CS145: INTRODUCTION TO DATA MINING

5: Vector Data: Support Vector Machine

Instructor: Yizhou Sun

yzsun@cs.ucla.edu

October 19, 2018

Methods to Learn: Last Lecture

	Vector Data	Set Data	Sequence Data	Text Data
Classification	Logistic Regression; Decision Tree; KNN SVM; NN			Naïve Bayes for Text
Clustering	K-means; hierarchical clustering; DBSCAN; Mixture Models			PLSA
Prediction	Linear Regression GLM*			
Frequent Pattern Mining		Apriori; FP growth	GSP; PrefixSpan	
Similarity Search			DTW	

Methods to Learn

	Vector Data	Set Data	Sequence Data	Text Data
Classification	Logistic Regression; Decision Tree; KNN SVM; NN			Naïve Bayes for Text
Clustering	K-means; hierarchical clustering; DBSCAN; Mixture Models			PLSA
Prediction	Linear Regression GLM*			
Frequent Pattern Mining		Apriori; FP growth	GSP; PrefixSpan	
Similarity Search			DTW	

Support Vector Machine

- Linear SVM
- Non-linear SVM
- Scalability Issues*
- Summary

Math Review

Vector

• $\boldsymbol{x} = (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n)$

• Subtracting two vectors: x = b - a

- Dot product
 - $\boldsymbol{a} \cdot \boldsymbol{b} = \sum a_i b_i$

- Geometric interpretation: projection
- If **a** and **b** are orthogonal, $\mathbf{a} \cdot \mathbf{b} = 0$

Math Review (Cont.)

- Plane/Hyperplane
 - $a_1 x_1 + a_2 x_2 + \dots + a_n x_n = c$
 - Line (n=2), plane (n=3), hyperplane (higher dimensions)
- Normal of a plane
 - $\boldsymbol{n} = (a_1, a_2, \dots, a_n)$
 - a vector which is perpendicular to the surface

Math Review (Cont.) _z

- Define a plane using normal n = (a, b, c) and a point (x_0, y_0, z_0) in the plane:
 - $(a, b, c) \cdot (x_0 x, y_0 y, z_0 z) = 0 \Rightarrow$ $ax + by + cz = ax_0 + by_0 + cz_0 (= d)$
- Distance from a point (x_0, y_0, z_0) to a plane ax + by + cz = d

•
$$\left| (x_0 - x, y_0 - y, z_0 - z) \cdot \frac{(a, b, c)}{||(a, b, c)||} \right| =$$

 $\frac{|ax_0 + by_0 + cz_0 - d|}{\sqrt{a^2 + b^2 + c^2}}$

 (x_0, y_0, z_0)

 $\mathbf{n} =$

 $\mathbf{v} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$

Linear Classifier

- Given a training dataset $\{x_i, y_i\}_{i=1}^N$
- A separating hyperplane can be written as a linear combination of attributes

 $\mathbf{W} \bullet \mathbf{X} + \mathbf{b} = \mathbf{0}$

where $\mathbf{W} = \{w_1, w_2, ..., w_n\}$ is a weight vector and b a scalar (bias)

For 2-D it can be written as

$$w_0 + w_1 x_1 + w_2 x_2 = 0$$

Classification:

$$w_0 + w_1 x_1 + w_2 x_2 > 0 \implies y_i = +1$$

 $w_0 + w_1 x_1 + w_2 x_2 \le 0 \implies y_i = -1$

Recall

Is the decision boundary for logistic regression linear?

 Is the decision boundary for decision tree linear?

