CS145: INTRODUCTION TO DATA
MINING

6: Vector Data: Neural Network

Instructor: Yizhou Sun

yzsun@cs.ucla.edu

October 21, 2018

mailto:yzsun@cs.ucla.edu

Methods to Learn: Last Lecture

_ Vector Data Set Data Sequence Data Text Data

Classification

Clustering

Prediction

Frequent Pattern
Mining

Similarity Search

Logistic Regression;
Decision Tree; KNN
SVM; NN

K-means; hierarchical
clustering; DBSCAN;
Mixture Models

Linear Regression
GLM*

Naive Bayes for Text

PLSA

Apriori; FP growth GSP; PrefixSpan

DTW

Methods to Learn
| |VectorData [SetData |SequenceData |TextData

Classification Logistic Regression; Naive Bayes for Text
Decision Tree; KNN
SVM; NN

Clustering K-means; hierarchical PLSA

clustering; DBSCAN;
Mixture Models

Prediction Linear Regression
GLM*
Frequent Pattern Apriori; FP growth GSP; PrefixSpan
Mining
Similarity Search DTW

Neural Network

- Introduction &
- Multi-Layer Feed-Forward Neural Network

Summary

Artificial Neural Networks

 Consider humans:
» Neuron switching time ~.001 second
 Number of neurons ~ 101"
- Connections per neuron ~ 104>

» Scene recognition time .1 second

100 mference steps doesn't seem like enough -> parallel
computation

- Artificial neural networks
« Many neuron-like threshold switching units
» Many weighted interconnections among units
» Highly parallel, distributed process
- Emphasis on tuning weights automatically

Single Unit: Perceptron

Bias: b
X]_ W1
X2 ‘\IA\I'Z | f
output o
Xy W

- For example:

Input weight weighted Activation ;- Sign(z w;x; + b)
vector x vector w sum function j

- An n-dimensional input vector x is mapped into variable y by means of the scalar
product and a nonlinear function mapping

Neural Network

*Introduction
- Multi-Layer Feed-Forward Neural Networéf

Summary

A Multi-Layer Feed-Forward Neural Network

A two-layer network
Output vector

Output layer
y = gW®h + p@)

Hidden layer h=f(W®Dx + pD)

\ / Bias term
Input layer Weight matrix

Nonlinear transformation,
|nput vector: x e.g. sigmoid transformation

Sigmoid Unit

»()
net = 2 w- x» |
=0 '

0 = O(net) = —
| +e

1
00';36) = isa sigmoid function
e rroperty: do(x
Pt Aokl — o(2)(1 - o(x))

» Will be used 1n learning

Activation Functions

Hame

Identity

Einaryv step

Logistic fa.

Soft step)

Tard

ArcTan

Rectified
Linear Umit
{Rell)

Parameteric
Fectified
Linear Orit
(PReLI) 2]

Exponential
Linsar Umnit
(ELIT) [3]

SoftFPlus

Plot

Equation

fla)=z

0 for =<0
f(:r}={ 1 for >0

1
f@) = 0=

T) = tanh ——2

f(x) = tanh(x) = 5= —

f(x) = tan™'(x)

] 0 for <0
f(I}_{;r for >0

| ax for <0
f(I}—{ x for >0

| a(e* —1) for <0
f(I}_{ x for >0

f(x) = log.(1+ ¢€")

Derivative
ff(x)=1
y ~J 0 for x#0
f(”r}l/\x:j{ ?7 for =0

f'() = f(x)(1 - f(z))

fi(x)=1- f(x)’

1
r2+1

fl(z) =

y _J 0 for x<0
f{.r}—{ 1 for x>0

y | a for x<0
f(I}_{ 1 for >0

r@={70" o

1
l14+e =

fi(x) =

How A Multi-Layer Neural Network Works

« The inputs to the network correspond to the attributes measured for each
training tuple

» Inputs are fed simultaneously into the units making up the input layer
» They are then weighted and fed simultaneously to a hidden layer
* The number of hidden layers 1s arbitrary

- The weighted outputs of the last hidden layer are input to units making up
the output layer, which emits the network's prediction

» The network is feed-forward: None of the weights cycles back to an input
unit or to an output unit of a previous layer

« From a math point of view, networks perform nonlinear regression: Given
enough hidden units and enough training samples, they can closely
approximate any continuous function

11

Defining a Network Topology

- Decide the network topology: Specify # of units in the input layer,
of hidden layers (if > 1), # of units in each hidden layer, and # of
units in the output layer

- Normalize the input values for each attribute measured in the
training tuples

« Output, if for classification and more than two classes, one
output unit per class is used

