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Support Vector Machine

• Introduction

•Linear SVM

•Non-linear SVM

•Scalability Issues*

•Summary
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Math Review
•Vector

•𝒙𝒙 = x1, x2, … , 𝑥𝑥𝑛𝑛
• Subtracting two vectors: 𝒙𝒙 = 𝒃𝒃 − 𝒂𝒂

•Dot product
•𝒂𝒂 ⋅ 𝒃𝒃 = ∑𝑎𝑎𝑖𝑖𝑏𝑏𝑖𝑖
• Geometric interpretation: projection

• If 𝒂𝒂 𝑎𝑎𝑎𝑎𝑎𝑎 𝒃𝒃 are orthogonal, 𝒂𝒂 ⋅ 𝒃𝒃 = 0
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Math Review (Cont.)
•Plane/Hyperplane

•𝑎𝑎1𝑥𝑥1 + 𝑎𝑎2𝑥𝑥2 + ⋯+ 𝑎𝑎𝑛𝑛𝑥𝑥𝑛𝑛 = 𝑐𝑐
• Line (n=2), plane (n=3), hyperplane (higher 
dimensions)

•Normal of a plane
•𝒏𝒏 = 𝑎𝑎1, 𝑎𝑎2, … , 𝑎𝑎𝑛𝑛
• a vector which is perpendicular to the surface 
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Math Review (Cont.)
• Define a plane using normal 𝒏𝒏 =
𝑎𝑎, 𝑏𝑏, 𝑐𝑐 and a point (𝑥𝑥0,𝑦𝑦0, 𝑧𝑧0) in 

the plane: 
• 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 ⋅ 𝑥𝑥0 − 𝑥𝑥,𝑦𝑦0 − 𝑦𝑦, 𝑧𝑧0 − 𝑧𝑧 = 0 ⇒
𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐𝑐𝑐 = 𝑎𝑎𝑥𝑥0 + 𝑏𝑏𝑦𝑦0 + 𝑐𝑐𝑧𝑧0(= 𝑑𝑑)

• Distance from a point (𝑥𝑥0,𝑦𝑦0, 𝑧𝑧0) to a 
plane 𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐𝑐𝑐 = d

• 𝑥𝑥0 − 𝑥𝑥,𝑦𝑦0 − 𝑦𝑦, 𝑧𝑧0 − 𝑧𝑧 ⋅ 𝑎𝑎,𝑏𝑏,𝑐𝑐
𝑎𝑎,𝑏𝑏,𝑐𝑐

=
𝑎𝑎𝑥𝑥0+𝑏𝑏𝑦𝑦0+𝑐𝑐𝑧𝑧0−𝑑𝑑

𝑎𝑎2+𝑏𝑏2+𝑐𝑐2
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Linear Classifier

•Given a training dataset 𝒙𝒙𝑖𝑖 ,𝑦𝑦𝑖𝑖 𝑖𝑖=1
𝑁𝑁

 A separating hyperplane can be written as a linear combination of 
attributes

W ● X + b = 0
where W={w1, w2, …, wn} is a weight vector and b a scalar (bias)

 For 2-D it can be written as
w0 + w1 x1 + w2 x2 = 0

 Classification: 
w0 + w1 x1 + w2 x2 > 0  =>  yi = +1
w0 + w1 x1 + w2 x2 ≤ 0  =>  yi = –1
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Recall
• Is the decision boundary for logistic 
regression linear?

• Is the decision boundary for decision tree 
linear?
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Simple Linear Classifier: Perceptron
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Loss function: max{0,−𝑦𝑦𝑖𝑖 ∗ 𝑤𝑤𝑇𝑇𝑥𝑥𝑖𝑖}



More on Sign Function
•
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Example (α = 0.9)
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Support Vector Machine

• Introduction

•Linear SVM

•Non-linear SVM

•Scalability Issues*

•Summary
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Can we do better?
•Which hyperplane to choose?
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SVM—Margins and Support Vectors

Support Vectors

Small Margin Large Margin
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SVM—When Data Is Linearly Separable

m

Let data D be (X1, y1), …, (X|D|, y|D|), where Xi is the set of training tuples 
associated with the class labels yi

