CS145: INTRODUCTION TO DATA MINING

6: Vector Data: Neural Network

Instructor: Yizhou Sun

yzsun@cs.ucla.edu

October 21, 2018

Methods to Learn: Last Lecture

	Vector Data	Set Data	Sequence Data	Text Data
Classification	Logistic Regression; Decision Tree; KNN SVM; NN			Naïve Bayes for Text
Clustering	K-means; hierarchical clustering; DBSCAN; Mixture Models			PLSA
Prediction	Linear Regression GLM*			
Frequent Pattern Mining		Apriori; FP growth	GSP; PrefixSpan	
Similarity Search			DTW	

Methods to Learn

	Vector Data	Set Data	Sequence Data	Text Data
Classification	Logistic Regression; Decision Tree; KNN SVM; NN			Naïve Bayes for Text
Clustering	K-means; hierarchical clustering; DBSCAN; Mixture Models			PLSA
Prediction	Linear Regression GLM*			
Frequent Pattern Mining		Apriori; FP growth	GSP; PrefixSpan	
Similarity Search			DTW	

Neural Network

- Multi-Layer Feed-Forward Neural Network
- Summary

Artificial Neural Networks

- Consider humans:
 - Neuron switching time ~.001 second
 - Number of neurons $\sim 10^{10}$
 - Connections per neuron $^{\sim}10^{4-5}$
 - Scene recognition time ~.1 second
 - 100 inference steps doesn't seem like enough -> parallel computation

Artificial neural networks

- Many neuron-like threshold switching units
- Many weighted interconnections among units
- Highly parallel, distributed process
- Emphasis on tuning weights automatically

Single Unit: Perceptron

 An *n*-dimensional input vector **x** is mapped into variable y by means of the scalar product and a nonlinear function mapping

Neural Network

Introduction

Multi-Layer Feed-Forward Neural Network

Summary

A Multi-Layer Feed-Forward Neural Network

Sigmoid Unit

•
$$\sigma(x) = \frac{1}{1+e^{-x}}$$
 is a sigmoid function
• Property: $\frac{d\sigma(x)}{dx} = \sigma(x)(1 - \sigma(x))$

• Will be used in learning

Activation Functions

Name	Plot	Equation	Derivative
Identity		f(x) = x	f'(x) = 1
Binary step		$f(x) = \begin{cases} 0 & \text{for } x < 0\\ 1 & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} 0 & \text{for } x \neq 0 \\ ? & \text{for } x = 0 \end{cases}$
Logistic (a.k.a Soft step)		$f(x) = \frac{1}{1 + e^{-x}}$	f'(x) = f(x)(1 - f(x))
TanH		$f(x) = \tanh(x) = \frac{2}{1 + e^{-2x}} - 1$	$f'(x) = 1 - f(x)^2$
ArcTan		$f(x) = \tan^{-1}(x)$	$f'(x) = \frac{1}{x^2 + 1}$
Rectified Linear Unit (ReLU)		$f(x) = \begin{cases} 0 & \text{for } x < 0\\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} 0 & \text{for } x < 0\\ 1 & \text{for } x \ge 0 \end{cases}$
Parameteric Rectified Linear Unit (PReLU) ^[2]		$f(x) = \begin{cases} \alpha x & \text{for } x < 0\\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} \alpha & \text{for } x < 0\\ 1 & \text{for } x \ge 0 \end{cases}$
Exponential Linear Unit (ELU) ^[3]		$f(x) = \begin{cases} \alpha(e^x - 1) & \text{for } x < 0\\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} f(x) + \alpha & \text{for } x < 0\\ 1 & \text{for } x \ge 0 \end{cases}$
SoftPlus		$f(x) = \log_e(1 + e^x)$	$f'(x) = \frac{1}{1 + e^{-x}}$

How A Multi-Layer Neural Network Works

- The inputs to the network correspond to the attributes measured for each training tuple
- Inputs are fed simultaneously into the units making up the **input layer**
- They are then weighted and fed simultaneously to a hidden layer
 - The number of hidden layers is arbitrary
- The weighted outputs of the last hidden layer are input to units making up the **output layer**, which emits the network's prediction
- The network is **feed-forward**: None of the weights cycles back to an input unit or to an output unit of a previous layer
- From a math point of view, networks perform nonlinear regression: Given enough hidden units and enough training samples, they can closely approximate any continuous function

Defining a Network Topology

- Decide the network topology: Specify # of units in the input layer, # of hidden layers (if > 1), # of units in each hidden layer, and # of units in the output layer
- Normalize the input values for each attribute measured in the training tuples
- Output, if for classification and more than two classes, one output unit per class is used
- Once a network has been trained and its accuracy is unacceptable, repeat the training process with a different network topology or a different set of initial weights