» Once a network has been trained and its accuracy is
unacceptable, repeat the training process with a different
network topology or a different set of initial weights

12

Learning by Backpropagation

- Backpropagation: A neural network learning algorithm

- Started by psychologists and neurobiologists to develop and test
computational analogues of neurons

 During the learning phase, the network learns by adjusting the
weights so as to be able to predict the correct class label of the
input tuples

- Also referred to as connectionist learning due to the

connections between units

13

Backpropagation

- |teratively process a set of training tuples & compare the

network's prediction with the actual known target value

 For each training tuple, the weights are modified to minimize the
loss function between the network's prediction and the actual

target value, say mean squared error

» Stochastic gradient descent + chain rule

- Modifications are made in the “backwards” direction: from the
output layer, through each hidden layer down to the first hidden

layer, hence “backpropagation”

14

Example of Loss Functions

*Hinge loss

- Logistic loss
*Cross-entropy loss
-square error loss
-absolute error loss

15

A Special Case

- Activation function: Sigmoid

46

» Loss function: square error loss

] = %Zj(Tj — Oj)z, forj in output layer
T;: true value of output unit j;
O;: output value

16

Backpropagation Steps to Learn Weights

 Imitialize weights to small random numbers, associated with biases

« Repeat until terminating condition meets

* For each training example

* Propagate the inputs forward (by applying activation function)
* For a hidden or output layer unit j
* Calculate netinput: [; = Y; w;;0; + 6;

1
1+e i
* Backpropagate the error (by updating weights and biases)

* Calculate output of unit j: 0; = U(Ij) =

* For unit j in output layer: Err; = Oj(l — Oj)(Tj — Oj)

* For unit j in a hidden layer: Err; = Oj(l — Oj) Yk Errewiy
* Update weights: w;; = w;; + nErT;0;

* Update bias: 0; = 6; + nErr;

» Termiating condition (when error 1s very small, etc.)

17

More on the output layer unit

*Recall:
1 =33, - 0)", 0j = o (X wi; 0; +6))

*Chain rule of first derivation

o] 98] 90

= = —(T: — 0,)0:(1 — 0,)0;
an'j 00] aWU (J 0])0](1 0])01
a] . a] aO] Denoted a

a_ej_aajaejz_(T 0; 0‘(1—0)

18

More on the hidden layer unit j

* Let i, j, k denote units in input layer, hidden layer, and
output layer, respectively

J= %Zk(Tk — 0%, O = U(Zj Wik 0; + 91{); 0j = o(X;wij 0; + 6)

« Chain rule of first derivation
3] 9] 80, 90

aWij B 7 aOR 601 aWU

= = > (T = 00,1 = 0w 0;(1 - 0))0,

Z C——— 17 : Already computed in the output layer!

Err;
0] _ 00y 00
Note: 52~ = — (T — 0,(),6—0’1‘_ = 0,(1 - Ok)wjk,mfj = 0;(1 - 0))0;
9, d] 00, 00;
J _ J 2 = _Err,

06; £400, 00; 99, J

19

Example

i |

Ira

A multilayer feed-forward neural network

T3 W4 Wik Woy W5 W34 Wwas W4e Wwse B4 B Hg

1

1 0.2 —0.3 04 0.1 —0.5 0.2 —-03 —-02 -04 02 01

Initial Input, weight, and bias values

20

Example: Forward Pass

- Forward computation:

Table 9.2: The net input and output calculations.

Unit j Net input, I; Output, O

4 02+0-05-—04= 0.7 1/(1+e"7) = 0.332
5 0340402+402=0.1 1/(14e %) =0.525
6 (—0.3)(0.332) — (0.2)(0.525) + 0.1 = —0.105 1/(1+ "'%%) = 0.474

Calculate netinput: I; = X, w;;0; + 0;

1
1+e i

Calculate output of unit j: 0; = a(I]-) =

Ty T2 T3 Wi4 Wik Wod Was W34 Was W4 Wse 64 fs B
1 0 1 0.2 —0.3 04 0.1 —0.5 0.2 —0.3 —-0.2 —-04 02 0.1

21

Example: backpropagation

* Error backpropagation and weight update:

Table 0.3: Caleulation of the error at each node.
Unit j Erry

6 (0.474)(1 — 0.474)(1 — 0.474) = 0.1311
5 (0.525)(1 — 0.525)(0.1311)(—0.2) = —0.0065 : B
4 (0.332)(1 — 0.332)(0.1311)(—0.3) = —0.0087 CoSWIMing Te =1

