CS145: INTRODUCTION TO DATA MINING

10: Vector Data: Density Estimation

Instructor: Yizhou Sun

yzsun@cs.ucla.edu

November 1, 2017

Methods Learnt: Last Lecture

	Vector Data	Set Data	Sequence Data	Text Data
Classification	Logistic Regression; Decision Tree; KNN SVM; NN			Naïve Bayes for Text
Clustering	K-means; hierarchical clustering; DBSCAN; Mixture Models			PLSA
Prediction	Linear Regression GLM*			
Frequent Pattern Mining		Apriori; FP growth	GSP; PrefixSpan	
Similarity Search			DTW	

Vector Data: Density Estimation

Introduction

Nonparametric Density Estimation

Parametric Density Estimation

Summary

Vector Data: Density Estimation

Introduction

Nonparametric Density Estimation

Parametric Density Estimation

Summary

Density Estimation from Data

Goal

- Estimate density function for a random variable from data
- Can be considered as an extension of histogram
 - Smoothed version

Recall

- Density-based clustering can be viewed as identifying connected dense areas of a distribution
- Critical for many other mining functions
 - Classification
 - Outlier detection

Nonparametric vs. parametric methods

- Nonparametric methods
 - No assumptions of the forms of the underlying densities
 - Can be used with arbitrary distributions
- Parametric methods
 - Have assumptions of the forms of the underlying densities
 - The densities are determined by fixed but unknown parameters

Vector Data: Density Estimation

Introduction

Nonparametric Density Estimation

Parametric Density Estimation

Summary

Kernel Density Estimation

- Given a dataset $D = (x_1, x_2, ..., x_n)$, estimate its density function f(x)
- Kernel density estimator:

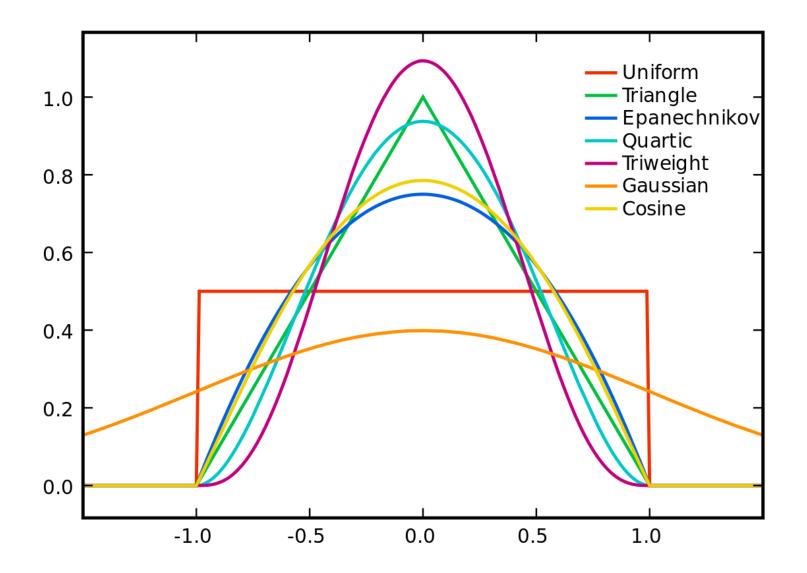
•
$$\hat{f}_h(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^n K_h(\mathbf{x} - \mathbf{x}_i) = \frac{1}{nh} \sum_{i=1}^n K(\frac{\mathbf{x} - \mathbf{x}_i}{h})$$

- h: bandwidth, controlling the smoothness of f
- *K*: a non-negative real-valued integrable function, serving as weighting function

•
$$\int_{-\infty}^{+\infty} K(u) du = 1$$
 (normalization)

• K(u) = K(-u) for all u (symmetric)

Examples of Kernels



Gaussian Kernel in 1-D case

• Example: Gaussian kernel

•
$$K(u) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}u^2}$$

Scaled kernel

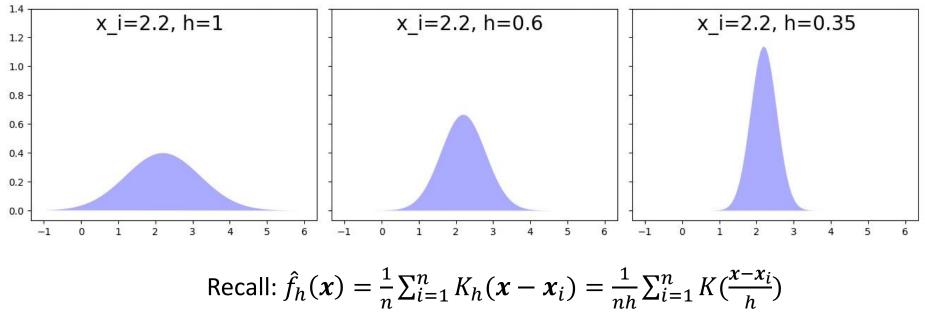
•
$$K_h(u) = \frac{1}{h} K\left(\frac{u}{h}\right)$$