Learning by Backpropagation

- Backpropagation: A neural network learning algorithm
- Started by psychologists and neurobiologists to develop and test computational analogues of neurons
- During the learning phase, the network learns by adjusting the weights so as to be able to predict the correct class label of the input tuples
- Also referred to as connectionist learning due to the connections between units

Backpropagation

- Iteratively process a set of training tuples & compare the network's prediction with the actual known target value
- For each training tuple, the weights are modified to minimize the loss function between the network's prediction and the actual target value, say mean squared error
 - Stochastic gradient descent + chain rule
- Modifications are made in the "backwards" direction: from the output layer, through each hidden layer down to the first hidden layer, hence "backpropagation"

Example of Loss Functions

- Hinge loss
- Logistic loss
- Cross-entropy loss
- square error loss
- absolute error loss

A Special Case

Activation function: Sigmoid

Loss function: square error loss

 $J = \frac{1}{2} \sum_{j} (T_{j} - O_{j})^{2}, \text{ for } j \text{ in output layer}$ $T_{j}: true \text{ value of output unit } j;$ $O_{j}: output \text{ value}$

Backpropagation Steps to Learn Weights

- Initialize weights to small random numbers, associated with biases
- **Repeat** until terminating condition meets
 - For each training example
 - Propagate the inputs forward (by applying activation function)
 - For a hidden or output layer unit *j*
 - Calculate net input: $I_j = \sum_i w_{ij} O_i + \theta_j$
 - Calculate output of unit $j: O_j = \sigma(I_j) = \frac{1}{1+e^{-I_j}}$
 - Backpropagate the error (by updating weights and biases)
 - For unit j in output layer: $Err_j = O_j(1 O_j)(T_j O_j)$
 - For unit j in a hidden layer: $Err_j = O_j(1 O_j)\sum_k Err_k w_{jk}$
 - Update weights: $w_{ij} = w_{ij} + \eta Err_j O_i$
 - Update bias: $\theta_j = \theta_j + \eta Err_j$
- Terminating condition (when error is very small, etc.)

More on the output layer unit j

• Recall:

$$J = \frac{1}{2} \sum_{j} (T_j - O_j)^2, O_j = \sigma(\sum_{i} w_{ij} O_i + \theta_j)$$

Chain rule of first derivation

$$\frac{\partial J}{\partial w_{ij}} = \frac{\partial J}{\partial O_j} \frac{\partial O_j}{\partial w_{ij}} = -(T_j - O_j)O_j(1 - O_j)O_i$$
$$\frac{\partial J}{\partial \theta_j} = \frac{\partial J}{\partial O_j} \frac{\partial O_j}{\partial \theta_j} = -(T_j - O_j)O_j(1 - O_j)$$

More on the hidden layer unit j

 Let i, j, k denote units in input layer, hidden layer, and output layer, respectively

$$J = \frac{1}{2} \sum_{k} (T_k - O_k)^2, O_k = \sigma \left(\sum_{j} w_{jk} O_j + \theta_k \right), O_j = \sigma \left(\sum_{i} w_{ij} O_i + \theta_j \right)$$

• Chain rule of first derivation

$$\frac{\partial J}{\partial w_{ij}} = \sum_{k} \frac{\partial J}{\partial O_{k}} \frac{\partial O_{k}}{\partial O_{j}} \frac{\partial O_{j}}{\partial w_{ij}}$$

$$= -\sum_{k} (T_{k} - O_{k})O_{k}(1 - O_{k})w_{jk}O_{j}(1 - O_{j})O_{i}$$

$$Err_{k}: \text{ Already computed in the output layer!}$$

$$\frac{Err_{j}}{BO_{k}} = -(T_{k} - O_{k}), \frac{\partial O_{k}}{\partial O_{j}} = O_{k}(1 - O_{k})w_{jk}, \frac{\partial O_{j}}{\partial w_{ij}} = O_{j}(1 - O_{j})O_{i}$$

$$\frac{\partial J}{\partial \theta_j} = \sum_k \frac{\partial J}{\partial O_k} \frac{\partial O_k}{\partial O_j} \frac{\partial O_j}{\partial \theta_j} = -Err_j$$

Example

A multilayer feed-forward neural network

x_1	x_2	x_3	w_{14}	w_{15}	w_{24}	w_{25}	w_{34}	w_{35}	w_{46}	w_{56}	θ_4	θ_5	θ_6
1	0	1	0.2	-0.3	0.4	0.1	-0.5	0.2	-0.3	-0.2	-0.4	0.2	0.1

Initial Input, weight, and bias values

Example: Forward Pass

• Forward computation:

Table 9.2: The net input and output calculations.

