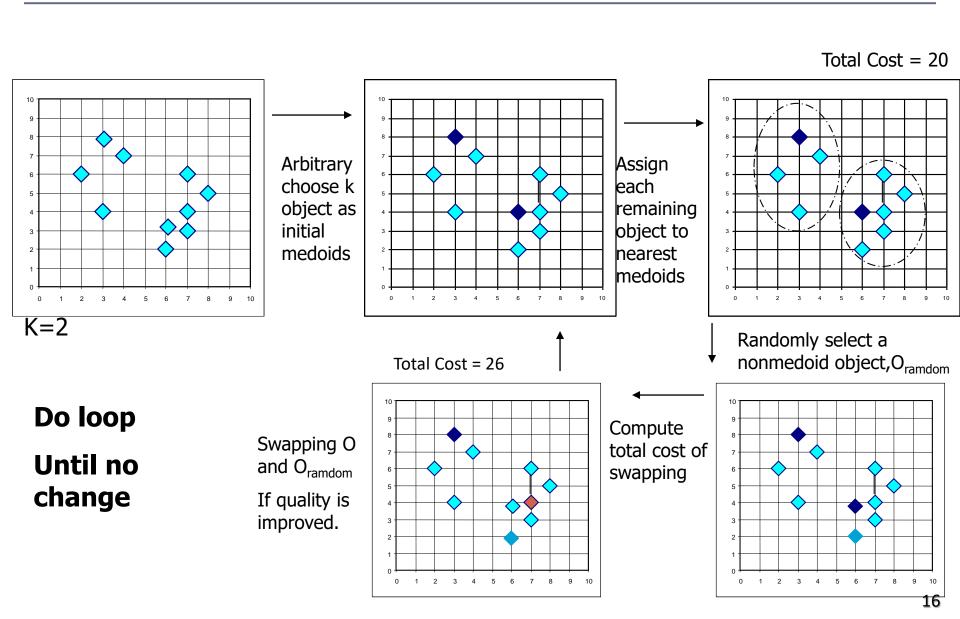


What Is the Problem of the K-Means Method?

- The k-means algorithm is sensitive to outliers!
 - Since an object with an extremely large value may substantially distort the distribution of the data
- K-Medoids: Instead of taking the mean value of the object in a cluster as a reference point, medoids can be used, which is the most centrally located object in a cluster



PAM: A Typical K-Medoids Algorithm*



The K-Medoid Clustering Method*

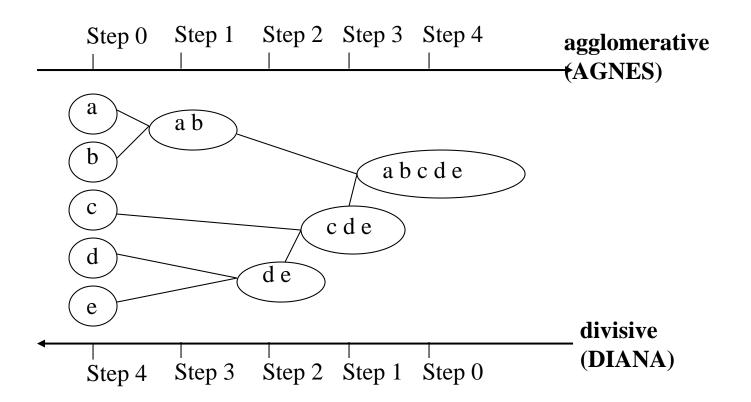
- K-Medoids Clustering: Find representative objects (medoids) in clusters
 - *PAM* (Partitioning Around Medoids, Kaufmann & Rousseeuw 1987)
 - Starts from an initial set of medoids and iteratively replaces one of the medoids by one of the non-medoids if it improves the total distance of the resulting clustering
 - PAM works effectively for small data sets, but does not scale well for large data sets (due to the computational complexity)
- Efficiency improvement on PAM
 - CLARA (Kaufmann & Rousseeuw, 1990): PAM on samples
 - CLARANS (Ng & Han, 1994): Randomized re-sampling

Vector Data: Clustering Basics

- Clustering Analysis: Basic Concepts
- Partitioning methods
- Hierarchical Methods
- Density-Based Methods
- Summary