• In the Gaussian kernel case: $K_h(u) = \frac{1}{h\sqrt{2\pi}}e^{-\frac{u^2}{2h^2}}$

Influence from one data point

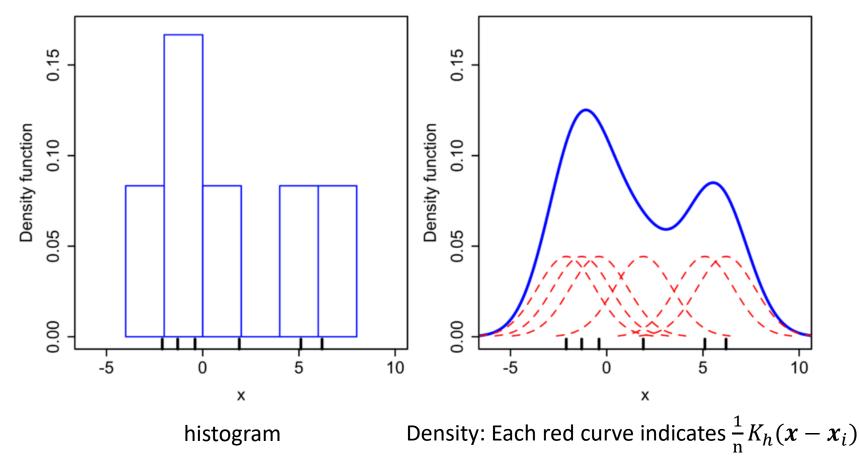
 The influence of x_i to x can be considered as a weighting function centered at x_i

$$K_h(x - x_i) = \frac{1}{h\sqrt{2\pi}} e^{-\frac{(x - x_i)^2}{2h^2}}$$



Influence from multiple data points

 Aggregate influence from multiple data points to x



Is it a density function?

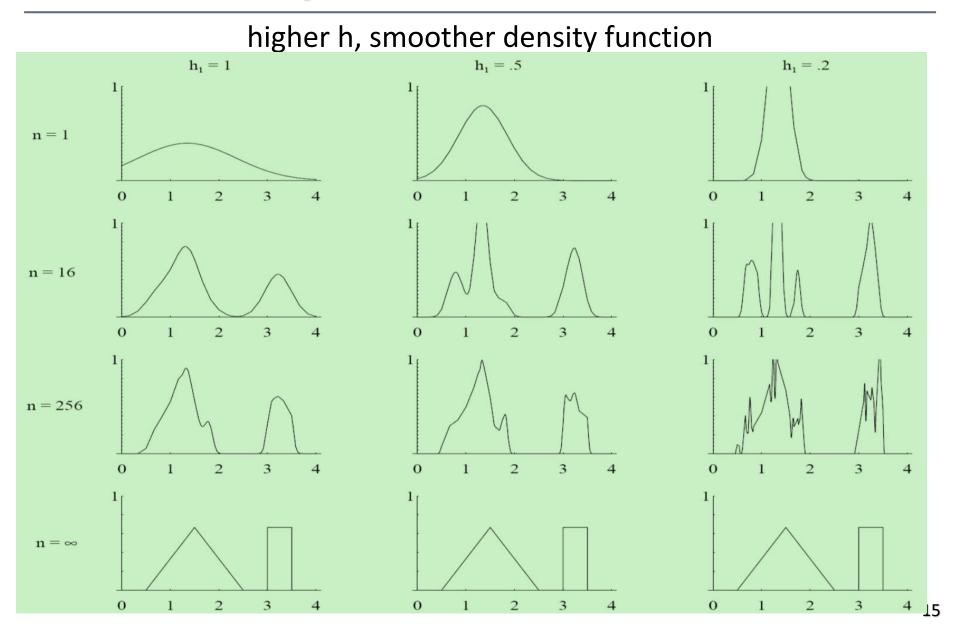
•
$$\hat{f}_h(\boldsymbol{x}) = \frac{1}{n} \sum_{i=1}^n K_h(\boldsymbol{x} - \boldsymbol{x}_i)$$

