CS145: INTRODUCTION TO DATA MINING

7: Vector Data: K Nearest Neighbor

Instructor: Yizhou Sun

yzsun@cs.ucla.edu

October 23, 2018

Methods to Learn: Last Lecture

	Vector Data	Set Data	Sequence Data	Text Data
Classification	Logistic Regression; Decision Tree; KNN SVM; NN			Naïve Bayes for Text
Clustering	K-means; hierarchical clustering; DBSCAN; Mixture Models			PLSA
Prediction	Linear Regression GLM*			
Frequent Pattern Mining		Apriori; FP growth	GSP; PrefixSpan	
Similarity Search			DTW	

Methods to Learn

	Vector Data	Set Data	Sequence Data	Text Data
Classification	Logistic Regression; Decision Tree; KNN SVM; NN			Naïve Bayes for Text
Clustering	K-means; hierarchical clustering; DBSCAN; Mixture Models			PLSA
Prediction	Linear Regression GLM*			
Frequent Pattern Mining		Apriori; FP growth	GSP; PrefixSpan	
Similarity Search			DTW	

K Nearest Neighbor

- Introduction
- kNN
- Similarity and Dissimilarity
- Summary

Lazy vs. Eager Learning

- Lazy vs. eager learning
 - Lazy learning (e.g., instance-based learning): Simply stores training data (or only minor processing) and waits until it is given a test tuple
 - **Eager learning** (the above discussed methods): Given a set of training tuples, constructs a classification model before receiving new (e.g., test) data to classify
- Lazy: less time in training but more time in predicting
- Accuracy
 - Lazy method effectively uses a richer hypothesis space since it uses many local linear functions to form an implicit global approximation to the target function
 - Eager: must commit to a single hypothesis that covers the entire instance space

Lazy Learner: Instance-Based Methods

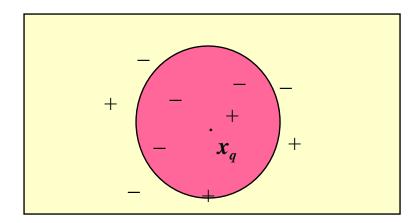
- Instance-based learning:
 - Store training examples and delay the processing ("lazy evaluation") until a new instance must be classified
- Typical approaches
 - <u>k-nearest neighbor approach</u>
 - Instances represented as points in, e.g., a Euclidean space.
 - <u>Locally weighted regression</u>
 - Constructs local approximation

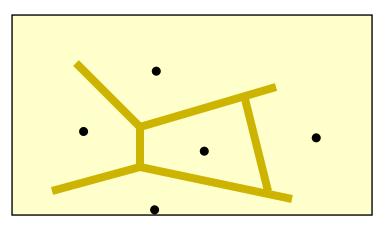
K Nearest Neighbor

- Introduction
- kNN 🖊
- Similarity and Dissimilarity
- Summary

The k-Nearest Neighbor Algorithm

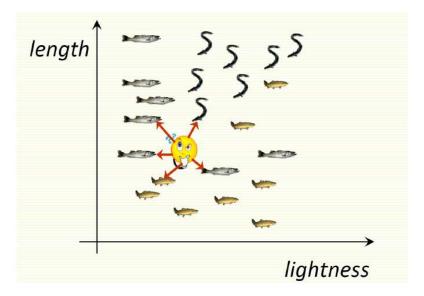
- All instances correspond to points in the n-D space
- The nearest neighbor are defined in terms of a distance measure, dist(X₁, X₂)
- Target function could be discrete- or real- valued
- For discrete-valued, k-NN returns the most common value among the k training examples nearest to x_q
- Vonoroi diagram: the decision surface induced by 1-NN for a typical set of training examples





kNN Example

X = (length, lightness)
Classes = {salmon, sea bass, eel}
Task: Identify fish given its (length, lightness)



K = 5: 3 sea bass, 1 eel, 1 salmon \Rightarrow sea bass

kNN Algorithm Summary

Choose K

• For a given new instance X_{new} , find K closest training points w.r.t. a distance measure

