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Announcement
•About Homework

• Split HW3 into two: HW3 and HW4

• Optional HW6
• We will pick the highest 5 homework scores
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Methods to Learn
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Vector Data Set Data Sequence Data Text Data

Classification Logistic Regression; 
Decision Tree; KNN
SVM; NN

Naïve Bayes for Text

Clustering K-means; hierarchical
clustering; DBSCAN; 
Mixture Models

PLSA

Prediction Linear Regression
GLM*

Frequent Pattern 
Mining

Apriori; FP growth GSP; PrefixSpan

Similarity Search DTW



Vector Data: Clustering Basics

•Clustering Analysis: Basic Concepts

•Partitioning methods

•Hierarchical Methods

•Density-Based Methods

•Summary
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What is Cluster Analysis?
• Cluster: A collection of data objects

• similar (or related) to one another within the same group

• dissimilar (or unrelated) to the objects in other groups

• Cluster analysis (or clustering, data segmentation, …)
• Finding similarities between data according to the characteristics 

found in the data and grouping similar data objects into clusters

• Unsupervised learning: no predefined classes (i.e., learning by 
observations vs. learning by examples: supervised)

• Typical applications
• As a stand-alone tool to get insight into data distribution 

• As a preprocessing step for other algorithms
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Applications of Cluster Analysis

• Data reduction
• Summarization: Preprocessing for regression, PCA, classification, 

and association analysis

• Compression: Image processing: vector quantization

• Prediction based on groups
• Cluster & find characteristics/patterns for each group

• Finding K-nearest Neighbors
• Localizing search to one or a small number of clusters

• Outlier detection: Outliers are often viewed as those “far away” 
from any cluster
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Clustering: Application Examples
• Biology: taxonomy of living things: kingdom, phylum, class, order, 

family, genus and species
• Information retrieval: document clustering
• Land use: Identification of areas of similar land use in an earth 

observation database
• Marketing: Help marketers discover distinct groups in their 

customer bases, and then use this knowledge to develop 
targeted marketing programs

• City-planning: Identifying groups of houses according to their 
house type, value, and geographical location

• Earth-quake studies: Observed earth quake epicenters should 
be clustered along continent faults

• Climate: understanding earth climate, find patterns of 
atmospheric and ocean 7



Vector Data: Clustering Basics

•Clustering Analysis: Basic Concepts

•Partitioning methods

•Hierarchical Methods

•Density-Based Methods

•Summary

8



Partitioning Algorithms: Basic Concept
• Partitioning method: Partitioning a dataset D of n objects into a set 

of k clusters, such that the sum of squared distances is minimized 
(where cj is the centroid or medoid of cluster Cj)

• Given k, find a partition of k clusters that optimizes the chosen 
partitioning criterion
• Global optimal: exhaustively enumerate all partitions

• Heuristic methods: k-means and k-medoids algorithms

• k-means (MacQueen’67, Lloyd’57/’82): Each cluster is represented 
by the center of the cluster

• k-medoids or PAM (Partition around medoids) (Kaufman & 
Rousseeuw’87): Each cluster is represented by one of the objects in 
the cluster  
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The K-Means Clustering Method

• Given k, the k-means algorithm is implemented in four 
steps:
• Step 0: Partition objects into k nonempty subsets

• Step 1: Compute seed points as the centroids of the clusters of the 

current partitioning (the centroid is the center, i.e., mean point, of 

the cluster)

• Step 2: Assign each object to the cluster with the nearest seed point  

• Step 3: Go back to Step 1, stop when the assignment does not 

change
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An Example of K-Means Clustering

K=2

Arbitrarily 
partition 
objects into 
k groups

Update the 
cluster 
centroids

Update the 
cluster 
centroids

Reassign  objectsLoop if 
needed

The initial data set

 Partition objects into k nonempty 
subsets

 Repeat
 Compute centroid (i.e., mean 

point) for each partition 
 Assign each object to the 

cluster of its nearest centroid  
 Until no change
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Theory Behind K-Means
• Objective function

• 𝐽𝐽 = ∑𝑗𝑗=1𝑘𝑘 ∑𝐶𝐶 𝑖𝑖 =𝑗𝑗 ||𝑥𝑥𝑖𝑖 − 𝑐𝑐𝑗𝑗||2

• Re-arrange the objective function
• 𝐽𝐽 = ∑𝑗𝑗=1𝑘𝑘 ∑𝑖𝑖 𝑤𝑤𝑖𝑖𝑗𝑗||𝑥𝑥𝑖𝑖 − 𝑐𝑐𝑗𝑗||2

• 𝑤𝑤𝑖𝑖𝑗𝑗 ∈ {0,1}
• 𝑤𝑤𝑖𝑖𝑗𝑗 = 1, 𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑡𝑡𝑏𝑏 𝑐𝑐𝑏𝑏𝑐𝑐𝑏𝑏𝑡𝑡𝑏𝑏𝑐𝑐 𝑗𝑗;𝑤𝑤𝑖𝑖𝑗𝑗 =