There are infinite lines (hyperplanes) separating the two classes but we want to 
find the best one (the one that minimizes classification error on unseen data)
SVM searches for the hyperplane with the largest margin, i.e., maximum 
marginal hyperplane (MMH)



17

SVM—Linearly Separable

 A separating hyperplane can be written as
W ● X + b = 0

 The hyperplane defining the sides of the margin, e.g.,: 
H1: w1 x1 + w2 x2 + b ≥ 1    for yi = +1, and
H2: w1 x1 + w2 x2 + b ≤ – 1 for yi = –1

 Any training tuples that fall on hyperplanes H1 or H2 (i.e., the 
sides defining the margin) are support vectors

 This becomes a constrained (convex) quadratic optimization
problem: Quadratic objective function and linear constraints 
Quadratic Programming (QP)  Lagrangian multipliers



Maximum Margin Calculation
•w: decision hyperplane normal vector
•xi: data point i
•yi: class of data point i (+1 or -1)
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wT x + b = 0

wTxa + b = 1

wTxb + b = -1
ρ

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚: 𝜌𝜌 =
2

||𝒘𝒘||

Hint: what is the distance between 
𝑥𝑥𝑎𝑎 and  wTx + b = -1



SVM as a Quadratic Programming 
•QP

•A better form
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Objective: Find w and b such that 𝜌𝜌 = 2
||𝒘𝒘||

is 
maximized; 

Constraints: For all {(xi , yi)}
wTxi + b ≥ 1 if yi=1;   

wTxi + b ≤ -1   if yi = -1

Objective: Find w and b such that Φ(w) =½ wTw is 
minimized; 

Constraints: for all {(xi ,yi)}:    yi (wTxi + b) ≥ 1



Solve QP
• This is now optimizing a quadratic function 
subject to linear constraints

• Quadratic optimization problems are a well-
known class of mathematical programming 
problem, and many (intricate) algorithms exist 
for solving them (with many special ones built 
for SVMs)

• The solution involves constructing a dual 
problem where a Lagrange multiplier αi is 
associated with every constraint in the 
primary problem:
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Lagrange Formulation
• Introducing Lagrange multipliers 𝛼𝛼𝑖𝑖 ≥ 0
for each constraint

21



Primal Form and Dual Form

• More derivations: 
http://cs229.stanford.edu/notes/cs229-notes3.pdf
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Objective: Find w and b such that Φ(w) =½ wTw is 
minimized; 

Constraints: for all {(xi ,yi)}:    yi (wTxi + b) ≥ 1

Objective: Find α1…αn such that
Q(α) =Σαi - ½ΣΣαiαjyiyjxi

Txj is maximized and 

Constraints
(1) Σαiyi = 0
(2) αi ≥ 0 for all αi

Primal

Dual

Equivalent under some conditions; also 𝒘𝒘, 𝑏𝑏,𝜶𝜶 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 KKT conditions

http://cs229.stanford.edu/notes/cs229-notes3.pdf


The Optimization Problem Solution
• The solution has the form: 

• Each non-zero αi indicates that corresponding xi is a support vector.
• Then the classifying function will have the form:

• Notice that it relies on an inner product between the test point x
and the support vectors xi
• We will return to this later.

• Also keep in mind that solving the optimization problem involved 
computing the inner products xi

Txj between all pairs of training 
points.
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w =Σαiyixi b= yk- wTxk for any xk such that αk≠ 0

f(x) = Σαiyixi
Tx + b
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Soft Margin Classification  
• If the training data is not 

linearly separable, slack 
variables ξi can be added to 
allow misclassification of 
difficult or noisy examples.

