CS145: INTRODUCTION TO DATA MINING

08: Classification Evaluation and Practical Issues

Instructor: Yizhou Sun

yzsun@cs.ucla.edu

October 31, 2018

Learnt Prediction and Classification Methods

	Vector Data	Set Data	Sequence Data	Text Data
Classification	Logistic Regression; Decision Tree; KNN SVM; NN			Naïve Bayes for Text
Clustering	K-means; hierarchical clustering; DBSCAN; Mixture Models			PLSA
Prediction	Linear Regression GLM*			
Frequent Pattern Mining		Apriori; FP growth	GSP; PrefixSpan	
Similarity Search			DTW	

Evaluation and Other Practical Issues

- Model Evaluation and Selection
- Other issues
- Summary

Model Evaluation and Selection

- Evaluation metrics: How can we measure accuracy?
 Other metrics to consider?
- Use validation test set of class-labeled tuples instead of training set when assessing accuracy
- Methods for estimating a classifier's accuracy:
 - Holdout method, random subsampling
 - Cross-validation

Evaluating Classifier Accuracy: Holdout & Cross-Validation Methods

Holdout method

- Given data is randomly partitioned into two independent sets
 - Training set (e.g., 2/3) for model construction
 - Test set (e.g., 1/3) for accuracy estimation
- <u>Random sampling</u>: a variation of holdout
 - Repeat holdout k times, accuracy = avg. of the accuracies obtained
- Cross-validation (k-fold, where k = 10 is most popular)
 - Randomly partition the data into *k mutually exclusive* subsets, each approximately equal size
 - At *i*-th iteration, use D_i as test set and others as training set
 - <u>Leave-one-out</u>: *k* folds where *k* = # of tuples, for small sized data
 - <u>*Stratified cross-validation</u>*: folds are stratified so that class dist. in each fold is approx. the same as that in the whole data

Classifier Evaluation Metrics: Confusion Matrix

Confusion Matrix:

Actual class\Predicted class	C ₁	¬ C ₁		
C ₁	True Positives (TP)	False Negatives (FN)		
- C ₁	False Positives (FP)	True Negatives (TN)		

Example of Confusion Matrix:

Actual class\Predicted	buy_computer	buy_computer	Total
class	= yes	= no	
buy_computer = yes	6954	46	7000
buy_computer = no	412	2588	3000
Total	7366	2634	10000

- Given *m* classes, an entry, *CM*_{i,j} in a confusion matrix indicates # of tuples in class *i* that were labeled by the classifier as class *j*
- May have extra rows/columns to provide totals

Classifier Evaluation Metrics: Accuracy, Error Rate, Sensitivity and Specificity

A\P	С	¬C	
С	ТР	FN	Ρ
¬C	FP	ΤN	Ν
	P'	N'	All

 Classifier Accuracy, or recognition rate: percentage of test set tuples that are correctly classified

Accuracy = (TP + TN)/All

Error rate: 1 – accuracy, or
 Error rate = (FP + FN)/All

- Class Imbalance Problem:
 - One class may be *rare*, e.g. fraud, or HIV-positive
 - Significant majority of the negative class and minority of the positive class
 - Sensitivity: True Positive recognition rate

Sensitivity = TP/P

- Specificity: True Negative recognition rate
 - Specificity = TN/N

Classifier Evaluation Metrics: Precision and Recall, and F-measures Precision: exactness – what % of tuples that the classifier labeled as positive are actually positive $\overline{TP + FP}$ precision Recall: completeness – what % of positive tuples did the classifier label as positive? TP $\overline{TP + FN}$ recall Perfect score is 1.0 Inverse relationship between precision & recall • F measure (F₁ or F-score): harmonic mean of precision and $2 \times precision \times recall$ recall, precision + recall• F_{β} : weighted measure of precision and recall • assigns ß times as much weight to recall as to precision $F_{\beta} = \frac{(1+\beta^2) \times precision \times recall}{\beta^2 \times precision + recall}$

Classifier Evaluation Metrics: Example

Actual Class\Predicted class	cancer = yes	cancer = no	Total	Recognition(%)
cancer = yes	90	210	300	30.00 (sensitivity)
cancer = no	140	9560	9700	98.56 (specificity)
Total	230	9770	10000	96.50 (<i>accuracy</i>)