• Classify X_{new} = majority vote among the K points

Discussion on the k-NN Algorithm

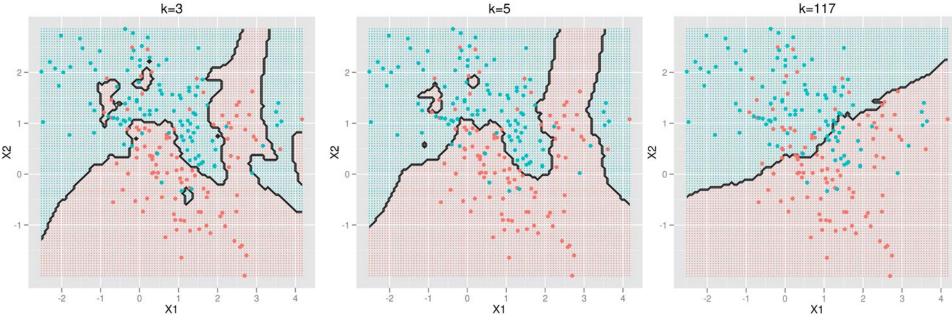
- k-NN for <u>real-valued prediction</u> for a given unknown tuple
 - Returns the mean values of the k nearest neighbors
- Distance-weighted nearest neighbor algorithm
 - Weight the contribution of each of the *k* neighbors according to their distance to the query x_q
 - Give greater weight to closer neighbors $e.g., w_i = \frac{1}{d(x_q, x_i)^2}$

•
$$y_q = \frac{\sum w_i y_i}{\sum w_i}$$
, where x_i 's are x_q 's nearest neighbors

- $w_i = \exp(-d(x_a, x_i)^2/2\sigma^2)$
- Robust to noisy data by averaging k-nearest neighbors
- Curse of dimensionality: distance between neighbors could be dominated by irrelevant attributes
 - To overcome it, axes stretch or elimination of the least relevant attributes

Selection of k for kNN

- The number of neighbors k
 - Small k: overfitting (high var., low bias)
 - Big k: bringing too many irrelevant points (high bias, low var.)



• More discussions:

http://scott.fortmann-roe.com/docs/BiasVariance.html

K Nearest Neighbor

- Introduction
- kNN
- Similarity and Dissimilarity
- Summary

Similarity and Dissimilarity

Similarity

- Numerical measure of how alike two data objects are
- Value is higher when objects are more alike
- Often falls in the range [0,1]
- Dissimilarity (e.g., distance)
 - Numerical measure of how different two data objects are
 - Lower when objects are more alike
 - Minimum dissimilarity is often 0
 - Upper limit varies
- Proximity refers to a similarity or dissimilarity

Data Matrix and Dissimilarity Matrix

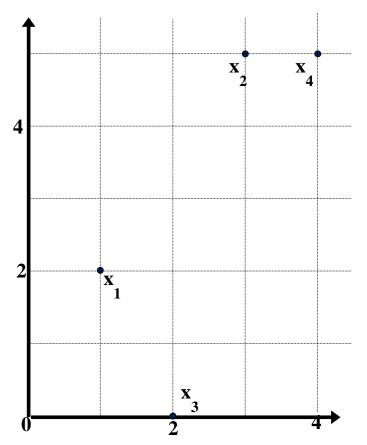
- Data matrix
 - n data points with p dimensions
 - Two modes

- Dissimilarity matrix
 - n data points, but registers only the distance
 - A triangular matrix
 - Single mode

$$\begin{bmatrix} x_{11} & \cdots & x_{1f} & \cdots & x_{1p} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ x_{i1} & \cdots & x_{if} & \cdots & x_{ip} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ x_{n1} & \cdots & x_{nf} & \cdots & x_{np} \end{bmatrix}$$

$$\begin{bmatrix} 0 & & & \\ d(2,1) & 0 & & \\ d(3,1) & d(3,2) & 0 & \\ \vdots & \vdots & \vdots & \\ d(n,1) & d(n,2) & \dots & \dots & 0 \end{bmatrix}$$

Example: Data Matrix and Dissimilarity Matrix



Data Matrix

point	attribute1	attribute2
x1	1	2
<i>x2</i>	3	5
<i>x3</i>	2	0
<i>x4</i>	4	5

Dissimilarity Matrix

(with Euclidean Distance)

	<i>x1</i>	<i>x2</i>	<i>x3</i>	<i>x4</i>
x1	0			
<i>x2</i>	3.61	0		
x3	2.24	5.1	0	
<i>x4</i>	4.24	1	5.39	0

