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Announcement

*About Homework
« Sphit HW3 into two: HW3 and HW4

» Optional HW6

» We will pick the highest 5 homework scores



Methods to Learn
| |VectorData [SetData |SequenceData |TextData

Classification Logistic Regression; Naive Bayes for Text
Decision Tree; KNN
SVM; NN

Clustering K-means; hierarchical PLSA

clustering; DBSCAN;
Mixture Models

Prediction Linear Regression
GLM*
Frequent Pattern Apriori; FP growth GSP; PrefixSpan
Mining
Similarity Search DTW




Vector Data: Clustering Basics

- Clustering Analysis: Basic Concepts &
- Partitioning methods

Hierarchical Methods

- Density-Based Methods

Summary



What is Cluster Analysis?

« Cluster: A collection of data objects
- similar (or related) to one another within the same group
« dissimilar (or unrelated) to the objects 1in other groups

- Cluster analysis (or clustering, data segmentation, ...)

» Finding similarities between data according to the characteristics
found 1n the data and grouping similar data objects into clusters

- Unsupervised learning: no predefined classes (i.e., learning by
observations vs. learning by examples: supervised)

- Typical applications
« As a stand-alone tool to get insight into data distribution

» As a preprocessing step for other algorithms



Applications of Cluster Analysis

« Data reduction

« Summarization: Preprocessing for regression, PCA, classification,

and association analysis
« Compression: Image processing: vector quantization

- Prediction based on groups

* Cluster & find characteristics/patterns for each group
 Finding K-nearest Neighbors
» Localizing search to one or a small number of clusters

 Outlier detection: Outliers are often viewed as those “far away”
from any cluster



Clustering: Application Examples

- Biology: taxonomy of living things: kingdom, phylum, class, order,
family, genus and species

- Information retrieval: document clustering

» Land use: Identification of areas of similar land use in an earth
observation database

- Marketing: Help marketers discover distinct groups in their
customer bases, and then use this knowledge to develop
targeted marketing programs

- City-planning: Identifying groups of houses according to their
house type, value, and geographical location

- Earth-quake studies: Observed earth quake epicenters should
be clustered along continent faults

- Climate: understanding earth climate, find patterns of
atmospheric and ocean



Vector Data: Clustering Basics

» Clustering Analysis: Basic Concepts
- Partitioning methods &
Hierarchical Methods

- Density-Based Methods

Summary



Partitioning Algorithms: Basic Concept

- Partitioning method: Partitioning a dataset D of n objects into a set
of k clusters, such that the sum of squared distances is minimized
(where c; is the centroid or medoid of cluster C))

J= z;l Z d(x;, ¢j)?

Cc(i)=j
- Given k, find a partition of k clusters that optimizes the chosen
partitioning criterion

« Global optimal: exhaustively enumerate all partitions

« Heurnistic methods: &k-means and k-medoids algorithms

» k-means MacQueen’67, Lloyd’57/°82): Each cluster 1s represented
by the center of the cluster

o k-medoids or PAM (Partitton around medoids) (Kaufman &

Rousseeuw’87): Each cluster 1s represented by one of the objects 1n
the cluster




The K-Means Clustering Method

» Given k, the k-means algorithm is implemented in four
steps:
« Step 0: Partition objects into A nonempty subsets

 Step 1: Compute seed points as the centroids of the clusters of the
current partiioning (the centroid 1s the center, 1.e., mecan pomnt, of

the cluster)
* Step 2: Assign each object to the cluster with the nearest seed point

 Step 3: Go back to Step 1, stop when the assignment does not

change
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An Example of K-Means Clustering

The initial data set

Arbitrarily
partition
objects into
k groups

Partition objects into k nonempty

subsets
Repeat

= Compute centroid (i.e., mean
point) for each partition

= Assign each object to the
cluster of its nearest centroid

Until no change

Loop if
needed

—_—

Update the
cluster
centroids

—

Update the
cluster
centroids

+
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Reassignlobjects
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Theory Behind K-Means

» Objective function

_ vk
’] — Zj=1 ZC(i):j | Xi — Cj
- Re-arrange the objective function
] = Z?:lziwiﬂ Xi — Cj||2
° Wij S {0,1}

- w;j = 1,if x; belongs to cluster j;w;; =
0, otherwise

- LLooking for:
* The best assignment w;;
* The best center ¢;
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Solution of K-Means

k
- Iterations =2, 1Zwl~j||xi - glI?
* Step 1: Fix centers ¢j, find assignment Wl j that
minimizes J

°=>Wij = 1,lf||xl' — Cj

||% is the smallest

* Step 2: Fix assignment wy, find centers that
minimize |/

« => first derivative of ] =0
d
0:>—]: _ZZlWl](xl C]) 0

* Note }}; w;; is the total number of objects in cluster |
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Comments on the K-Means Method

- Strength: Efficient: O(tkn), where n is # objects, k is # clusters, and
t is # iterations. Normally, k, t << n.