• A density function has to integrate to 1

•
$$K_h(x - x_i) = \frac{1}{h\sqrt{2\pi}} e^{-\frac{(x - x_i)^2}{2h^2}}$$
 integrates to 1

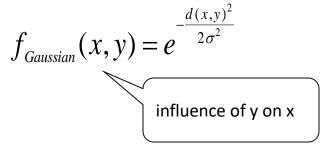
• Therefore, its average does so!

Impact of bandwidth



*DENCLUE: Using Statistical Density Functions for Clustering

- DENsity-based CLUstEring by Hinneburg & Keim (KDD'98)
- Using statistical density functions: $f_{Gaussian}(x,y) = e^{-\frac{d(x,y)^2}{2\sigma^2}} \qquad f_{Gaussian}(x) = \sum_{i=1}^{N} e^{-\frac{d(x,x_i)^2}{2\sigma^2}}$



- Major features
 - Solid mathematical foundation
 - Good for data sets with large amounts of noise
 - Allows a compact mathematical description of arbitrarily shaped clusters in high-dimensional data sets
 - Significant faster than existing algorithm (e.g., DBSCAN)
 - But needs a large number of parameters

total influence

gradient of x in

the direction of x_i

on x

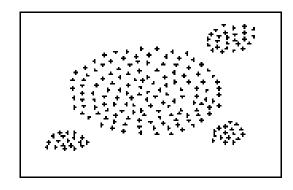
 $\nabla f_{Gaussian}^{D}(x, x_{i}) = \sum_{i=1}^{N} (x_{i} - x) \cdot e^{-\frac{d(x, x_{i})^{2}}{2\sigma^{2}}}$

*Denclue: Technical Essence

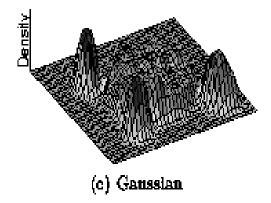
- Overall density of the data space can be calculated as the sum of the influence function of all data points
 - Influence function: describes the impact of a data point within its neighborhood
- Clusters can be determined mathematically by identifying density attractors
 - Density attractors are local maximal of the overall density function
 - Center defined clusters: assign to each density attractor the points density attracted to it
 - Arbitrary shaped cluster: merge density attractors that are connected through paths of high density (> threshold)

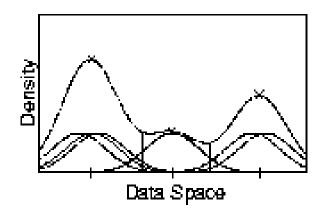
*Density Attractor

Can be detected by hill-climbing procedure of finding local maximums



(a) Data Set



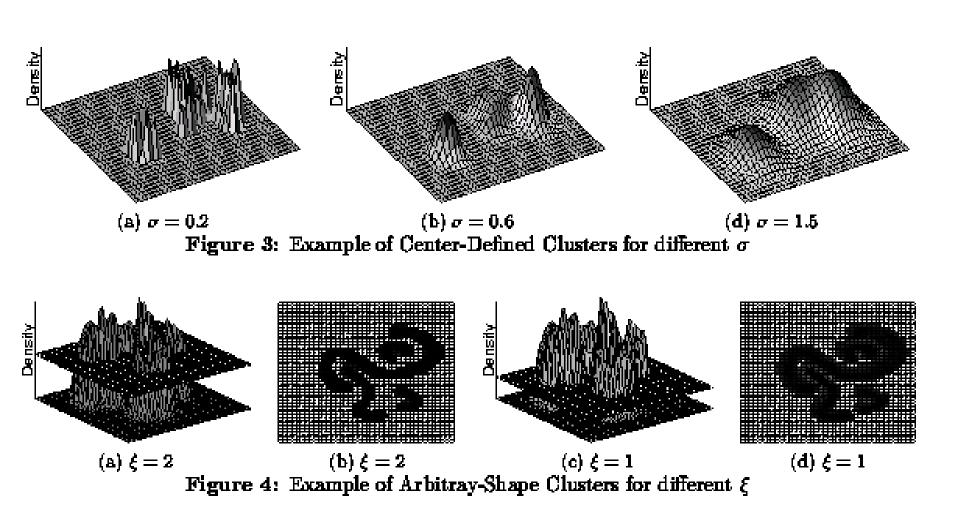


*Noise Threshold

• Noise Threshold ξ

- Avoid trivial local maximum points
- A point can be a density attractor only if $\hat{f}(x) \ge \xi$