Distance on Numeric Data: Minkowski Distance

• *Minkowski distance*: A popular distance measure

$$d(i, j) = \sqrt[h]{|x_{i1} - x_{j1}|^h + |x_{i2} - x_{j2}|^h + \dots + |x_{ip} - x_{jp}|^h}$$

where $i = (x_{i1}, x_{i2}, ..., x_{ip})$ and $j = (x_{j1}, x_{j2}, ..., x_{jp})$ are two *p*-dimensional data objects, and *h* is the order (the distance so defined is also called L-*h* norm)

- Properties
 - d(i, j) > 0 if $i \neq j$, and d(i, i) = 0 (Positive definiteness)
 - d(i, j) = d(j, i) (Symmetry)
 - $d(i, j) \le d(i, k) + d(k, j)$ (Triangle Inequality)
- A distance that satisfies these properties is a metric

Special Cases of Minkowski Distance

- h = 1: Manhattan (city block, L₁ norm) distance
 - E.g., the Hamming distance: the number of bits that are different between two binary vectors

$$d(i,j) = |x_{i_1} - x_{j_1}| + |x_{i_2} - x_{j_2}| + \dots + |x_{i_p} - x_{j_p}|$$

• h = 2: (L₂ norm) Euclidean distance

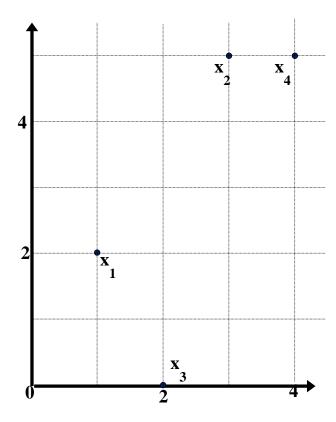
$$d(i,j) = \sqrt{(|x_{i_1} - x_{j_1}|^2 + |x_{i_2} - x_{j_2}|^2 + \dots + |x_{i_p} - x_{j_p}|^2)}$$

- $h \rightarrow \infty$. "supremum" (L_{max} norm, L_{∞} norm) distance.
 - This is the maximum difference between any component (attribute) of the vectors

$$d(i, j) = \lim_{h \to \infty} \left(\sum_{f=1}^{p} |x_{if} - x_{jf}|^h \right)^{\frac{1}{h}} = \max_{f}^{p} |x_{if} - x_{jf}|$$

Example: Minkowski Distance

point	attribute 1	attribute 2
x1	1	2
x2	3	5
x3	2	0
x4	4	5



L	x1	x2	x3	x4
x1	0			
x2	5	0		
x3	3	6	0	
x4	6	1	7	0

Dissimilarity Matrices

Euclidean (L₂)

L2	x1	x2	x3	x4
x1	0			
x2	3.61	0		
x3	2.24	5.1	0	
x4	4.24	1	5.39	0

Supremum

L_{∞}	x1	x2	x3	x4
x1	0			
x2	3	0		
x3	2	5	0	
x4	3	1	5	0

Standardizing Numeric Data

• Z-score:

$$z = \frac{x - \mu}{\sigma}$$

- X: raw score to be standardized, μ : mean of the population, σ : standard deviation
- the distance between the raw score and the population mean in units of the standard deviation
- negative when the raw score is below the mean, "+" when above
- An alternative way: Calculate the mean absolute deviation

$$s_{f} = \frac{1}{n}(|x_{1f} - m_{f}| + |x_{2f} - m_{f}| + ... + |x_{nf} - m_{f}|)$$
where
$$m_{f} = \frac{1}{n}(x_{1f} + x_{2f} + ... + x_{nf})$$

$$z_{if} = \frac{x_{if} - m_{f}}{s_{f}}$$
• standardized measure (z-score):

Using mean absolute deviation is more robust than using standard deviation

Proximity Measure for Nominal Attributes

- Can take 2 or more states, e.g., red, yellow, blue, green (generalization of a binary attribute)
- <u>Method 1</u>: Simple matching
 - *m*: # of matches, *p*: total # of variables

$$d(i,j) = \frac{p-m}{p}$$

- <u>Method 2</u>: Use a large number of binary attributes
 - creating a new binary attribute for each of the *M* nominal states

Proximity Measure for Binary Attributes

Object *j* sum A contingency table for binary data q+rObject *i* s+tq+s r+tsum p Distance measure for symmetric binary $d(i, j) = \frac{r+s}{a+r+s+t}$ variables: Distance measure for asymmetric binary $d(i,j) = \frac{r+s}{a+r+s}$ variables: Jaccard coefficient (*similarity* measure $sim_{Jaccard}(i, j) = \frac{q}{q+r+s}$ for *asymmetric* binary variables):