Simple Linear Classifier: Perceptron

$$\mathbf{x} = (\mathbf{1}, x_1, x_2, \dots, x_d)^T \quad \mathbf{w} = (\omega_0, \omega_1, \omega_2, \dots, \omega_d)^T y = \{1, -1\} \quad \alpha \in (0, 1] \text{ (learning rate)}$$

Initialize $\mathbf{w} = \mathbf{0}$ (can be any vector) Repeat:

• For each training example (\mathbf{x}_i, y_i) :

- Compute $\hat{y}_i = \operatorname{sign}(\mathbf{w}^\mathsf{T}\mathbf{x}_i)$
- if $(y_i \neq \hat{y}_i)$ w = w + $\alpha(y_i \mathbf{x}_i)$

Until $(y_i = \hat{y}_i \quad \forall i = 1 \dots N)$

Return w

Loss function: max{ $0, -y_i * w^T x_i$ }

More on Sign Function

$$\operatorname{sign}(x) = \begin{cases} 1, & x > 0; \\ 0, & x = 0; \\ -1, & x < 0. \end{cases}$$

Example (α = 0.9)

x0 x1	v1	x2	true	W	predicted	W
	XI		label	before update	label	after update
1	0	1	Y	(0.0, 0.0, 0.0)	Ν	(0.9, 0.0, 0.9)
1	1	1	N	(0.9, 0.0, 0.9)	Y	(0.0, -0.9, 0.0)
1	0	0	Y	(0.0, -0.9, 0.0)	Ν	(0.9, -0.9, 0.0)
1	1	0	Y	(0.9, -0.9, 0.0)	Ν	(1.8, 0.0, 0.0)
1	0	1	Y	(1.8, 0.0, 0.0)	Y	(1.8, 0.0, 0.0)
1	1	1	N	(1.8, 0.0, 0.0)	Y	(0.9, -0.9, -0.9)
1	0	0	Y	(0.9, -0.9, -0.9)	Y	(0.9, -0.9, -0.9)
1	1	0	Y	(0.9, -0.9, -0.9)	Ν	(1.8, 0.0, -0.9)
1	0	1	Y	(1.8, 0.0, -0.9)	Y	(1.8, 0.0, -0.9)
1	1	1	N	(1.8, 0.0, -0.9)	Y	(0.9, -0.9, -1.8)
1	0	0	Y	(0.9, -0.9, -1.8)	Y	(0.9, -0.9, -1.8)
1	1	0	Y	(0.9, -0.9, -1.8)	Ν	(1.8, 0.0, -1.8)

Support Vector Machine

- Introduction
- •Linear SVM 🦊
- Non-linear SVM
- Scalability Issues*
- Summary

• Which hyperplane to choose?

SVM—Margins and Support Vectors

Support Vectors

SVM—When Data Is Linearly Separable

Let data D be $(X_1, y_1), ..., (X_{|D|}, y_{|D|})$, where X_i is the set of training tuples associated with the class labels y_i

There are infinite lines (<u>hyperplanes</u>) separating the two classes but we want to <u>find the best one</u> (the one that minimizes classification error on unseen data)

SVM searches for the hyperplane with the largest margin, i.e., **maximum marginal hyperplane** (MMH)

SVM—Linearly Separable

A separating hyperplane can be written as

 $\mathbf{W} \bullet \mathbf{X} + \mathbf{b} = \mathbf{0}$

The hyperplane defining the sides of the margin, e.g.,:

 $H_1: w_1 x_1 + w_2 x_2 + b \ge 1$ for $y_i = +1$, and

 $H_2: w_1 x_1 + w_2 x_2 + b \le -1$ for $y_i = -1$

- Any training tuples that fall on hyperplanes H₁ or H₂ (i.e., the sides defining the margin) are support vectors
- This becomes a constrained (convex) quadratic optimization problem: Quadratic objective function and linear constraints → Quadratic Programming (QP) → Lagrangian multipliers

Maximum Margin Calculation

- w: decision hyperplane normal vector
- **x**_i: data point *i*
- y_i: class of data point *i* (+1 or -1)

SVM as a Quadratic Programming

• **QP** Objective: Find **w** and *b* such that $\rho = \frac{2}{||w||}$ is maximized; Constraints: For all $\{(\mathbf{x_i}, y_i)\}$ $\mathbf{w^T}\mathbf{x_i} + b \ge 1$ if $y_i = 1$; $\mathbf{w^T}\mathbf{x_i} + b \le -1$ if $y_i = -1$

A better form

Objective: Find w and b such that $\Phi(w) = \frac{1}{2} w^T w$ is minimized;

Constraints: for all $\{(\mathbf{x}_i, y_i)\}$: $y_i (\mathbf{w}^T \mathbf{x}_i + b) \ge 1$

