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Methods to Learn: Last Lecture
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Vector Data Set Data Sequence Data Text Data

Classification Logistic Regression; 
Decision Tree; KNN
SVM; NN

Naïve Bayes for Text

Clustering K-means; hierarchical
clustering; DBSCAN; 
Mixture Models

PLSA

Prediction Linear Regression
GLM*

Frequent Pattern 
Mining

Apriori; FP growth GSP; PrefixSpan

Similarity Search DTW



Methods to Learn

3

Vector Data Set Data Sequence Data Text Data

Classification Logistic Regression; 
Decision Tree; KNN
SVM; NN

Naïve Bayes for Text

Clustering K-means; hierarchical
clustering; DBSCAN; 
Mixture Models

PLSA

Prediction Linear Regression
GLM*

Frequent Pattern 
Mining

Apriori; FP growth GSP; PrefixSpan

Similarity Search DTW



K Nearest Neighbor
• Introduction
•kNN
•Similarity and Dissimilarity
•Summary
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Lazy vs. Eager Learning

• Lazy vs. eager learning
• Lazy learning (e.g., instance-based learning): Simply stores 

training data (or only minor processing) and waits until it is given 
a test tuple

• Eager learning (the above discussed methods): Given a set of 
training tuples, constructs a classification model before receiving 
new (e.g., test) data to classify

• Lazy: less time in training but more time in predicting
• Accuracy

• Lazy method effectively uses a richer hypothesis space since it 
uses many local linear functions to form an implicit global 
approximation to the target function

• Eager: must commit to a single hypothesis that covers the entire 
instance space
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Lazy Learner: Instance-Based Methods

• Instance-based learning: 
• Store training examples and delay the processing (“lazy 

evaluation”) until a new instance must be classified
• Typical approaches

• k-nearest neighbor approach

• Instances represented as points in, e.g., a 
Euclidean space.

• Locally weighted regression

• Constructs local approximation
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The k-Nearest Neighbor Algorithm

• All instances correspond to points in the n-D space
• The nearest neighbor are defined in terms of a distance 

measure, dist(X1, X2)
• Target function could be discrete- or real- valued
• For discrete-valued, k-NN returns the most common value

among the k training examples nearest to xq

• Vonoroi diagram: the decision surface induced by 1-NN for a 
typical set of training examples
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kNN Example
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kNN Algorithm Summary

•Choose K
•For a given new instance 𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛 , find K 
closest training points w.r.t. a distance 
measure

•Classify 𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛 = majority vote among 
the K points
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Discussion on the k-NN Algorithm

• k-NN for real-valued prediction for a given unknown tuple
• Returns the mean values of the k nearest neighbors

• Distance-weighted nearest neighbor algorithm
• Weight the contribution of each of the k neighbors according to their 

distance to the query xq

• Give greater weight to closer neighbors
• 𝑦𝑦𝑞𝑞 = ∑𝑛𝑛𝑖𝑖𝑦𝑦𝑖𝑖

∑𝑛𝑛𝑖𝑖
, where 𝑥𝑥𝑖𝑖’s are 𝑥𝑥𝑞𝑞’s nearest neighbors

• Robust to noisy data by averaging k-nearest neighbors
• Curse of dimensionality: distance between neighbors could be 

dominated by irrelevant attributes   
• To overcome it, axes stretch or elimination of the least relevant 

attributes

𝑒𝑒.𝑔𝑔. ,𝑤𝑤𝑖𝑖 =
1

𝑑𝑑 𝑥𝑥𝑞𝑞 , 𝑥𝑥𝑖𝑖
2

𝑤𝑤𝑖𝑖 = exp(−𝑑𝑑 𝑥𝑥𝑞𝑞 , 𝑥𝑥𝑖𝑖
2/2𝜎𝜎2)



Selection of k for kNN
• The number of neighbors k

• Small k: overfitting (high var., low bias)
• Big k: bringing too many irrelevant points (high bias, low var.)

• More discussions:
http://scott.fortmann-roe.com/docs/BiasVariance.html
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Similarity and Dissimilarity

• Similarity
• Numerical measure of how alike two data objects are

• Value is higher when objects are more alike

• Often falls in the range [0,1]

• Dissimilarity (e.g., distance)
• Numerical measure of how different two data objects are

• Lower when objects are more alike

• Minimum dissimilarity is often 0

• Upper limit varies

• Proximity refers to a similarity or dissimilarity
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Data Matrix and Dissimilarity Matrix

• Data matrix
• n data points with p 

dimensions

• Two modes

• Dissimilarity matrix
• n data points, but registers 

only the distance 

• A triangular matrix

• Single mode
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Example: 
Data Matrix and Dissimilarity Matrix
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point attribute1 attribute2
x1 1 2
x2 3 5
x3 2 0
x4 4 5

Dissimilarity Matrix 
(with Euclidean Distance)

x1 x2 x3 x4
x1 0
x2 3.61 0
x3 2.24 5.1 0
x4 4.24 1 5.39 0

Data Matrix

0 2 4
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Distance on Numeric Data: Minkowski Distance

