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Methods Learnt: Last Lecture
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Vector Data Set Data Sequence Data Text Data

Classification Logistic Regression; 
Decision Tree; KNN
SVM; NN

Naïve Bayes for Text

Clustering K-means; hierarchical
clustering; DBSCAN; 
Mixture Models

PLSA

Prediction Linear Regression
GLM*

Frequent Pattern 
Mining

Apriori; FP growth GSP; PrefixSpan

Similarity Search DTW
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Density Estimation from Data

•Goal

•Estimate density function for a random 

variable from data

•Can be considered as an extension of 
histogram

•Smoothed version
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Recall

•Density-based clustering can be viewed as 
identifying connected dense areas of a 
distribution

•Critical for many other mining functions

•Classification

•Outlier detection 
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Nonparametric vs. parametric methods

•Nonparametric methods

•No assumptions of the forms of the underlying 

densities

•Can be used with arbitrary distributions

•Parametric methods

•Have assumptions of the forms of the 

underlying densities

•The densities are determined by fixed but 

unknown parameters

7



Vector Data: Density Estimation

• Introduction

•Nonparametric Density Estimation

•Parametric Density Estimation

•Summary

8



Kernel Density Estimation

•Given a dataset 𝐷 = 𝒙1, 𝒙2, … , 𝒙𝑛 ,
estimate its density function 𝑓(𝒙)

•Kernel density estimator:

• መ𝑓ℎ 𝒙 =
1

𝑛
σ𝑖=1
𝑛 𝐾ℎ(𝒙 − 𝒙𝑖) =

1

𝑛ℎ
σ𝑖=1
𝑛 𝐾(

𝒙−𝒙𝑖

ℎ
)

•ℎ: bandwidth, controlling the smoothness of 𝑓

•𝐾: a non-negative real-valued integrable function, 
serving as weighting function

• ∞−
+∞

𝐾 𝑢 𝑑𝑢 = 1 (𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛)

• 𝐾 𝑢 = 𝐾 −𝑢 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢 (𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐)
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Examples of Kernels
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Gaussian Kernel in 1-D case

•Example: Gaussian kernel

•𝐾 𝑢 =
1

2𝜋
𝑒−

1

2
𝑢2

•Scaled kernel

•𝐾ℎ 𝑢 =
1

ℎ
𝐾

𝑢

ℎ

• In the Gaussian kernel case: 𝐾ℎ 𝑢 =
1

ℎ 2𝜋
𝑒
−

𝑢2

2ℎ2
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Influence from one data point

•The influence of 𝑥𝑖 to 𝑥 can be considered 
as a weighting function centered at 𝑥𝑖

𝐾ℎ 𝑥 − 𝑥𝑖 =
1

ℎ 2𝜋
𝑒
−
(𝑥−𝑥𝑖)

2

2ℎ2
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Recall: መ𝑓ℎ 𝒙 =
1

𝑛
σ𝑖=1
𝑛 𝐾ℎ(𝒙 − 𝒙𝑖) =

1

𝑛ℎ
σ𝑖=1
𝑛 𝐾(

𝒙−𝒙𝑖

ℎ
)



Influence from multiple data points

•Aggregate influence from multiple data 
points to 𝑥
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histogram Density: Each red curve indicates 
1

n
𝐾ℎ(𝒙 − 𝒙𝑖)



Is it a density function?

• መ𝑓ℎ 𝒙 =
1

𝑛
σ𝑖=1
𝑛 𝐾ℎ(𝒙 − 𝒙𝑖)

•A density function has to integrate to 1

•𝐾ℎ 𝒙 − 𝒙𝑖 =
1

ℎ 2𝜋
𝑒
−
(𝑥−𝑥𝑖)

2

2ℎ2 integrates to 1

•Therefore, its average does so!
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Impact of bandwidth
higher h, smoother density function 
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*DENCLUE: Using Statistical Density 
Functions for Clustering

• DENsity-based CLUstEring by Hinneburg & Keim (KDD’98)

• Using statistical density functions:

• Major features

• Solid mathematical foundation

• Good for data sets with large amounts of noise

• Allows a compact mathematical description of arbitrarily shaped clusters in 

high-dimensional data sets

• Significant faster than existing algorithm (e.g., DBSCAN)