• *Precision* = 90/230 = 39.13%

Recall = 90/300 = 30.00%

Classifier Evaluation Metrics: ROC Curves

- ROC (Receiver Operating Characteristics) curves: for visual comparison of classification models
- Originated from signal detection theory
- Shows the trade-off between the true positive rate and the false positive rate
- The area under the ROC curve is a measure of the accuracy of the model
- Rank the test tuples in decreasing order: the one that is most likely to belong to the positive class appears at the top of the list
- Area under the curve: the closer to the diagonal line (i.e., the closer the area is to 0.5), the less accurate is the model

- Vertical axis represents the true positive rate
- Horizontal axis rep. the false positive rate
- The plot also shows a diagonal line
- A model with perfect accuracy will have an area of 1.0

Plotting an ROC Curve

- True positive rate: TPR = TP/P (sensitivity)
- False positive rate: FPR = FP/N (1-specificity)

- Rank tuples according to how likely they will be a positive tuple
 - Idea: when we include more tuples in, we are more likely to make mistakes, that is the trade-off!
 - Nice property: not threshold (cut-off) need to be specified, only rank matters

Example:

•#N = 5

$Tuple \ \#$	Class	Prob.	TP	FP	TN	FN	TPR	FPR
1	р	0.9	1	0	5	4	0.2	0
2	р	0.8	2	0	5	3	0.4	0
3	n	0.7	2	1	4	3	0.4	0.2
4	р	0.6	3	1	4	2	0.6	0.2
5	р	0.55	4	1	4	1	0.8	0.2
6	n	0.54	4	2	3	1	0.8	0.4
7	n	0.53	4	3	2	1	0.8	0.6
8	n	0.51	4	4	1	1	0.8	0.8
9	р	0.50	5	4	0	1	1.0	0.8
10	n	0.4	5	5	0	0	1.0	1.0

Evaluation and Other Practical Issues

- Model Evaluation and Selection
- •Other issues 🦊
- Summary

Multiclass Classification

- Multiclass classification
 - Classification involving more than two classes (i.e., > 2 Classes)
 - Each data point can only belong to one class
- Multilabel classification
 - Classification involving more than two classes (i.e., > 2 Classes)
 - Each data point can belong to multiple classes
 - Can be considered as a set of binary classification problem

Solutions

- Method 1. One-vs.-all (OVA): Learn a classifier one at a time
 - Given m classes, train m classifiers: one for each class
 - Classifier j: treat tuples in class j as *positive* & all others as *negative*
 - To classify a tuple **X**, choose the classifier with maximum value
- Method 2. All-vs.-all (AVA): Learn a classifier for each pair of classes
 - Given m classes, construct m(m-1)/2 binary classifiers
 - A classifier is trained using tuples of the two classes
 - To classify a tuple **X**, each classifier votes. X is assigned to the class with maximal vote
- Comparison
 - All-vs.-all tends to be superior to one-vs.-all

Illustration of One-vs-All

Classify x according to: $f(x) = argmax_i f_i(x)$

Illustration of All-vs-All

Classify x according to majority voting

Extending to Multiclass Classification Directly

- Very straightforward for
 - Logistic Regression
 - Decision Tree
 - Neural Network
 - KNN

Classification of Class-Imbalanced Data Sets

Class-imbalance problem

• Rare positive example but numerous negative ones, e.g., medical diagnosis, fraud, oil-spill, fault, etc.

Traditional methods

• Assume a balanced distribution of classes and equal error costs: not suitable for class-imbalanced data

Imbalanced dataset

How about predicting every data point as blue class?

Solutions

- Pick the right evaluation metric
 - E.g., ROC is better than accuracy
- Typical methods for imbalance data in 2-class classification (training data):
 - **Oversampling:** re-sampling of data from positive class
 - **Under-sampling:** randomly eliminate tuples from negative class
 - Synthesizing new data points for minority class
- Still difficult for class imbalance problem on multiclass tasks

https://svds.com/learning-imbalanced-classes/

Illustration of Oversampling and Undersampling

Oversampling minority class

Undersampling majority class

Illustration of Synthesizing New Data Points

• SMOTE: Synthetic Minority Oversampling Technique (Chawla et. al)

Evaluation and Other Practical Issues

- Model Evaluation and Selection
- Other issues

Summary

- Model evaluation and selection
 - Evaluation metric and cross-validation
- Other issues
 - Multi-class classification
 - Imbalanced classes