CS145: INTRODUCTION TO DATA MINING

Sequence Data: Sequential Pattern Mining

Instructor: Yizhou Sun
yzsun@cs.ucla.edu

November 21, 2018

Methods to Learn

	Vector Data	Set Data	Sequence Data	Text Data
Classification	Logistic Regression; Decision Tree; KNN; SVM; NN			Naïve Bayes for Text
Clustering	K-means; hierarchical clustering; DBSCAN; Mixture Models			PLSA
Prediction	Linear Regression GLM*			
Frequent Pattern		Apriori; FP growth	GSP; PrefixSpan	
Mining			DTW	
Similarity Search				

Sequence Data

- Introduction
-GSP
-PrefixSpan
-Summary

Sequence Database

- A sequence database consists of sequences of ordered elements or events, recorded with or without a concrete notion of time.

SID	sequence
10	$<\mathrm{a}(\mathrm{abc})(\mathrm{ac}) \mathrm{d}(\mathrm{cf})>$
20	$<(\mathrm{ad}) \mathrm{c}(\mathrm{bc})(\mathrm{ae})>$
30	$<(\mathrm{ef})(\mathrm{ab})(\mathrm{df}) \mathrm{cb}>$
40	$<e g(\mathrm{af}) \mathrm{cbc}>$

Example: Music

- Music: midi files

Example: DNA Sequence

SYNTENIC ASSEMBLIES FOR CG15386

MD1 06 NEWC W501
MD199
C1674 SIM4

MD1 06 NEWC W501 MD199 C1674 SIM4

MD1 06 NEWC W501 MD199 C1674 SIM4

MD1 06 NEWC W501 MD199 C1674 SIM4 ATGCTTAGTAATCCCTACTTTAAGTCCGTTTTGTGGCTGATTGGCTTCGGAGGAATGGG ATGCTTAGTAATCCTTACTTTAAATCCGTTTTGTGGCTGATTGGCTTCGGAGGAATGGG ATGCTTAGTAATCCCTACTTTAAGTCCGTTTTGTGGCTGATTGGCTTCGGAGGAATGGG ATGCTTAGTAATCCCTACTTTAAGTCCGTTTTGTGGCTGATTGGCTTCGGAGGAATGGG ATGCTTAGTAATCCCTACTTTAAGTCCGTTTTGTGGCTGATTGGCTTCGGAGGAATGGG ATGCTTAGTAATCCCTACTTTAAGTCCGTTTTGTGGCTGATTGGCTTCGGAGGAATGGG

CTACGGCCTAATGGTGCTAACAGAGCCGAACGTCGACAAAATAGAGCGCATCAAAGCCT CTACGGCCTAATGGTGCTAACCGAGCCGAACGTCGACAAAATAGAGCGCATCAAAGCCT CTACGGCCTAATGGTGCTAACCGAGCCGAACGTCGACAAAATAGAGCGCATCAAAGCCT CTACGGCCTAATGGTGCTAACCGAGCCGAACGTCGACAAAATAGAGCGCATCAAAGCCT CTACGGCCTAATGGTGCTAACCGAGCCGAACGTCGACAAAATAGAGCGCATCAAAGCCT CTACGGCCTAATGGTGCTAACCGAGCCGAACGTCGACAAAATAGAGCGCATCAAAGCCT

CCGTTTCAAGTACCAAACTGAGTGCGGATGAGCAGCGAAAGGCTCTGTTTATGAAGAAG CCGTTTCAAGTACCAAACTGAGTGCGGATGAGCAGCGAAAGGCTCTGTTTATGAAGAAG CCGTTTCAAGTACCAAACTGAGTGCGGATGAGCAGCGAAAGGCTCTGTTTATGAAGAAG CCGTTTCAAGTACCAAACTGAGTGCGGATGAGCAGCGAAAGGCTCTGTTTATGAAGAAG CCGTTTCAAGTACCAAACTGAGTGCGGATGAGCAGCGAAAGGCTCTGTTTATGAAGAAG CCGTTTCAAGTACCAAACTGAGTGCGGATGAGCAGCGAAAGGCTCTGTTTATGAAGAAG

CTGCAGGAGGCGTCCACCACCAGTGCCCCAATCTACAGGTCAGCGGCCGAGAAATAG CTGCAGGAGGCGTCCACCACCAGTGCCCCAATCTACAGGTCATCGGCCGAGAAATAG CTGCAGGAGGCGTCCACCACCACTGCCCCAATCTACAGGTCATCGGCCGAGAAATAG CTGCAGGAGGCGTCCACCACCAGTGCCCCAATCTACAGGTCAGCGGCCGAGAAATAG CTGCAGGAGGCGTCCACCACCAGTGCCCCAATCTACAGGTCAGCGGCCGAGAAATAG CTGCAGGAGGCGTCCACCACCAGTGCCCCAATCTACAGGTCAGCGGCCGAGAAATAG

Sequence Databases \& Sequential

 Patterns- Transaction databases vs. sequence databases
- Frequent patterns vs. (frequent) sequential patterns
- Applications of sequential pattern mining
- Customer shopping sequences:
- First buy computer, then CD-ROM, and then digital camera, within 3 months.
- Medical treatments, natural disasters (e.g., earthquakes), science \& eng. processes, stocks and markets, etc.
- Telephone calling patterns, Weblog click streams
- Program execution sequence data sets
- DNA sequences and gene structures

What Is Sequential Pattern Mining?