• Allow some errors

• Let some points be 
moved to where they 
belong, at a cost

• Still, try to minimize training 
set errors, and to place 
hyperplane “far” from each 
class (large margin)

ξj

ξi

Sec. 15.2.1
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Soft Margin Classification 
Mathematically

• The old formulation:

• The new formulation incorporating slack variables:

• Parameter C can be viewed as a way to control overfitting
• A regularization term (L1 regularization)

Find w and b such that
Φ(w) =½ wTw is minimized and for all {(xi ,yi)}
yi (wTxi + b) ≥ 1

Find w and b such that
Φ(w) =½ wTw + CΣξi is minimized and for all {(xi ,yi)}
yi (wTxi + b) ≥ 1- ξi and    ξi ≥ 0 for all i

Sec. 15.2.1
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Soft Margin Classification – Solution
• The dual problem for soft margin classification:

• Neither slack variables ξi nor their Lagrange multipliers appear in the dual 
problem!

• Again, xi with non-zero αi will be support vectors.
• If 0<αi<C, ξi =0

• If αi=C, ξi >0

• Solution to the problem is:

Find α1…αN such that
Q(α) =Σαi - ½ΣΣαiαjyiyjxi

Txj is maximized and 
(1) Σαiyi = 0
(2)  0 ≤ αi ≤ C for all αi

w = Σαiyixi
b= yk- wTxk for any xk such that 0<αk <C

f(x) = Σαiyixi
Tx + b

w is not needed explicitly 
for classification!

Sec. 15.2.1



A Different View of Soft Margin SVM
•Hinge loss with regularization terms

• Φ(w) =½ wTw + CΣξi

=½ wTw + CΣmax(0, 1- yi (wTxi + b))

27

Hinge lossL2 regularization
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Classification with SVMs
• Given a new point x, we can score its projection 

onto the hyperplane normal:
• I.e., compute score: wTx + b = Σαiyixi

Tx + b
• Decide class based on whether < or > 0

• Can set confidence threshold t.

-1
0

1

Score > t: yes

Score < -t: no

Else: don’t know

Sec. 15.1
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Linear SVMs:  Summary
• The classifier is a separating hyperplane.

• The most “important” training points are the support vectors; 
they define the hyperplane.

• Quadratic optimization algorithms can identify which training 
points xi are support vectors with non-zero Lagrangian
multipliers αi.

• Both in the dual formulation of the problem and in the 
solution, training points appear only inside inner products: 

Find α1…αN such that
Q(α) =Σαi - ½ΣΣαiαjyiyjxi

Txj is maximized and 
(1) Σαiyi = 0
(2)  0 ≤ αi ≤ C for all αi

f(x) = Σαiyixi
Tx + b

Sec. 15.2.1



Support Vector Machine

• Introduction

•Linear SVM

•Non-linear SVM

•Scalability Issues*

•Summary
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Non-linear SVMs
• Datasets that are linearly separable (with some noise) work out 

great:

• But what are we going to do if the dataset is just too hard? 

• How about … mapping data to a higher-dimensional space:

0

x2

x

0 x

0 x

Sec. 15.2.3
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Non-linear SVMs:  Feature spaces
•General idea: the original feature space 
can always be mapped to some higher-
dimensional feature space where the 
training set is separable:

Φ:  x → φ(x)

Sec. 15.2.3
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The “Kernel Trick”
• The linear classifier relies on an inner product between 

vectors K(xi,xj)=xi
Txj

• If every data point is mapped into high-dimensional 
space via some transformation Φ:  x → φ(x), the inner 
product becomes:

K(xi,xj)= φ(xi) Tφ(xj)
• A kernel function is some function that corresponds to 

an inner product in some expanded feature space.

Sec. 15.2.3



Example
•2-dimensional vectors x=[x1   x2],  let 
K(xi,xj)=(1 + xi

Txj)2

•show that K(xi,xj)= φ(xi) Tφ(xj):

K(xi,xj)=(1 + xi
Txj)2= 1+ xi1

2xj1
2 + 2 xi1xj1 xi2xj2+ xi2

2xj2
2 + 2xi1xj1 + 2xi2xj2=

= [1  xi1
2  √2 xi1xi2  xi2

2  √2xi1  √2xi2]T [1  xj1
2  √2 xj1xj2  xj2

2  √2xj1  √2xj2] 

= φ(xi) Tφ(xj)    

where φ(x) = [1  x1
2  √2 x1x2  x2

2   √2x1  √2x2]
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SVM:  Different Kernel functions