0, 𝑏𝑏𝑡𝑡𝑜𝑏𝑏𝑐𝑐𝑤𝑤𝑖𝑖𝑏𝑏𝑏𝑏
• Looking for:

• The best assignment 𝑤𝑤𝑖𝑖𝑗𝑗
• The best center 𝑐𝑐𝑗𝑗
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Solution of K-Means
• Iterations

• Step 1: Fix centers 𝑐𝑐𝑗𝑗, find assignment 𝑤𝑤𝑖𝑖𝑗𝑗 that 
minimizes 𝐽𝐽
• => 𝑤𝑤𝑖𝑖𝑗𝑗 = 1, 𝑖𝑖𝑖𝑖 ||𝑥𝑥𝑖𝑖 − 𝑐𝑐𝑗𝑗||2 is the smallest

• Step 2: Fix assignment 𝑤𝑤𝑖𝑖𝑗𝑗, find centers that 
minimize 𝐽𝐽
• => first derivative of 𝐽𝐽 = 0

• => 𝜕𝜕𝜕𝜕
𝜕𝜕𝑐𝑐𝑗𝑗

= −2∑𝑖𝑖 𝑤𝑤𝑖𝑖𝑗𝑗(𝑥𝑥𝑖𝑖 − 𝑐𝑐𝑗𝑗) = 0

• =>𝑐𝑐𝑗𝑗 =
∑𝑖𝑖 𝑤𝑤𝑖𝑖𝑗𝑗𝑥𝑥𝑖𝑖
∑𝑖𝑖 𝑤𝑤𝑖𝑖𝑗𝑗

• Note ∑𝑖𝑖 𝑤𝑤𝑖𝑖𝑗𝑗 is the total number of objects in cluster j
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Comments on the K-Means Method
• Strength: Efficient: O(tkn), where n is # objects, k is # clusters, and 

t  is # iterations. Normally, k, t << n.

• Comment: Often terminates at a local optimal

• Weakness

• Applicable only to objects in a continuous n-dimensional space 

• Using the k-modes method for categorical data

• In comparison, k-medoids can be applied to a wide range of 
data

• Need to specify k, the number of clusters, in advance (there are 

ways to automatically determine the best k (see Hastie et al., 2009)

• Sensitive to noisy data and outliers

• Not suitable to discover clusters with non-convex shapes 14



Variations of the K-Means Method*

• Most of the variants of the k-means which differ in

• Selection of the initial k means

• Dissimilarity calculations

• Strategies to calculate cluster means

• Handling categorical data: k-modes

• Replacing means of clusters with modes

• Using new dissimilarity measures to deal with categorical objects

• Using a frequency-based method to update modes of clusters

• A mixture of categorical and numerical data: k-prototype method
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The K-Medoid Clustering Method*

• K-Medoids Clustering: Find representative objects (medoids) in clusters

• PAM (Partitioning Around Medoids, Kaufmann & Rousseeuw 1987)

• Starts from an initial set of medoids and iteratively replaces one of the 

medoids by one of the non-medoids if it improves the total distance of the 

resulting clustering

• PAM works effectively for small data sets, but does not scale well for large 

data sets (due to the computational complexity)

• Efficiency improvement on PAM

• CLARA (Kaufmann & Rousseeuw, 1990): PAM on samples

• CLARANS (Ng & Han, 1994): Randomized re-sampling
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Hierarchical Clustering

• Use distance matrix as clustering criteria.  This method does not 
require the number of clusters k as an input, but needs a 
termination condition 

Step 0 Step 1 Step 2 Step 3 Step 4

b

d

c

e

a
a b

d e

c d e

a b c d e

Step 4 Step 3 Step 2 Step 1 Step 0

agglomerative
(AGNES)

divisive
(DIANA)
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AGNES (Agglomerative Nesting)

• Introduced in Kaufmann and Rousseeuw (1990)
• Implemented in statistical packages, e.g., Splus
• Use the single-link method and the dissimilarity matrix  
• Merge nodes that have the least dissimilarity
• Go on in a non-descending fashion
• Eventually all nodes belong to the same cluster
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Pseudo Code
• Initialization: Place each data point into its 
own cluster and compute distance matrix 
between clusters