Dissimilarity between Binary Variables

• Example

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	M	Y	N	Р	N	N	Ν
Mary	F	Y	N	Р	N	Р	N
Jim	Μ	Y	Р	N	N	N	Ν

- Gender is a symmetric attribute
- The remaining attributes are asymmetric binary
- Let the values Y and P be 1, and the value N 0

$$d(jack, mary) = \frac{0+1}{2+0+1} = 0.33$$
$$d(jack, jim) = \frac{1+1}{1+1+1} = 0.67$$
$$d(jim, mary) = \frac{1+2}{1+1+2} = 0.75$$

Ordinal Variables

- Order is important, e.g., rank
- Can be treated like interval-scaled
 - replace x_{if} by their rank $r_{if} \in \{1, \dots, M_f\}$
 - map the range of each variable onto [0, 1] by replacing *i*-th object in the *f*-th variable by

$$z_{if} = \frac{r_{if} - 1}{M_f - 1}$$

• compute the dissimilarity using methods for interval-scaled variables

Attributes of Mixed Type

- A database may contain all attribute types
 - Nominal, symmetric binary, asymmetric binary, numeric, ordinal
- One may use a weighted formula to combine their effects

$$d(i, j) = \frac{\sum_{f=1}^{p} \delta_{ij}^{(f)} d_{ij}^{(f)}}{\sum_{f=1}^{p} \delta_{ij}^{(f)}}$$

- f is binary or nominal:
 - $d_{ii}^{(f)} = 0$ if $x_{if} = x_{if}$, or $d_{ii}^{(f)} = 1$ otherwise
- f is numeric: use the normalized distance
- f is ordinal
 - Compute ranks r_{if} and $Z_{if} = \frac{r_{if} 1}{M_f 1}$ Treat z_{if} as interval-scaled

Cosine Similarity

• A **document** can be represented by thousands of attributes, each recording the *frequency* of a particular word (such as keywords) or phrase in the document.

Document	team	coach	hockey	base ball	soccer	penalty	score	win	loss	season
Document1	5	0	3	0	2	0	0	2	0	0
Document2	3	0	2	0	1	1	0	1	0	1
Document3	0	7	0	2	1	0	0	3	0	0
Document4	0	1	0	0	1	2	2	0	3	0

- Other vector objects: gene features in micro-arrays, ...
- Applications: information retrieval, biologic taxonomy, gene feature mapping, ...
- Cosine measure: If d₁ and d₂ are two vectors (e.g., term-frequency vectors), then cos(d₁, d₂) = (d₁ d₂) / ||d₁|| ||d₂||, where indicates vector dot product, ||d||: the length of vector d

Example: Cosine Similarity

- $\cos(d_1, d_2) = (d_1 \bullet d_2) / ||d_1|| ||d_2||$, where • indicates vector dot product, ||d|: the length of vector d
- Ex: Find the **similarity** between documents 1 and 2.

 $d_{I} = (5, 0, 3, 0, 2, 0, 0, 2, 0, 0)$ $d_{g} = (3, 0, 2, 0, 1, 1, 0, 1, 0, 1)$

 $\begin{aligned} &d_1 \bullet d_2 = 5^* 3 + 0^* 0 + 3^* 2 + 0^* 0 + 2^* 1 + 0^* 1 + 0^* 1 + 2^* 1 + 0^* 0 + 0^* 1 = 25 \\ &| |d_1| |= (5^* 5 + 0^* 0 + 3^* 3 + 0^* 0 + 2^* 2 + 0^* 0 + 0^* 0 + 2^* 2 + 0^* 0 + 0^* 0)^{0.5} = (42)^{0.5} = 6.481 \\ &| |d_2| |= (3^* 3 + 0^* 0 + 2^* 2 + 0^* 0 + 1^* 1 + 1^* 1 + 0^* 0 + 1^* 1 + 0^* 0 + 1^* 1)^{0.5} = (17)^{0.5} = 4.12 \\ &\cos(d_1, d_2) = 0.94 \end{aligned}$

K Nearest Neighbor

- Introduction
- kNN
- Similarity and Dissimilarity
- Summary 🦊

Summary

- Instance-Based Learning
 - Lazy learning vs. eager learning; K-nearest neighbor algorithm; Similarity / dissimilarity

measures