• But needs a large number of parameters
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• Overall density of the data space can be calculated as the 
sum of the influence function of all data points
• Influence function: describes the impact of a data point within its 

neighborhood

• Clusters can be determined mathematically by identifying 
density attractors
• Density attractors are local maximal of the overall density function

• Center defined clusters: assign to each density attractor the points 

density attracted to it

• Arbitrary shaped cluster: merge density attractors that are connected 

through paths of high density (> threshold)

*Denclue: Technical Essence
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*Density Attractor
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Can be detected by hill-climbing procedure of finding local maximums



*Noise Threshold

•Noise Threshold 𝜉

•Avoid trivial local maximum points

•A point can be a density attractor only if 
መ𝑓 𝑥 ≥ 𝜉
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*Center-Defined and Arbitrary
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Maximum-Likelihood Estimation

•Data: 𝐷 = 𝒙1, 𝒙2, … , 𝒙𝑛
•Parameters: 𝜽
•Model: 𝑝(𝒙|𝜽)
• Likelihood of 𝜽 with respective to a set of 
data samples

𝐿(𝜽; 𝐷) = 𝑝 𝐷 𝜽 =ෑ

𝑖=1

𝑛

𝑝(𝒙𝑖|𝜽)

•Maximum likelihood principle: find 𝜽 that 
maximizes 𝐿

• Agrees the most with the observation of current 
dataset
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Log-likelihood function

• log-likelihood function

𝑙 𝜽 ≡ ln 𝐿 𝜽 = ln 𝑝 𝐷 𝜽 =

𝑖

ln 𝑝(𝑥𝑖|𝜽)

•Maximize likelihood function is equivalent 
to maximize log-likelihood function

𝜽 = argmax
𝜽

𝑙(𝜽)

⇒ 𝛻𝜽𝑙 𝜽 = 0
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The Gaussian Case: Unknown Mean

•Consider 1-d Gaussian Distribution
𝑥𝑖~𝑁 𝜇, 𝜎2

where 𝜎2 is known, i.e., 𝜃 = 𝜇

𝑝 𝑥𝑖 𝜇 =
1

2𝜋𝜎2
𝑒
−
(𝑥−𝜇)2

2𝜎2

•The log-likelihood is then

𝑙 𝜇 =

𝑖

ln 𝑝 𝑥𝑖 𝜇 =

𝑖

(−
1

2
ln 2𝜋𝜎2 −

(𝑥𝑖 − 𝜇)2

2𝜎2
)

•The MLE estimator for 𝜇 is then

• 𝛻𝜇𝑙 𝜇 = 0 ⇒ σ𝑖 𝑥𝑖 − ො𝜇 = 0 ⇒ ො𝜇 =
1

𝑛
σ𝑖 𝑥𝑖
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The Gaussian Case: Unknown Mean and 
Variance

• Consider 1-d Gaussian Distribution
𝑥𝑖~𝑁 𝜇, 𝜎2

where both 𝜇 and 𝜎2 are unknown, i.e., 𝜽 = (𝜇, 𝜎2)

𝑝 𝑥𝑖 𝜇, 𝜎
2 =

1

2𝜋𝜎2
𝑒
−
(𝑥−𝜇)2

2𝜎2

• The log-likelihood is then

𝑙 𝜇, 𝜎2 =

𝑖

ln 𝑝 𝑥𝑖 𝜇, 𝜎
2 =

𝑖

(−
1

2
ln 2𝜋𝜎2 −

(𝑥𝑖 − 𝜇)2

2𝜎2
)

• The MLE estimators for 𝜇 and 𝜎2 are then

•
𝜕𝑙 𝜇,𝜎2

𝜕𝜇
= 0 ⇒ σ𝑖 𝑥𝑖 − ො𝜇 /𝜎2 = 0 ⇒ ො𝜇 =

1

𝑛
σ𝑖 𝑥𝑖

•
𝜕𝑙 𝜇,𝜎2

𝜕𝜎2
= 0 ⇒ σ𝑖(−

1

2𝜎2
+

𝑥𝑖−ෝ𝜇
2

2 (𝜎2)^2
) = 0 ⇒ 𝜎2 =

1

𝑛
σ𝑖 𝑥𝑖 − ො𝜇 2
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Note it is biased
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Summary

•Nonparametric Density Estimation

•Kernel density estimation

•Parametric Density Estimation

•Maximum likelihood estimation
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