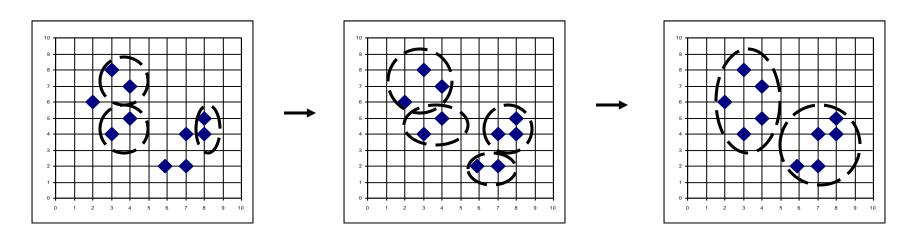
Hierarchical Clustering

• Use distance matrix as clustering criteria. This method does not require the number of clusters k as an input, but needs a termination condition

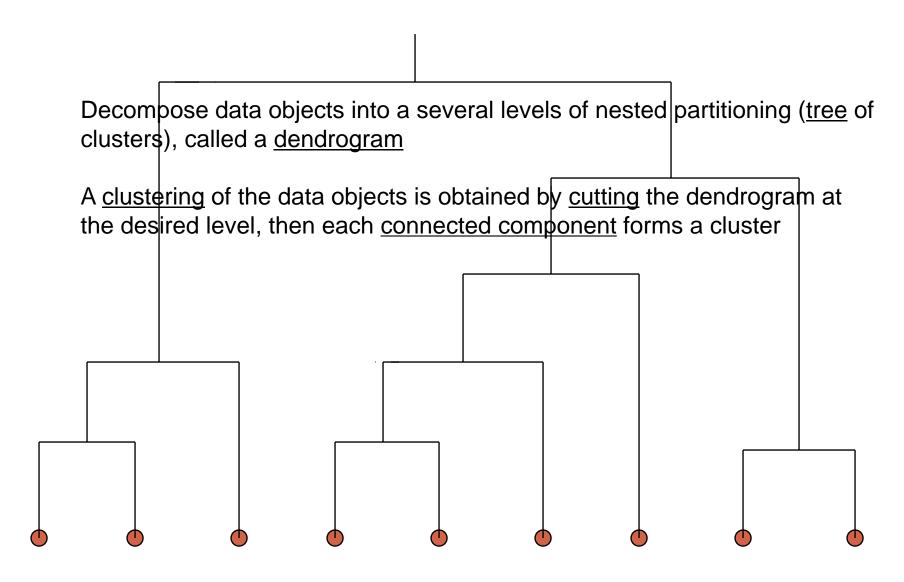


AGNES (Agglomerative Nesting)

- Introduced in Kaufmann and Rousseeuw (1990)
- Implemented in statistical packages, e.g., Splus
- Use the single-link method and the dissimilarity matrix
- Merge nodes that have the least dissimilarity
- Go on in a non-descending fashion
- Eventually all nodes belong to the same cluster

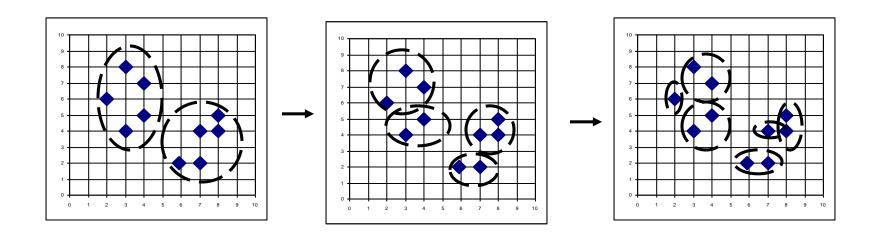


Dendrogram: Shows How Clusters are Merged

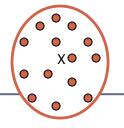


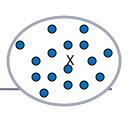
DIANA (Divisive Analysis)

- Introduced in Kaufmann and Rousseeuw (1990)
- Implemented in statistical analysis packages, e.g., Splus
- Inverse order of AGNES
- Eventually each node forms a cluster on its own



Distance between Clusters





- Single link: smallest distance between an element in one cluster and an element in the other, i.e., $dist(K_i, K_j) = min dist(t_{ip}, t_{jq})$
- Complete link: largest distance between an element in one cluster and an element in the other, i.e., $dist(K_i, K_j) = max dist(t_{ip}, t_{jq})$
- Average: avg distance between an element in one cluster and an element in the other, i.e., $dist(K_i, K_j) = avg dist(t_{ip}, t_{jq})$
- Centroid: distance between the centroids of two clusters, i.e., dist(K_i, K_j) = dist(C_i, C_j)
- Medoid: distance between the medoids of two clusters, i.e., dist(K_i, K_j) = dist(M_i, M_j)
 - Medoid: a chosen, centrally located object in the cluster

