CS145: INTRODUCTION TO DATA MINING

Course Project Overview

Instructor: Yizhou Sun

yzsun@cs.ucla.edu

October 8, 2017

General Goal

- Apply data mining algorithms to realworld problems
 - Choose topic
 - Collect data
 - Apply algorithms to the data
 - Evaluate and compare algorithms
 - Submit a report, together with data and code

Detailed Stages: 1. Form Groups

- Sign-up team: 4-5 members per team
 - Group ID, name, members, topics
- Point: 1

Detailed Stages: 2. Midterm Report

- Submit a 5-page report, indicating
 - Which problem you want to solve
 - How to break the problem into subtasks and formalize them into data mining problems
 - What's your strategy in crawling Twitter data and describe what you plan to get
 - Schedule of your remaining work
 - Discussion of problems you have met
 - References
- Points: 5

Detailed Stages: 3. Final Report

- Submit a 10-page final report
 - Enrich the major part of midterm report
 - Demo system (if any) or final results
 - Workload distribution
- Submit code and data
- Points: 19

Grading Policy

- Collaborating Rule
 - Every member in a team gets the same score (encourage teamwork)
 - Exception: the team has the right to claim someone as a free rider, and we will lower his/her score
- Final report should include a table describing each member's duty
- We also collect Peer evaluation form

Sample of Workload Distribution Table

Task	People
1. Collecting and preprocessing data	Student A
2. Implementing Algorithm 1	Student B
3. Implementing Algorithm 2	Student C and D
4. Evaluating and comparing algorithms	Student A
5. Writing report	Student B and C
6. Slides, demo, and Presentation	student A, B

Twitter Projects

- Three topics to choose
 - Stock price prediction
 - Mood detection and prediction
 - Trending Event detection

Stock Price Prediction

Goal

 Predict stock price for several certain stocks or overall index

Possible subtasks

- Decide prediction tasks: short term or long term?
- Focused crawling: collect tweets that are related to a company or an industry
- What data mining problem it can be formalized into?
- Which data mining algorithms can be applied to solve this problem?
- How to evaluate the performance of different algorithms?

References

- Johan Bollen et al., Twitter mood predicts the stock market, Arxiv, 2010
- Anshul Mittal et al., Stock Prediction Using Twitter Sentiment Analysis
 - http://citeseerx.ist.psu.edu/viewdoc/download? doi=10.1.1.375.4517&rep=rep1&type=pdf

Mood detection and prediction

Goal

 Detect and predict happiness index for twitter users according to their tweets

Possible subtasks

- Decide which mood classification scheme to use
- Decide the scope of tweets to crawl
- What features will affect people's mood, e.g., # of friends, # of tweets?
- What data mining problem it can be formalized into?
- Which data mining algorithms can be applied to solve this problem?
- How to evaluate the performance of different algorithms?

References

- Kirk Roberts et al., EmpaTweet:
 Annotating and Detecting Emotions on Twitter.
 - http://www.hlt.utdallas.edu/~kirk/publications/
 robertsLREC2012_2.pdf
- https://mislove.org/twittermood/
- Johan Bollen et al., Modeling Public Mood and Emotion: Twitter Sentiment and Socio-Economic Phenomena, ICWSM'11

Trending Event Detection in LA

Goal

 Detect and rank the trending events in a specified location, e.g., LA

Possible subtasks

- How to model an event?
- How to crawl tweets within a specified location?
- How to detect and track an event?
- How to summarize an event?
- How to categorize them into different event types?
- How to evaluate the performance of different algorithms?

References

- Rui Li et al., TEDAS: A Twitter-based Event Detection and Analysis System, ICDE'12
- Charu C. Aggarwal et al., Event Detection in Social Streams, SDM'12