Solve QP

- This is now optimizing a *quadratic* function subject to *linear* constraints
- Quadratic optimization problems are a wellknown class of mathematical programming problem, and many (intricate) algorithms exist for solving them (with many special ones built for SVMs)
- The solution involves constructing a *dual* problem where a Lagrange multiplier α_i is associated with every constraint in the primary problem:

Lagrange Formulation

• Introducing Lagrange multipliers $\alpha_i \ge 0$ for each constraint

Minimize

$$L(\mathbf{w}, \mathbf{b}, \alpha) = \frac{1}{2} \mathbf{w}^{\mathsf{T}} \mathbf{w} - \sum_{i=1}^{N} \alpha_i (y_i (\mathbf{w}^{\mathsf{T}} \mathbf{x}_i + \mathbf{b}) - 1)$$

Take the partial derivatives w.r.t w, b:

$$\nabla_{\mathbf{w}} L = \mathbf{w} - \sum_{i=1}^{N} \alpha_i y_i \mathbf{x}_i = 0 \implies \mathbf{w} = \sum_{i=1}^{N} \alpha_i y_i \mathbf{x}_i$$
$$\frac{\partial L}{\partial b} = -\sum_{i=1}^{N} \alpha_i y_i = 0$$

Primal Form and Dual Form

Objective: Find w and b such that $\Phi(w) = \frac{1}{2} w^T w$ is minimized;

Primal

Constraints: for all $\{(\mathbf{x}_i, y_i)\}$: $y_i (\mathbf{w}^T \mathbf{x}_i + b) \ge 1$

Equivalent under some conditions; also w, b, α satisify KKT conditions

Objective: Find $\alpha_1 \dots \alpha_n$ such that $\mathbf{Q}(\alpha) = \Sigma \alpha_i - \frac{1}{2} \Sigma \Sigma \alpha_i \alpha_j y_i y_j \mathbf{x}_i^{\mathsf{T}} \mathbf{x}_j$ is maximized and

Dual

Constraints (1) $\Sigma \alpha_i y_i = 0$ (2) $\alpha_i \ge 0$ for all α_i

 More derivations: <u>http://cs229.stanford.edu/notes/cs229-notes3.pdf</u>

The Optimization Problem Solution

• The solution has the form:

 $\mathbf{w} = \sum \alpha_i y_i \mathbf{x}_i$ $b = y_k - \mathbf{w}^T \mathbf{x}_k$ for any \mathbf{x}_k such that $\alpha_k \neq 0$

- Each non-zero α_i indicates that corresponding \mathbf{x}_i is a support vector.
- Then the classifying function will have the form:

$$f(\mathbf{x}) = \sum \alpha_i y_i \mathbf{x_i}^{\mathrm{T}} \mathbf{x} + b$$

- Notice that it relies on an *inner product* between the test point x and the support vectors x_i
 - We will return to this later.
- Also keep in mind that solving the optimization problem involved computing the inner products x_i^Tx_j between all pairs of training points.

Soft Margin Classification

- If the training data is not linearly separable, slack variables ξ_i can be added to allow misclassification of difficult or noisy examples.
- Allow some errors
 - Let some points be moved to where they belong, at a cost
- Still, try to minimize training set errors, and to place hyperplane "far" from each class (large margin)

Soft Margin Classification Mathematically

• The old formulation:

Find w and b such that $\Phi(\mathbf{w}) = \frac{1}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w}$ is minimized and for all $\{(\mathbf{x}_{i}, y_{i})\}$ $y_{i} (\mathbf{w}^{\mathrm{T}} \mathbf{x}_{i} + \mathbf{b}) \ge 1$

• The new formulation incorporating slack variables:

Find w and b such that $\Phi(\mathbf{w}) = \frac{1}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w} + C \Sigma \xi_{i} \text{ is minimized and for all } \{(\mathbf{x}_{i}, y_{i})\}$ $y_{i} (\mathbf{w}^{\mathrm{T}} \mathbf{x}_{i} + b) \ge 1 - \xi_{i} \text{ and } \xi_{i} \ge 0 \text{ for all } i$