Centroid, Radius and Diameter of a Cluster (for numerical data sets)

Centroid: the "middle" of a cluster

$$C_{i} = \frac{\sum_{p=1}^{N_{i}} (t_{ip})}{N_{i}}$$

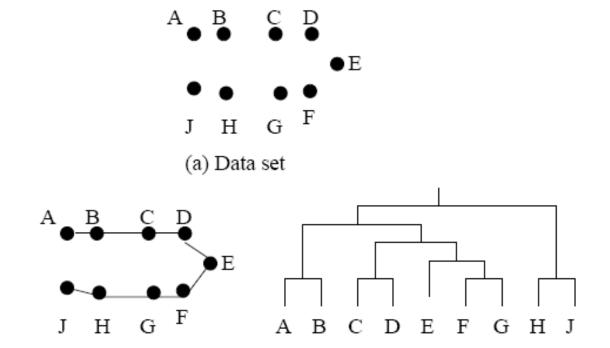
• Radius: square root of average distance from any point of the cluster to its centroid $\sum_{i=0}^{N} i = (t_i - c_i)^2$

$$R_{i} = \sqrt{\frac{\sum_{p=1}^{N} i (t_{p} - c_{i})^{2}}{\sum_{p=1}^{N} i (t_{p} - c_{i})^{2}}}$$

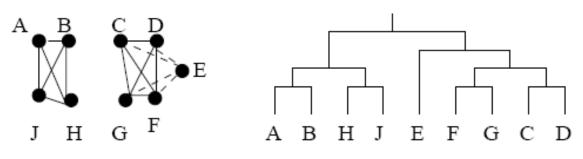
 Diameter: square root of average mean squared distance between all pairs of points in the cluster

$$D_{i} = \sqrt{\frac{\sum_{p=1}^{N_{i}} \sum_{q=1}^{N_{i}} (t_{ip} - t_{iq})^{2}}{N_{i}(N_{i} - 1)}}$$

Example: Single Link vs. Complete Link



(b) Clustering using single linkage



(c) Clustering using complete linkage

Extensions to Hierarchical Clustering

- Major weakness of agglomerative clustering methods
 - Can never undo what was done previously
 - <u>Do not scale</u> well: time complexity of at least $O(n^2)$, where n is the number of total objects
- Integration of hierarchical & distance-based clustering
 - *BIRCH (1996): uses CF-tree and incrementally adjusts the quality of sub-clusters
 - *CHAMELEON (1999): hierarchical clustering using dynamic modeling

Vector Data: Clustering Basics

- Clustering Analysis: Basic Concepts
- Partitioning methods
- Hierarchical Methods
- Density-Based Methods

Summary

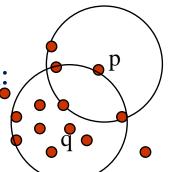
Density-Based Clustering Methods

- Clustering based on density (local cluster criterion), such as density-connected points
- Major features:
 - Discover clusters of arbitrary shape
 - Handle noise
 - One scan
 - Need density parameters as termination condition
- Several interesting studies:
 - <u>DBSCAN:</u> Ester, et al. (KDD'96)
 - OPTICS*: Ankerst, et al (SIGMOD'99).
 - <u>DENCLUE*</u>: Hinneburg & D. Keim (KDD'98)
 - <u>CLIQUE</u>*: Agrawal, et al. (SIGMOD'98) (more grid-based)

DBSCAN: Basic Concepts

- Two parameters:
 - *Eps*: Maximum radius of the neighborhood
 - *MinPts*: Minimum number of points in an Epsneighborhood of that point
- $N_{Eps}(q)$: {p belongs to D | dist(p,q) \leq Eps}
- Directly density-reachable: A point *p* is directly density-reachable from a point *q* w.r.t. *Eps, MinPts* if
 - p belongs to $N_{Eps}(q)$
 - q is a core point, core point condition:

$$|N_{Eps}(q)| \ge MinPts$$



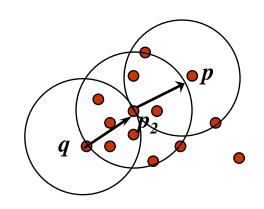
MinPts = 5

Eps = 1 cm

Density-Reachable and Density-Connected

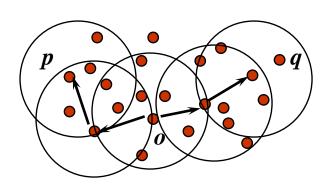
Density-reachable:

• A point p is density-reachable from a point q w.r.t. Eps, MinPts if there is a chain of points $p_1, \ldots, p_n, p_1 = q, p_n = p$ such that p_{i+1} is directly density-reachable from p_i



Density-connected

• A point *p* is density-connected to a point *q* w.r.t. *Eps, MinPts* if there is a point *o* such that both, *p* and *q* are density-reachable from *o* w.r.t. *Eps* and *MinPts*

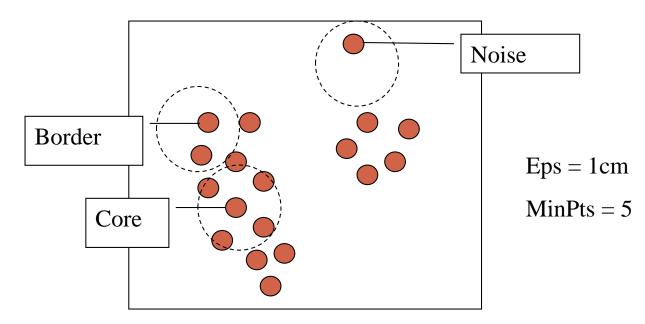


DBSCAN: Density-Based Spatial Clustering of Applications with Noise

- Relies on a density-based notion of cluster: A cluster is defined as a maximal set of density-connected points
- Noise: object not contained in any cluster is noise

Discovers clusters of arbitrary shape in spatial databases with

noise



DBSCAN: The Algorithm

```
(1)
     mark all objects as unvisited;
(2)
     do
(3)
          randomly select an unvisited object p;
          \max p as visited;
(5)
           if the \epsilon-neighborhood of p has at least MinPts objects
(6)
                create a new cluster C, and add p to C;
(7)
                let N be the set of objects in the \epsilon-neighborhood of p;
(8)
                for each point p' in N
(9)
                      if p' is unvisited
(10)
                            mark p' as visited;
(11)
                            if the \epsilon-neighborhood of p' has at least MinPts points,
                            add those points to N;
(12)
                      if p' is not yet a member of any cluster, add p' to C;
(13)
                end for
(14)
                output C;
(15)
          else mark p as noise;
     until no object is unvisited;
```

• If a spatial index is used, the computational complexity of DBSCAN is O(nlogn), where n is the number of database objects. Otherwise, the complexity is $O(n^2)$

DBSCAN: Sensitive to Parameters

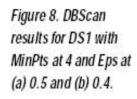
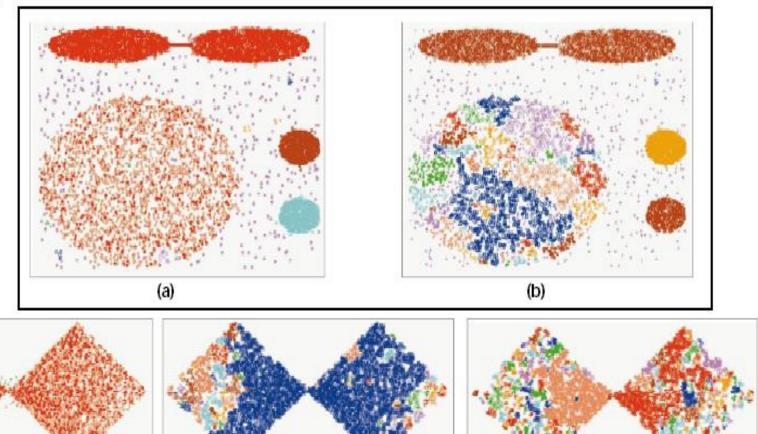


Figure 9. DBScan results for DS2 with MinPts at 4 and Eps at (a) 5.0, (b) 3.5, and (c) 3.0.



DBSCAN online Demo:

(a)

(b)

(c)

Questions about Parameters

- Fix Eps, increase MinPts, what will happen?
- Fix MinPts, decrease Eps, what will happen?