•Repeat: 
• Merge the two closest clusters

• Update the distance matrix for the affected 
entries

•Until: all the data are merged into a single 
cluster
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Dendrogram: Shows How Clusters are Merged

Decompose data objects into a several levels of nested partitioning (tree of 
clusters), called a dendrogram

A clustering of the data objects is obtained by cutting the dendrogram at 
the desired level, then each connected component forms a cluster
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DIANA (Divisive Analysis)

• Introduced in Kaufmann and Rousseeuw (1990)

• Implemented in statistical analysis packages, e.g., Splus

• Inverse order of AGNES

• Eventually each node forms a cluster on its own
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Distance between Clusters
• Single link:  smallest distance between an element in one cluster and an 

element in the other, i.e.,  dist(Ki, Kj) = min dist(tip, tjq)

• Complete link: largest distance between an element in one cluster and an 
element in the other, i.e.,  dist(Ki, Kj) = max dist(tip, tjq)

• Average: avg distance between an element in one cluster and an element in 
the other, i.e.,  dist(Ki, Kj) = avg dist(tip, tjq)

• Centroid: distance between the centroids of two clusters, i.e.,  dist(Ki, Kj) = 
dist(Ci, Cj)

• Medoid: distance between the medoids of two clusters, i.e.,  dist(Ki, Kj) = 
dist(Mi, Mj)

• Medoid: a chosen, centrally located object in the cluster

X X
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Example: Single Link vs. Complete Link
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Extensions to Hierarchical Clustering

• Major weakness of agglomerative clustering methods

• Can never undo what was done previously

• Do not scale well: time complexity of at least O(n2), where n is 

the number of total objects

• Integration of hierarchical & distance-based clustering

• *BIRCH (1996): uses CF-tree and incrementally adjusts the 

quality of sub-clusters

• *CHAMELEON (1999): hierarchical clustering using dynamic 

modeling
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Density-Based Clustering Methods

• Clustering based on density (local cluster criterion), such as 
density-connected points

• Major features:
• Discover clusters of arbitrary shape
• Handle noise
• One scan
• Need density parameters as termination condition

• Several interesting studies:
• DBSCAN: Ester, et al. (KDD’96)

• OPTICS*: Ankerst, et al (SIGMOD’99).

• DENCLUE*: Hinneburg & D. Keim (KDD’98)

• CLIQUE*: Agrawal, et al. (SIGMOD’98) (more grid-based)
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DBSCAN: Basic Concepts

• Two parameters:

• Eps: Maximum radius of the neighborhood

• MinPts: Minimum number of points in an Eps-
neighborhood of that point

• NEps(q): {p belongs to D | dist(p,q) ≤ Eps}

• Directly density-reachable: A point p is directly density-
reachable from a point q w.r.t. Eps, MinPts if 

• p belongs to NEps(q)

• q is a core point, core point condition:

|NEps (q)| ≥ MinPts

MinPts = 5

Eps = 1 cm

p

q
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Density-Reachable and Density-Connected

• Density-reachable: 

• A point p is density-reachable from a 
point q w.r.t. Eps, MinPts if there is a 
chain of points p1, …, pn, p1 = q, pn = p
such that pi+1 is directly density-reachable 
from pi

• Density-connected

• A point p is density-connected to a point 
q w.r.t. Eps, MinPts if there is a point o 
such that both, p and q are density-
reachable from o w.r.t. Eps and MinPts

p

q
p2

p q

o

29



DBSCAN: Density-Based Spatial Clustering of Applications 
with Noise

• Relies on a density-based notion of cluster:  A cluster is defined as 
a maximal set of density-connected points

• Noise: object not contained in any cluster is noise
• Discovers clusters of arbitrary shape in spatial databases with 

noise

Core

Border

Noise

Eps = 1cm

MinPts = 5
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DBSCAN: The Algorithm

• If a spatial index is used, the computational complexity of DBSCAN is O(nlogn), 
where n is the number of database objects. Otherwise, the complexity is O(n2) 31



DBSCAN: Sensitive to Parameters

DBSCAN online Demo: 

http://webdocs.cs.ualberta.ca/~yaling/Cluster/Applet/Code/Cluster.html
32
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Questions about Parameters
•Fix Eps, increase MinPts, what will 
happen?

•Fix MinPts, decrease Eps, what will 
happen?
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Summary
• Cluster analysis groups objects based on their similarity and has 

wide applications; Measure of similarity can be computed for 
various types of data

• K-means and K-medoids algorithms are popular partitioning-
based clustering algorithms

• AGNES and DIANA are interesting hierarchical clustering 
algorithms

• DBSCAN, OPTICS*, and DENCLUE* are interesting density-based 
algorithms
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