- Parameter C can be viewed as a way to control overfitting
 - A regularization term (L1 regularization)

Soft Margin Classification – Solution

• The dual problem for soft margin classification:

Find $\alpha_1 \dots \alpha_N$ such that $\mathbf{Q}(\mathbf{\alpha}) = \sum \alpha_i - \frac{1}{2} \sum \alpha_i \alpha_j y_i y_j \mathbf{x_i}^T \mathbf{x_j}$ is maximized and (1) $\sum \alpha_i y_i = 0$ (2) $0 \le \alpha_i \le C$ for all α_i

- Neither slack variables ξ_i nor their Lagrange multipliers appear in the dual problem!
- Again, \mathbf{x}_{i} with non-zero α_{i} will be support vectors.
 - If $0 < \alpha_i < C$, $\xi_i = 0$
 - If $\alpha_i = C$, $\xi_i > 0$
- Solution to the problem is:

 $\mathbf{w} = \sum \alpha_i y_i \mathbf{x}_i$ $b = y_k - \mathbf{w}^T \mathbf{x}_k$ for any \mathbf{x}_k such that $0 < \alpha_k < C$ **w** is not needed explicitly for classification!

$$f(\mathbf{x}) = \sum \alpha_i y_i \mathbf{x}_i^{\mathrm{T}} \mathbf{x} + b$$

A Different View of Soft Margin SVM

Hinge loss with regularization terms

•
$$\Phi(\mathbf{w}) = \frac{1}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w} + C \Sigma \xi_{i}$$

= $\frac{1}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w} + C \Sigma \max(0, 1 - y_{i} (\mathbf{w}^{\mathrm{T}} \mathbf{x}_{i} + b))$

L2 regularization

Hinge loss

Classification with SVMs

- Given a new point x, we can score its projection onto the hyperplane normal:
 - I.e., compute score: $\mathbf{w}^{\mathrm{T}}\mathbf{x} + b = \Sigma \alpha_{i} V_{i} \mathbf{x}_{i}^{\mathrm{T}}\mathbf{x} + b$
 - Decide class based on whether < or > 0

• Can set confidence threshold *t*.

Else: don't know

Linear SVMs: Summary

- The classifier is a *separating hyperplane*.
- The most "important" training points are the support vectors; they define the hyperplane.
- Quadratic optimization algorithms can identify which training points **x**_i are support vectors with non-zero Lagrangian multipliers α_i.
- Both in the dual formulation of the problem and in the solution, training points appear only inside inner products:

Find $\alpha_1 \dots \alpha_N$ such that $\mathbf{Q}(\boldsymbol{\alpha}) = \sum \alpha_i - \frac{1}{2} \sum \alpha_i \alpha_j y_i y_j \mathbf{x_i}^T \mathbf{x_j}$ is maximized and (1) $\sum \alpha_i y_i = 0$ (2) $0 \le \alpha_i \le C$ for all α_i

$$f(\mathbf{x}) = \sum \alpha_i y_i \mathbf{x_i^T x} + b$$

Support Vector Machine

- Introduction
- Linear SVM

•Non-linear SVM 🦊

- Scalability Issues*
- Summary

Non-linear SVMs

 Datasets that are linearly separable (with some noise) work out great:

But what are we going to do if the dataset is just too hard?

• How about ... mapping data to a higher-dimensional space:

Non-linear SVMs: Feature spaces

 General idea: the original feature space can always be mapped to some higherdimensional feature space where the

 $\Phi: \mathbf{x} \to \phi(\mathbf{x})$

training set is separable:

32

The "Kernel Trick"

- The linear classifier relies on an inner product between vectors K(x_i,x_j)=x_i^Tx_j
- If every data point is mapped into high-dimensional space via some transformation Φ: x → φ(x), the inner product becomes:

$$K(\mathbf{x}_i, \mathbf{x}_j) = \phi(\mathbf{x}_i)^{\mathsf{T}} \phi(\mathbf{x}_j)$$

• A *kernel function* is some function that corresponds to an inner product in some expanded feature space.