• Minkowski distance: A popular distance measure

where  i = (xi1, xi2, …, xip) and j = (xj1, xj2, …, xjp) are two p-
dimensional data objects, and h is the order (the distance so 
defined is also called L-h norm)

• Properties
• d(i, j) > 0 if i ≠ j, and d(i, i) = 0 (Positive definiteness)

• d(i, j) = d(j, i) (Symmetry)

• d(i, j) ≤ d(i, k) + d(k, j) (Triangle Inequality)

• A distance that satisfies these properties is a metric
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Special Cases of Minkowski Distance

• h = 1:  Manhattan (city block, L1 norm) distance
• E.g., the Hamming distance: the number of bits that are different 

between two binary vectors

• h = 2:  (L2 norm) Euclidean distance

• h → ∞.  “supremum” (Lmax norm, L∞ norm) distance. 
• This is the maximum difference between any component 

(attribute) of the vectors
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Example: Minkowski Distance
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Dissimilarity Matrices
point attribute 1 attribute 2

x1 1 2
x2 3 5
x3 2 0
x4 4 5

L x1 x2 x3 x4
x1 0
x2 5 0
x3 3 6 0
x4 6 1 7 0

L2 x1 x2 x3 x4
x1 0
x2 3.61 0
x3 2.24 5.1 0
x4 4.24 1 5.39 0

L∞ x1 x2 x3 x4
x1 0
x2 3 0
x3 2 5 0
x4 3 1 5 0

Manhattan (L1)

Euclidean (L2)

Supremum 
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Standardizing Numeric Data

• Z-score: 
• X: raw score to be standardized, μ: mean of the population, σ: standard 

deviation
• the distance between the raw score and the population mean in units of 

the standard deviation
• negative when the raw score is below the mean, “+” when above

• An alternative way: Calculate the mean absolute deviation

where

• standardized measure (z-score):
• Using mean absolute deviation is more robust than using standard deviation 
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Proximity Measure for Nominal Attributes

• Can take 2 or more states, e.g., red, yellow, blue, green 
(generalization of a binary attribute)

• Method 1: Simple matching
• m: # of matches, p: total # of variables

• Method 2: Use a large number of binary attributes
• creating a new binary attribute for each of the M nominal states
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Proximity Measure for Binary Attributes

• A contingency table for binary data

• Distance measure for symmetric binary 
variables: 

• Distance measure for asymmetric binary 
variables: 

• Jaccard coefficient (similarity measure 
for asymmetric binary variables): 

Object i

Object j
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Dissimilarity between Binary Variables

• Example

• Gender is a symmetric attribute

• The remaining attributes are asymmetric binary

• Let the values Y and P be 1, and the value N 0
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Name Gender Fever Cough Test-1 Test-2 Test-3 Test-4
Jack M Y N P N N N
Mary F Y N P N P N
Jim M Y P N N N N
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Ordinal Variables

• Order is important, e.g., rank
• Can be treated like interval-scaled 

• replace xif by their rank 

• map the range of each variable onto [0, 1] by replacing i-th object 
in the f-th variable by

• compute the dissimilarity using methods for interval-scaled 
variables
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Attributes of Mixed Type

• A database may contain all attribute types
• Nominal, symmetric binary, asymmetric binary, numeric, 

ordinal
• One may use a weighted formula to combine their effects

• f is binary or nominal:
dij

(f) = 0  if xif = xjf , or dij
(f) = 1 otherwise

• f is numeric: use the normalized distance
• f is ordinal 

• Compute ranks rif and  
• Treat zif as interval-scaled
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Cosine Similarity

• A document can be represented by thousands of attributes, each recording the 
frequency of a particular word (such as keywords) or phrase in the document.

• Other vector objects: gene features in micro-arrays, …
• Applications: information retrieval, biologic taxonomy, gene feature mapping, ...
• Cosine measure: If d1 and d2 are two vectors (e.g., term-frequency vectors), then

cos(d1, d2) = (d1 • d2) /||d1|| ||d2|| ,
where • indicates vector dot product, ||d||: the length of vector d
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Example: Cosine Similarity

• cos(d1, d2) =  (d1 • d2) /||d1|| ||d2|| , 
where • indicates vector dot product, ||d|: the length of vector d

• Ex: Find the similarity between documents 1 and 2.

d1 = (5, 0, 3, 0, 2, 0, 0, 2, 0, 0)
d2 = (3, 0, 2, 0, 1, 1, 0, 1, 0, 1)

d1•d2 = 5*3+0*0+3*2+0*0+2*1+0*1+0*1+2*1+0*0+0*1 = 25
||d1||= (5*5+0*0+3*3+0*0+2*2+0*0+0*0+2*2+0*0+0*0)0.5=(42)0.5 = 6.481
||d2||= (3*3+0*0+2*2+0*0+1*1+1*1+0*0+1*1+0*0+1*1)0.5=(17)0.5 = 4.12
cos(d1, d2 ) = 0.94
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Summary

• Instance-Based Learning

• Lazy learning vs. eager learning; K-nearest 

neighbor algorithm; Similarity / dissimilarity 

measures
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