*Center-Defined and Arbitrary



Vector Data: Density Estimation

Introduction

Nonparametric Density Estimation

Parametric Density Estimation

Summary

Maximum-Likelihood Estimation

- Data: $D = (x_1, x_2, ..., x_n)$
- Parameters: $\boldsymbol{\theta}$
- Model: $p(\boldsymbol{x}|\boldsymbol{\theta})$
- Likelihood of $\boldsymbol{\theta}$ with respective to a set of data samples

$$L(\boldsymbol{\theta}; D) = p(D|\boldsymbol{\theta}) = \prod_{i=1}^{n} p(\boldsymbol{x}_i|\boldsymbol{\theta})$$

- Maximum likelihood principle: find $\hat{\theta}$ that maximizes L
 - Agrees the most with the observation of current dataset

Log-likelihood function

log-likelihood function

$$l(\boldsymbol{\theta}) \equiv \ln L(\boldsymbol{\theta}) = \ln p(D|\boldsymbol{\theta}) = \sum_{i} \ln p(x_i|\boldsymbol{\theta})$$

 Maximize likelihood function is equivalent to maximize log-likelihood function

$$\hat{\boldsymbol{\theta}} = \arg \max_{\boldsymbol{\theta}} l(\boldsymbol{\theta})$$

$$\Rightarrow \nabla_{\boldsymbol{\theta}} l(\boldsymbol{\theta}) = 0$$

$$\nabla_{\boldsymbol{\theta}} \equiv \begin{bmatrix} \frac{\partial}{\partial \theta_1} \\ \vdots \\ \frac{\partial}{\partial \theta_n} \end{bmatrix}$$

The Gaussian Case: Unknown Mean

- Consider 1-d Gaussian Distribution $x_i \sim N(\mu, \sigma^2)$ where σ^2 is known, i.e., $\theta = \mu$ $p(x_i|\mu) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$
- The log-likelihood is then

$$l(\mu) = \sum_{i} \ln p(x_i|\mu) = \sum_{i} \left(-\frac{1}{2}\ln(2\pi\sigma^2) - \frac{(x_i - \mu)^2}{2\sigma^2}\right)$$

• The MLE estimator for μ is then

• $\nabla_{\mu} l(\mu) = 0 \Rightarrow \sum_{i} (x_i - \hat{\mu}) = 0 \Rightarrow \hat{\mu} = \frac{1}{n} \sum_{i} x_i$

The Gaussian Case: Unknown Mean and

- Consider 1-d Gaussian Distribution $x_i \sim N(\mu, \sigma^2)$ where both μ and σ^2 are unknown, i.e., $\theta = (\mu, \sigma^2)$ $p(x_i | \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$
- The log-likelihood is then

$$l(\mu, \sigma^2) = \sum_{i} \ln p(x_i | \mu, \sigma^2) = \sum_{i} (-\frac{1}{2} \ln(2\pi\sigma^2) - \frac{(x_i - \mu)^2}{2\sigma^2})$$

• The MLE estimators for μ and σ^2 are then

$$\cdot \frac{\partial l(\mu,\sigma^2)}{\partial \mu} = 0 \Rightarrow \sum_i (x_i - \hat{\mu}) / \sigma^2 = 0 \Rightarrow \hat{\mu} = \frac{1}{n} \sum_i x_i$$
$$\cdot \frac{\partial l(\mu,\sigma^2)}{\partial \sigma^2} = 0 \Rightarrow \sum_i (-\frac{1}{2\hat{\sigma^2}} + \frac{(x_i - \hat{\mu})^2}{2(\hat{\sigma^2})^{\wedge 2}}) = 0 \Rightarrow \hat{\sigma^2} = \frac{1}{n} \sum_i (x_i - \hat{\mu})^2$$
Note it is biased

Vector Data: Density Estimation

Introduction

Nonparametric Density Estimation

Parametric Density Estimation

Summary

- Nonparametric Density Estimation
 - Kernel density estimation
- Parametric Density Estimation
 - Maximum likelihood estimation