Example

- 2-dimensional vectors $\mathbf{x} = [x_1 \ x_2]$, let $K(\mathbf{x}_i, \mathbf{x}_j) = (1 + \mathbf{x}_i^T \mathbf{x}_j)^2$
- show that $K(\mathbf{x}_i, \mathbf{x}_j) = \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j)$:
 - $\mathcal{K}(\mathbf{x}_{i},\mathbf{x}_{j}) = (1 + \mathbf{x}_{i}^{\mathsf{T}}\mathbf{x}_{j})^{2} = 1 + x_{i1}^{2}x_{j1}^{2} + 2 x_{i1}x_{j1}x_{i2}x_{j2} + x_{i2}^{2}x_{j2}^{2} + 2x_{i1}x_{j1} + 2x_{i2}x_{j2} =$ $= [1 \ x_{i1}^{2} \ \sqrt{2} \ x_{i1}x_{i2} \ x_{i2}^{2} \ \sqrt{2}x_{i1} \ \sqrt{2}x_{i2}]^{\mathsf{T}} [1 \ x_{j1}^{2} \ \sqrt{2} \ x_{j1}x_{j2} \ x_{j2}^{2} \ \sqrt{2}x_{j1} \ \sqrt{2}x_{j2}]$ $= \varphi(\mathbf{x}_{i})^{\mathsf{T}}\varphi(\mathbf{x}_{j})$
 - where $\phi(\mathbf{x}) = [1 \ x_1^2 \ \sqrt{2} \ x_1 x_2 \ x_2^2 \ \sqrt{2} x_1 \ \sqrt{2} x_2]$

SVM: Different Kernel functions

- Instead of computing the dot product on the transformed data, it is math. equivalent to applying a kernel function K(X_i, X_j) to the original data, i.e., K(X_i, X_j) = Φ(X_i)^TΦ(X_j)
- Typical Kernel Functions

Polynomial kernel of degree h: $K(X_i, X_j) = (X_i \cdot X_j + 1)^h$ Gaussian radial basis function kernel : $K(X_i, X_j) = e^{-||X_i - X_j||^2/2\sigma^2}$ Sigmoid kernel : $K(X_i, X_j) = \tanh(\kappa X_i \cdot X_j - \delta)$

 *SVM can also be used for classifying multiple (> 2) classes and for regression analysis (with additional parameters)

Non-linear SVM

- Replace inner-product with kernel functions
 - Optimization problem

Find $\alpha_1 \dots \alpha_N$ such that $\mathbf{Q}(\mathbf{\alpha}) = \sum \alpha_i - \frac{1}{2} \sum \alpha_i \alpha_j y_i y_j \mathbf{K}(\mathbf{x_i, x_j})$ is maximized and (1) $\sum \alpha_i y_i = 0$ (2) $0 \le \alpha_i \le C$ for all α_i

Decision boundary

$$f(\mathbf{x}) = \sum \alpha_i y_i \mathbf{K}(\mathbf{x_i}, \mathbf{x}) + b$$

Support Vector Machine

- Introduction
- Linear SVM
- Non-linear SVM
- Scalability Issues*
- Summary

*Scaling SVM by Hierarchical Micro-Clustering

- SVM is not scalable to the number of data objects in terms of training time and memory usage
- H. Yu, J. Yang, and J. Han, "<u>Classifying Large Data Sets Using SVM with</u> <u>Hierarchical Clusters</u>", KDD'03)
- CB-SVM (Clustering-Based SVM)
 - Given limited amount of system resources (e.g., memory), maximize the SVM performance in terms of accuracy and the training speed
 - Use micro-clustering to effectively reduce the number of points to be considered
 - At deriving support vectors, de-cluster micro-clusters near "candidate vector" to ensure high classification accuracy

*CF-Tree: Hierarchical Micro-cluster

- Read the data set once, construct a statistical summary of the data (i.e., hierarchical clusters) given a limited amount of memory
- Micro-clustering: Hierarchical indexing structure

Positive clusters

Negative clusters

 provide finer samples closer to the boundary and coarser samples farther from the boundary