Vector Data: Clustering Basics

- Clustering Analysis: Basic Concepts
- Partitioning methods
- Hierarchical Methods
- Density-Based Methods
- Summary

Summary

- Cluster analysis groups objects based on their similarity and has wide applications; Measure of similarity can be computed for various types of data
- K-means and K-medoids algorithms are popular partitioningbased clustering algorithms
- AGNES and DIANA are interesting hierarchical clustering algorithms
- DBSCAN, OPTICS*, and DENCLUE* are interesting density-based algorithms

References (1)

- R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace clustering of high dimensional data for data mining applications. SIGMOD'98
- M. R. Anderberg. Cluster Analysis for Applications. Academic Press, 1973.
- M. Ankerst, M. Breunig, H.-P. Kriegel, and J. Sander. Optics: Ordering points to identify the clustering structure, SIGMOD'99.
- Beil F., Ester M., Xu X.: "Frequent Term-Based Text Clustering", KDD'02
- M. M. Breunig, H.-P. Kriegel, R. Ng, J. Sander. LOF: Identifying Density-Based Local Outliers. SIGMOD 2000.
- M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering clusters in large spatial databases. KDD'96.
- M. Ester, H.-P. Kriegel, and X. Xu. Knowledge discovery in large spatial databases: Focusing techniques for efficient class identification. SSD'95.
- D. Fisher. Knowledge acquisition via incremental conceptual clustering. Machine Learning, 2:139-172, 1987.
- D. Gibson, J. Kleinberg, and P. Raghavan. Clustering categorical data: An approach based on dynamic systems. VLDB'98.
- V. Ganti, J. Gehrke, R. Ramakrishan. CACTUS Clustering Categorical Data Using Summaries. KDD'99.

References (2)

- D. Gibson, J. Kleinberg, and P. Raghavan. Clustering categorical data: An approach based on dynamic systems. In Proc. VLDB'98.
- S. Guha, R. Rastogi, and K. Shim. Cure: An efficient clustering algorithm for large databases. SIGMOD'98.
- S. Guha, R. Rastogi, and K. Shim. ROCK: A robust clustering algorithm for categorical attributes. In ICDE'99, pp. 512-521, Sydney, Australia, March 1999.
- A. Hinneburg, D.I A. Keim: An Efficient Approach to Clustering in Large Multimedia Databases with Noise. KDD'98.
- A. K. Jain and R. C. Dubes. Algorithms for Clustering Data. Printice Hall, 1988.
- G. Karypis, E.-H. Han, and V. Kumar. CHAMELEON: A Hierarchical Clustering Algorithm Using Dynamic Modeling. COMPUTER, 32(8): 68-75, 1999.
- L. Kaufman and P. J. Rousseeuw. Finding Groups in Data: an Introduction to Cluster Analysis. John Wiley & Sons, 1990.
- E. Knorr and R. Ng. Algorithms for mining distance-based outliers in large datasets.
 VLDB'98.

References (3)

- G. J. McLachlan and K.E. Bkasford. Mixture Models: Inference and Applications to Clustering. John Wiley and Sons, 1988.
- R. Ng and J. Han. Efficient and effective clustering method for spatial data mining. VLDB'94.
- L. Parsons, E. Haque and H. Liu, Subspace Clustering for High Dimensional Data: A Review, SIGKDD Explorations, 6(1), June 2004
- E. Schikuta. Grid clustering: An efficient hierarchical clustering method for very large data sets. Proc. 1996 Int. Conf. on Pattern Recognition,.
- G. Sheikholeslami, S. Chatterjee, and A. Zhang. WaveCluster: A multi-resolution clustering approach for very large spatial databases. VLDB'98.
- A. K. H. Tung, J. Han, L. V. S. Lakshmanan, and R. T. Ng. Constraint-Based Clustering in Large Databases, ICDT'01.
- A. K. H. Tung, J. Hou, and J. Han. Spatial Clustering in the Presence of Obstacles, ICDE'01
- H. Wang, W. Wang, J. Yang, and P.S. Yu. Clustering by pattern similarity in large data sets, SIGMOD' 02.
- W. Wang, Yang, R. Muntz, STING: A Statistical Information grid Approach to Spatial Data Mining, VLDB'97.
- T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: An efficient data clustering method for very large databases. SIGMOD'96.
- Xiaoxin Yin, Jiawei Han, and Philip Yu, "<u>LinkClus: Efficient Clustering via Heterogeneous</u>
 <u>Semantic Links</u>", in Proc. 2006 Int. Conf. on Very Large Data Bases (VLDB'06), Seoul, Korea,
 Sept. 2006.