- Comment: Often terminates at a local optimal

« Weakness

» Applicable only to objects in a continuous n-dimensional space
» Using the k-modes method for categorical data

 In comparison, k-medoids can be applied to a wide range of
data

» Need to specity 4, the number of clusters, in advance (there are

ways to automatically determine the best k (see Hastie et al., 2009)
» Sensitive to noisy data and outliers

 Not suitable to discover clusters with non-convex shapes 14



Variations of the K-Means Method*

« Most of the variants of the k-means which differ in
- Selection of the initial k means
- Dissimilarity calculations
- Strategies to calculate cluster means

- Handling categorical data: k-modes

Replacing means of clusters with modes

Using new dissimilarity measures to deal with categorical objects

Using a frequency-based method to update modes of clusters

A mixture of categorical and numerical data: k-prototype method
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The K-Medoid Clustering Method*

- K-Medoids Clustering: Find representative objects (medoids) in clusters
o PAM (Partitioning Around Medoids, Kaufmann & Rousseeuw 1987)

« Starts from an initial set of medoids and iteratively replaces one of the
medoids by one of the non-medoids if it improves the total distance of the

resulting clustering

» PAM works effectively for small data sets, but does not scale well for large

data sets (due to the computational complexity)
- Efficiency improvement on PAM
 CLARA (Kautmann & Rousseeuw, 1990): PAM on samples

« CLARANS (Ng & Han, 1994): Randomized re-sampling
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Vector Data: Clustering Basics

» Clustering Analysis: Basic Concepts
- Partitioning methods

-Hierarchical Methods &

- Density-Based Methods

Summary
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Hierarchical Clustering

» Use distance matrix as clustering criteria. This method does not
require the number of clusters k as an input, but needs a
termination condition

Step0 Stepl Step2 Step3 Step4 agglomerative
| | | ' | (AGNES)

divisive
| | | | |
Step4 Step3 Step2 Stepl StepO (DIANA)

<
<«
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AGNES (Agglomerative Nesting)

e Introduced in Kaufmann and Rousseeuw (1990)

« Implemented in statistical packages, e.g., Splus

« Use the single-link method and the dissimilarity matrix
« Merge nodes that have the least dissimilarity

* Go on in a non-descending fashion

 Eventually all nodes belong to the same cluster
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19



Pseudo Code

*Initialization: Place each data point into its
own cluster and compute distance matrix
between clusters

*Repeat:
» Merge the two closest clusters

» Update the distance matrix for the alfected
entries

-Until: all the data are merged into a single
cluster
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Dendrogram: Shows How Clusters are Merged

Decompose data objects into a several levels of nested|partitioning (tree of
clusters), called a dendrogram

A clustering of the data objects is obtained by cutting the dendrogram at
the desjred level, then each connected component forms a cluster
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DIANA (Divisive Analysis)

e Introduced in Kaufmann and Rousseeuw (1990)

« Implemented in statistical analysis packages, e.g., Splus

e Inverse order of AGNES

 Eventually each node forms a cluster on its own
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Distance between Clusters

» Single link: smallest distance between an element in one cluster and an

element in the other, i.e., dist(K;, K;) = min dist(t;, t;,)

« Complete link: largest distance between an element in one cluster and an

element in the other, i.e., dist(K;, K;) = max dist(t;, t;.)