For unit j in output layer: Err; = 0]-(1 — Oj)(Tj — 0]-)
For unit j in a hidden layer: Err; = 0;(1 — 0;) X, Erriwjy

Table 9.4: Calculations for weight and bias updating.
Weight or bias New value

Wag —0.3 + (0.9)(0.1311)(0.332) = —0.261 assumingn = 0.9
wse —0.2 + (0.9)(0.1311)(0.525) = —0.138
wia 0.2 + (0.9)(—0.0087)(1) = 0.192

wys —0.3 + (0.9)(—0.0065)(1) = —0.306
way 0.4 4 (0.9)(—0.0087)(0) = 0.4

was 0.1+ (0.9)(—0.0065)(0) = 0.1

wWa4 —0.5 + (0.9)(—0.0087)(1) = —0.508
was 0.2 4 (0.9)(—0.0065)(1) = 0.194

fe 0.1+ (0.9)(0.1311) = 0.218

05 0.2 + (0.9)(—0.0065) = 0.194

Bs —0.4+ (0.9)(—0.0087) = —0.408

Update weights: w;; = w;; + nErr;0; ; Update bias: 0; = 6; + nErr;

Efficiency and Interpretability

- Efficiency of backpropagation: Each iteration through the training set takes
O(|D]| * w), with |D| tuples and w weights, but # of iterations can be
exponential to n, the number of inputs, in worst case

- For easier comprehension: Rule extraction by network pruning*

« Simplify the network structure by removing weighted links that have the least

effect on the tramned network
» Then perform link, unit, or activation value clustering

 The set of iInput and activation values are studied to derive rules describing the

relationship between the input and hidden unit layers

- Sensitivity analysis: assess the impact that a given input variable has on a
network output. The knowledge gained from this analysis can be represented
in rules

« E.g., It x decreases 5% then y mcreases 8%

23

Neural Network as a Classifier

- Weakness
 Long traimning time

» Require a number of parameters typically best determined empirically,
e.g., the network topology or “structure.”

« Poor interpretability: Difficult to interpret the symbolic meaning
behind the learned weights and of “hidden units” 1in the network

- Strength
« High tolerance to noisy data
 Successtul on an array of real-world data, e.g., hand-written letters
 Algorithms are mherently parallel

 Techniques have recently been developed for the extraction of rules

from traimned neural networks

* Deep neural network 1s powertul

24

Digits Recognition Example

- Obtain sequence of digits by segmentation

S04/ 92
&

SO/ |9|#

-Recognition (our focus)

> =5

Digits Recognition Example

* The architecture of the used neural network

- What each neurons are doing?
O = * " s
Input image Activated neurons detecting image parts

-

Predicted number

26

Towards Deep Learning*

Deep neural network

) hidden layer 1 hidden laver 2 hidden layver 3
input laver

S
%fﬁﬁiﬂ-”
_q,'..‘,

dit A8
BELSCIN
NEERT =

[AN e
fempol

27

Further References

*3BluelBrown NN series:
https://www.youtube.com/watch?v=aircAruv
NKk&I|ist=PLZHQObOWTQDNUG6R1 67000Dx
/CJB-3pi

*Deep Learning

e http://neuralnetworksanddeeplearning.com/

e http://www.deeplearningbook.org/

o http://www.charuagearwal.net/neural.htm

28

https://www.youtube.com/watch?v=aircAruvnKk&list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi
http://neuralnetworksanddeeplearning.com/
http://www.deeplearningbook.org/
http://www.charuaggarwal.net/neural.htm

Neural Network

*Introduction
- Multi-Layer Feed-Forward Neural Network

-Summary &

29

Summary

*Neural Network

» Feed-forward neural networks; activation
function; loss tunction; backpropagation

30

	CS145: Introduction to Data Mining
	Methods to Learn: Last Lecture
	Methods to Learn
	Neural Network
	Artificial Neural Networks
	Single Unit: Perceptron
	Neural Network
	A Multi-Layer Feed-Forward Neural Network
	Sigmoid Unit
	Activation Functions
	How A Multi-Layer Neural Network Works
	Defining a Network Topology
	Learning by Backpropagation
	Backpropagation
	Example of Loss Functions
	A Special Case
	Backpropagation Steps to Learn Weights
	More on the output layer unit j
	More on the hidden layer unit j
	Example
	Example: Forward Pass
	Example: backpropagation
	Efficiency and Interpretability
	Neural Network as a Classifier
	Digits Recognition Example
	Digits Recognition Example
	Towards Deep Learning*
	Further References
	Neural Network
	Summary