*Selective Declustering: Ensure High Accuracy

- CF tree is a suitable base structure for selective declustering
- De-cluster only the cluster E_i such that
 - D_i R_i < D_s, where D_i is the distance from the boundary to the center point of E_i and R_i is the radius of E_i
 - Decluster only the cluster whose subclusters have possibilities to be the support cluster of the boundary
 - "Support cluster": The cluster whose centroid is a support vector

*CB-SVM Algorithm: Outline

- Construct two CF-trees from positive and negative data sets independently
 - Need one scan of the data set
- Train an SVM from the centroids of the root entries
- De-cluster the entries near the boundary into the next level
 - The children entries de-clustered from the parent entries are accumulated into the training set with the non-declustered parent entries
- Train an SVM again from the centroids of the entries in the training set
- Repeat until nothing is accumulated

*Accuracy and Scalability on Synthetic Dataset

Figure 6: Synthetic data set in a two-dimensional space. '|': positive data; '-': negative data

 Experiments on large synthetic data sets shows better accuracy than random sampling approaches and far more scalable than the original SVM algorithm

Support Vector Machine

- Introduction
- Linear SVM
- Non-linear SVM
- Scalability Issues*

Summary

- Support Vector Machine
 - Linear classifier; support vectors; kernel SVM

SVM Related Links

- SVM Website: <u>http://www.kernel-machines.org/</u>
- Representative implementations
 - **LIBSVM**: an efficient implementation of SVM, multi-class classifications, nu-SVM, one-class SVM, including also various interfaces with java, python, etc.
 - **SVM-light:** simpler but performance is not better than LIBSVM, support only binary classification and only in C
 - **SVM-torch**: another recent implementation also written in C
- From classification to regression and ranking:
 - http://www.dainf.ct.utfpr.edu.br/~kaestner/Mineracao/hwanjoyusvmtutorial.pdf

• Objective with equality constraints $\min_{w} f(w)$ s.t. $h_i(w) = 0, for \ i = 1, 2, ..., l$

• Lagrangian:

• $L(w, \boldsymbol{\alpha}) = f(w) + \sum_{i} \alpha_{i} h_{i}(w)$

• α_i : Lagrangian multipliers

 Solution: setting the derivatives of Lagrangian to be 0

•
$$\frac{\partial L}{\partial w} = 0$$
 and $\frac{\partial L}{\partial \alpha_i} = 0$ for every i

Generalized Lagrangian

Objective with both equality and inequality constraints

$$\min_{w} f(w)$$

s.t.
 $h_i(w) = 0, for \ i = 1, 2, ..., l$
 $g_j(w) \le 0, for \ j = 1, 2, ..., k$

- Lagrangian
 - $L(w, \boldsymbol{\alpha}, \boldsymbol{\beta}) = f(w) + \sum_{i} \alpha_{i} h_{i}(w) + \sum_{j} \beta_{j} g_{j}(w)$
 - α_i : Lagrangian multipliers
 - $\beta_j \ge 0$: Lagrangian multipliers

Why It Works

Consider function

$$\theta_p(w) = \max_{\alpha,\beta:\beta_j \ge 0} L(w, \alpha, \beta)$$

• $\theta_p(w) = \begin{cases} f(w), & \text{if } w \text{ satisfies all constraints} \\ \infty, & \text{if } w \text{ doesn't satisfy constraints} \end{cases}$

• Therefore, minimize f(w) with constraints is equivalent to minimize $\theta_p(w)$

Lagrange Duality

• The primal problem $p^* = \min_{\substack{w \ \alpha, \beta: \beta_j \ge 0}} L(w, \alpha, \beta)$

The dual problem

$$d^* = \max_{\alpha,\beta:\beta_j \ge 0} \min_{w} L(w, \alpha, \beta)$$

• According to max-min inequality $p^* \leq d^*$

• When does equation hold?

Primal = Dual

- $p^* = d^*$, under some proper condition (Slater conditions)
 - f, g_j convex, h_i affine
 - Exists *w*, such that all $g_j(w) < 0$
- (w^*, α^*, β^*) need to satisfy KKT conditions
 - $\bullet \frac{\partial L}{\partial w} = 0$
 - $\bullet \beta_j g_j(w) = 0$
 - $h_i(w) = 0, g_j(w) \le 0, \beta_j \ge 0$