« Average: avg distance between an element in one cluster and an element in
the other, i.e., dist(K;, K;) = avg dist(t,, t;,)

« Centroid: distance between the centroids of two clusters, i.e., dist(K;, Kj) =
dist(C, C)

« Medoid: distance between the medoids of two clusters, i.e., dist(K;, KJ-) =
dist(M;, M)

- Medoid: a chosen, centrally located object in the cluster
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Example: Single Link vs. Complete Link
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(c) Clustering using complete linkage
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Extensions to Hierarchical Clustering

- Major weakness of agglomerative clustering methods

 Can never undo what was done previously

Do not scale well: time complexity of at least (1), where n1s

the number of total objects
- Integration of hierarchical & distance-based clustering

« "BIRCH (1996): uses CF-tree and incrementally adjusts the

quality of sub-clusters

- "CHAMELEON (1999): hierarchical clustering using dynamic

modeling
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Vector Data: Clustering Basics

» Clustering Analysis: Basic Concepts
- Partitioning methods

Hierarchical Methods

- Density-Based Methods &

Summary
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Density-Based Clustering Methods

- Clustering based on density (local cluster criterion), such as
density-connected points

- Major features:
 Discover clusters of arbitrary shape
- Handle noise
« One scan
* Need density parameters as termination condition

- Several interesting studies:
« DBSCAN: Ester, et al. (KDD?96)
« OPTICS”: Ankerst, et al (SIGMOD’99).
- DENCLUE": Hinneburg & D. Keim (KDID’98)
« CLIQUE": Agrawal, et al. (SIGMOD’98) (more grid-based)




DBSCAN: Basic Concepts

« Two parameters:
 [.ps: Maximum radius of the neighborhood

» MinPts: Mimmmum number of points i an Eps-
neighborhood of that point

(g): {p belongs to D | dist(p,q) < Eps}

Eps

- Directly density-reachable: A point p is directly density-
reachable from a point g w.r.t. Eps, MinPts if

» pbelongs to Ny, (q)

* (] 1S a core point, core point Condition; ‘
| Vi (@) > MinPts o

MinPts =5
Eps=1cm
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Density-Reachable and Density-Connected

- Density-reachable:

« A point pis density-reachable from a
point g w.r.t. L£ps, MinPrsif there 1s a
chain of ponts p,, ..., p, p,=q, p,= P
such that p,,;1s directly density-reachable
from p;

- Density-connected

« A point pis density-connected to a point
g w.r.t. Eps, MinPts if there 1s a point o
such that both, p and ¢ are density-
reachable from o w.r.t. £psand MinPts
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DBSCAN: Density-Based Spatial Clustering of Applications

with Noise

- Relies on a density-based notion of cluster: A cluster is defined as
a maximal set of density-connected points

- Noise: object not contained in any cluster is noise

- Discovers clusters of arbitrary shape in spatial databases with

noise
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DBSCAN: The Algorithm

(1) mark all objects as unvisited;

(2) do

(3) randomly select an unvisited object p;

(4) mark p as visited;

(5) if the e-neighborhood of p has at least MinFPts objects

(6) create a new cluster ', and add p to

(7) let N be the set of objects in the e-neighborhood of p;

(8) for each point p/ in N

(9) if p’ is unvisited

(10) mark p’ as visited:;

(11) if the e-neighborhood of p’ has at least MinPts points,
add those points to N;

(12) if p’ is not vet a member of any cluster, add p’ to C;

(13) end for

(14) output C"

(15) else mark p as noise;

(16) until no object is unvisited:;

- If a spatial index is used, the computational complexity of DBSCAN is O(nlogn),
where n is the number of database objects. Otherwise, the complexity is O(n?) 31



DBSCAN: Sensitive to Parameters

Figure 8. DBScan
results for DST with
MinPts at 4 and Eps at
(a)0.5and (b) 0.4.

Figure 9. DBScan
results for D52 with
MinPts at 4 and Eps at
(a)5.0. () 3.5, and
(c) 3.0.

(a) (b) (t)
DBSCAN online Demo:

http://webdocs.cs.ualberta.ca/~valing/Cluster/Applet/Code/Cluster.html
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http://webdocs.cs.ualberta.ca/%7Eyaling/Cluster/Applet/Code/Cluster.html

Questions about Parameters

~ix Eps, increase MinPts, what will
nappen?

Fix MinPts, decrease Eps, what will
nappen?

33



Vector Data: Clustering Basics

» Clustering Analysis: Basic Concepts
- Partitioning methods

Hierarchical Methods

- Density-Based Methods

-Summary &
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Summary

- Cluster analysis groups objects based on their similarity and has
wide applications; Measure of similarity can be computed for
various types of data

- K-means and K-medoids algorithms are popular partitioning-
based clustering algorithms

- AGNES and DIANA are interesting hierarchical clustering
algorithms

- DBSCAN, OPTICS*, and DENCLUE™ are interesting density-based
algorithms
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