 Instead of computing the dot product on the transformed data, 
it is math. equivalent to applying a kernel function K(Xi, Xj) to 
the original data, i.e., K(Xi, Xj) = Φ(Xi)TΦ(Xj) 

 Typical Kernel Functions

 *SVM can also be used for classifying multiple (> 2) classes and 
for regression analysis (with additional parameters)
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Non-linear SVM
• Replace inner-product with kernel functions

• Optimization problem

• Decision boundary

Find α1…αN such that
Q(α) =Σαi - ½ΣΣαiαjyiyjK(xi,xj) is 
maximized and 
(1) Σαiyi = 0
(2)  0 ≤ αi ≤ C for all αi

f(x) = ΣαiyiK(xi,x) + b

Sec. 15.2.1



Support Vector Machine

• Introduction

•Linear SVM

•Non-linear SVM

•Scalability Issues*

•Summary
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*Scaling SVM by Hierarchical Micro-Clustering

• SVM is not scalable to the number of data objects in terms of training time 
and memory usage

• H. Yu, J. Yang, and J. Han, “Classifying Large Data Sets Using SVM with 
Hierarchical Clusters”, KDD'03)

• CB-SVM (Clustering-Based SVM)

• Given limited amount of system resources (e.g., memory), maximize the 

SVM performance in terms of accuracy and the training speed

• Use micro-clustering to effectively reduce the number of points to be 
considered

• At deriving support vectors, de-cluster micro-clusters near “candidate vector” 
to ensure high classification accuracy

http://www.cs.uiuc.edu/homes/hanj/pdf/kdd03_scalesvm.pdf
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*CF-Tree: Hierarchical Micro-cluster

 Read the data set once, construct a statistical summary of the data (i.e., 
hierarchical clusters) given a limited amount of memory

 Micro-clustering: Hierarchical indexing structure
 provide finer samples closer to the boundary and coarser samples 

farther from the boundary
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*Selective Declustering: Ensure High Accuracy

• CF tree is a suitable base structure for selective declustering
• De-cluster only the cluster Ei such that

• Di – Ri < Ds, where Di is the distance from the boundary to the center point of 
Ei and Ri is the radius of Ei

• Decluster only the cluster whose subclusters have possibilities to be the 
support cluster of the boundary
• “Support cluster”: The cluster whose centroid is a support vector
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*CB-SVM Algorithm: Outline

• Construct two CF-trees from positive and negative data sets 
independently
• Need one scan of the data set

• Train an SVM from the centroids of the root entries
• De-cluster the entries near the boundary into the next level

• The children entries de-clustered from the parent entries are 
accumulated into the training set with the non-declustered 
parent entries

• Train an SVM again from the centroids of the entries in the 
training set

• Repeat until nothing is accumulated 
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*Accuracy and Scalability on Synthetic Dataset

• Experiments on large synthetic data sets shows better accuracy 
than random sampling approaches and far more scalable than 
the original SVM algorithm



Support Vector Machine

• Introduction

•Linear SVM

•Non-linear SVM

•Scalability Issues*

•Summary
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Summary
•Support Vector Machine

• Linear classifier; support vectors; kernel SVM
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SVM Related Links

• SVM Website: http://www.kernel-machines.org/

• Representative implementations

• LIBSVM: an efficient implementation of SVM, multi-class 

classifications, nu-SVM, one-class SVM, including also various 

interfaces with java, python, etc.

• SVM-light: simpler but performance is not better than LIBSVM, 

support only binary classification and only in C 

• SVM-torch: another recent implementation also written in C

• From classification to regression and ranking:
• http://www.dainf.ct.utfpr.edu.br/~kaestner/Mineracao/hwanjoyu-

svmtutorial.pdf

http://www.kernel-machines.org/
http://www.dainf.ct.utfpr.edu.br/%7Ekaestner/Mineracao/hwanjoyu-svmtutorial.pdf


More about Lagrangian
• Objective with equality constraints

min
𝑤𝑤

𝑓𝑓(𝑤𝑤)
𝑠𝑠. 𝑡𝑡.