Unit j	Net input, I_j	$Output, O_j$
4	0.2 + 0 - 0.5 - 0.4 = -0.7	$1/(1+e^{0.7})=0.332$
5	-0.3 + 0 + 0.2 + 0.2 = 0.1	$1/(1 + e^{-0.1}) = 0.525$
6	(-0.3)(0.332) - (0.2)(0.525) + 0.1 = -0.105	$1/(1+e^{0.105})=0.474$

Calculate net input: $I_i = \sum_i w_{ij} O_i + \Theta_j$

Calculate output of unit
$$j\colon oldsymbol{O}_j=\sigma(I_j)=rac{1}{1+e^{-I_j}}$$

x_1	x_2	x_3	w_{14}	w_{15}	w_{24}	w_{25}	w_{34}	w_{35}	w_{46}	w_{56}	$ heta_4$	θ_5	θ_6
1	0	1	0.2	-0.3	0.4	0.1	-0.5	0.2	-0.3	-0.2	-0.4	0.2	0.1

Example: backpropagation

• Error backpropagation and weight update:

Table	9.3:	Calculation	of	the	error	$^{\rm at}$	each	node.	
Unit i	\mathbf{F}								

Critte J	Eng
6	(0.474)(1 - 0.474)(1 - 0.474) = 0.1311
5	(0.525)(1 - 0.525)(0.1311)(-0.2) = -0.0065
4	(0.332)(1 - 0.332)(0.1311)(-0.3) = -0.0087

assuming $T_6 = 1$

For unit *j* in output layer: $Err_j = O_j(1 - O_j)(T_j - O_j)$

For unit *j* in a hidden layer: $Err_j = O_j(1 - O_j)\sum_k Err_k w_{jk}$

weight or bias	New value	
w_{46}	-0.3 + (0.9)(0.1311)(0.332) = -0.261	assuming $n = 0.9$
w_{56}	-0.2 + (0.9)(0.1311)(0.525) = -0.138	
w_{14}	0.2 + (0.9)(-0.0087)(1) = 0.192	
w_{15}	-0.3 + (0.9)(-0.0065)(1) = -0.306	
w_{24}	0.4 + (0.9)(-0.0087)(0) = 0.4	
w_{25}	0.1 + (0.9)(-0.0065)(0) = 0.1	
w_{34}	-0.5 + (0.9)(-0.0087)(1) = -0.508	
w_{35}	0.2 + (0.9)(-0.0065)(1) = 0.194	
θ_6	0.1 + (0.9)(0.1311) = 0.218	
θ_5	0.2 + (0.9)(-0.0065) = 0.194	
θ_A	-0.4 + (0.9)(-0.0087) = -0.408	

Table 9.4: Calculations for weight and bias updating.

Update weights: $w_{ij} = w_{ij} + \eta Err_j O_i$; Update bias: $\theta_j = \theta_j + \eta Err_j$

Efficiency and Interpretability

- <u>Efficiency</u> of backpropagation: Each iteration through the training set takes O(|D| * w), with |D| tuples and w weights, but # of iterations can be exponential to n, the number of inputs, in worst case
- For easier comprehension: <u>Rule extraction</u> by network pruning*
 - Simplify the network structure by removing weighted links that have the least effect on the trained network
 - Then perform link, unit, or activation value clustering
 - The set of input and activation values are studied to derive rules describing the relationship between the input and hidden unit layers
- <u>Sensitivity analysis</u>: assess the impact that a given input variable has on a network output. The knowledge gained from this analysis can be represented in rules
 - E.g., If x decreases 5% then y increases 8%

Neural Network as a Classifier

Weakness

- Long training time
- Require a number of parameters typically best determined empirically, e.g., the network topology or "structure."
- Poor interpretability: Difficult to interpret the symbolic meaning behind the learned weights and of "hidden units" in the network
- Strength
 - High tolerance to noisy data
 - Successful on an array of real-world data, e.g., hand-written letters
 - Algorithms are inherently parallel
 - Techniques have recently been developed for the extraction of rules from trained neural networks
 - Deep neural network is powerful

Digits Recognition Example

Obtain sequence of digits by segmentation

Recognition (our focus)

5 🔿 5

Digits Recognition Example

• The architecture of the used neural network

Towards Deep Learning*

Deep neural network

Further References

- 3Blue1Brown NN series: <u>https://www.youtube.com/watch?v=aircAruv</u> <u>nKk&list=PLZHQObOWTQDNU6R1_67000Dx</u> <u>ZCJB-3pi</u>
- Deep Learning
 - <u>http://neuralnetworksanddeeplearning.com/</u>
 - <u>http://www.deeplearningbook.org/</u>
 - <u>http://www.charuaggarwal.net/neural.htm</u>

Neural Network

Introduction

Multi-Layer Feed-Forward Neural Network

Neural Network

• Feed-forward neural networks; activation function; loss function; backpropagation