ℎ𝑖𝑖 𝑤𝑤 = 0, 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1,2, … , 𝑙𝑙
• Lagrangian:

• 𝐿𝐿 𝑤𝑤,𝜶𝜶 = 𝑓𝑓 𝑤𝑤 + ∑𝑖𝑖 𝛼𝛼𝑖𝑖ℎ𝑖𝑖(𝑤𝑤)
• 𝛼𝛼𝑖𝑖: Lagrangian multipliers

• Solution: setting the derivatives of Lagrangian
to be 0
•
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0 𝑎𝑎𝑎𝑎𝑎𝑎 𝜕𝜕𝜕𝜕
𝜕𝜕𝛼𝛼𝑖𝑖

= 0 for every i
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Generalized Lagrangian
• Objective with both equality and inequality 
constraints

min
𝑤𝑤

𝑓𝑓(𝑤𝑤)
𝑠𝑠. 𝑡𝑡.

ℎ𝑖𝑖 𝑤𝑤 = 0, 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1,2, … , 𝑙𝑙
𝑔𝑔𝑗𝑗 𝑤𝑤 ≤ 0, 𝑓𝑓𝑓𝑓𝑓𝑓 𝑗𝑗 = 1,2, … , 𝑘𝑘

• Lagrangian
• 𝐿𝐿 𝑤𝑤,𝜶𝜶,𝜷𝜷 = 𝑓𝑓 𝑤𝑤 + ∑𝑖𝑖 𝛼𝛼𝑖𝑖ℎ𝑖𝑖(𝑤𝑤) + ∑𝑗𝑗 𝛽𝛽𝑗𝑗𝑔𝑔𝑗𝑗(𝑤𝑤)

• 𝛼𝛼𝑖𝑖: Lagrangian multipliers
• 𝛽𝛽𝑗𝑗 ≥ 0: Lagrangian multipliers
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Why It Works
•Consider function 

𝜃𝜃𝑝𝑝 𝑤𝑤 = max
𝛼𝛼,𝛽𝛽:𝛽𝛽𝑗𝑗≥0

𝐿𝐿(𝑤𝑤,𝜶𝜶,𝜷𝜷)

• 𝜃𝜃𝑝𝑝 𝑤𝑤 = �𝑓𝑓 𝑤𝑤 , 𝑖𝑖𝑖𝑖 𝑤𝑤 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
∞, 𝑖𝑖𝑖𝑖 𝑤𝑤 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑛𝑛′𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

•Therefore, minimize 𝑓𝑓 𝑤𝑤 with 
constraints is equivalent to minimize 
𝜃𝜃𝑝𝑝 𝑤𝑤
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Lagrange Duality
•The primal problem

𝑝𝑝∗ = min
𝑤𝑤

max
𝛼𝛼,𝛽𝛽:𝛽𝛽𝑗𝑗≥0

𝐿𝐿(𝑤𝑤,𝜶𝜶,𝜷𝜷)

•The dual problem
𝑑𝑑∗ = max

𝛼𝛼,𝛽𝛽:𝛽𝛽𝑗𝑗≥0
min
𝑤𝑤

𝐿𝐿(𝑤𝑤,𝜶𝜶,𝜷𝜷)

•According to max-min inequality
𝑝𝑝∗ ≤ 𝑑𝑑∗

• When does equation hold?
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Primal = Dual 
•𝑝𝑝∗ = 𝑑𝑑∗, under some proper condition 
(Slater conditions)
•𝑓𝑓,𝑔𝑔𝑗𝑗 convex, ℎ𝑖𝑖 affine

• Exists 𝑤𝑤, such that all 𝑔𝑔𝑗𝑗 w < 0

• 𝑤𝑤∗,𝛼𝛼∗,𝛽𝛽∗ need to satisfy KKT conditions

•
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0

•𝛽𝛽𝑗𝑗𝑔𝑔𝑗𝑗 𝑤𝑤 = 0
• ℎ𝑖𝑖 𝑤𝑤 = 0,𝑔𝑔𝑗𝑗 𝑤𝑤 ≤ 0,𝛽𝛽𝑗𝑗 ≥ 0
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