- Given a set of sequences, find the complete set of frequent subsequences

A sequence database

$$
\text { A sequence: }<(\mathrm{ef})(\mathrm{ab}) \text { (df) c b }>
$$

SID	sequence
10	$<a(\operatorname{abc})(\mathrm{ac}) \mathrm{d})(\mathrm{cf})>$
20	$<(\mathrm{ad}) \mathrm{c}(\mathrm{bc})(\mathrm{ae})>$
30	$<(\mathrm{ef})(\mathrm{ab})(\mathrm{df})(\mathrm{b}>$
40	$<e g(\mathrm{af}) \mathrm{cbc}>$

<a(bc)dc> is a subsequence of <ag(abc)(ac)d(cf)>

Given support threshold min_sup $=2,<(\mathrm{ab}) \mathrm{c}>$ is a sequential pattern

Sequence

- Event / element
- An non-empty set of items, e.g., e=(ab)
- Sequence
- An ordered list of events, e.g., $s=<e_{1} e_{2} \ldots e_{l}>$
- Length of a sequence
- The number of instances of items in a sequence - The length of < (ef) (ab) (df) c b > is 8 (Not 5!)

Subsequence

- Subsequence

- For two sequences $\alpha=<a_{1} a_{2} \ldots a_{n}>$ and $\beta=<b_{1} b_{2} \ldots b_{m}>, \alpha$ is called a subsequence of β if there exists integers $1 \leq j_{1}<j_{2}<\cdots<$ $j_{n} \leq m$, such that $a_{1} \subseteq b_{j_{1}}, \ldots, a_{n} \subseteq b_{j_{n}}$
- Supersequence
- If α is a subsequence of β, β is a supersequence of α e.g., <a(bc)dc> is a subsequence of <ag(abc)(ac)d(다)>

Sequential Pattern

- Support of a sequence α
- Number of sequences in the database that are supersequence of α
- Support $_{S}(\alpha)$
- α is frequent if $\operatorname{Suppor}_{S}(\alpha) \geq$ min_support
- A frequent sequence is called sequential pattern
$\cdot 1$-pattern if the length of the sequence is 1

EM?

A sequence database

SID	sequence
10	$<a(\mathrm{abc})(\mathrm{ac}) \mathrm{d}(\mathrm{cf})>$
20	$<(\mathrm{ad}) \mathrm{c}(\mathrm{bc})(\mathrm{ae})>$
30	$<(\mathrm{ef})(\mathrm{ab})(\mathrm{df}) \mathrm{b}>$
40	$<e g(\mathrm{af}) \mathrm{cbc}>$

Given support threshold min_sup $=2,<(\mathrm{ab}) \mathrm{c}>$ is a sequential pattern

Challenges on Sequential Pattern Mining

- A huge number of possible sequential patterns are hidden in databases
- A mining algorithm should
- find the complete set of patterns, when possible, satisfying the minimum support (frequency) threshold
- be highly efficient, scalable, involving only a small number of database scans
- be able to incorporate various kinds of userspecific constraints

Sequential Pattern Mining Algorithms

- Concept introduction and an initial Apriori-like algorithm
- Agrawal \& Srikant. Mining sequential patterns, ICDE'95
- Apriori-based method: GSP (Generalized Sequential Patterns: Srikant \& Agrawal @ EDBT’96)
- Pattern-growth methods: FreeSpan \& PrefixSpan (Han et al.@KDD’00; Pei, et al.@ICDE'01)
- Vertical format-based mining: SPADE (Zaki@Machine Leanining’00)
- Constraint-based sequential pattern mining (SPIRIT: Garofalakis, Rastogi, Shim@VLDB’99; Pei, Han, Wang @ CIKM’02)
- Mining closed sequential patterns: CloSpan (Yan, Han \& Afshar @SDM’03)

Sequence Data

- Introduction

$\cdot G S P$
-PrefixSpan
-Summary

The Apriori Property of Sequential Patterns

- A basic property: Apriori (Agrawal \& Sirkant'94)
- If a sequence S is not frequent
- Then none of the super-sequences of S is frequent
- E.g, <hb> is infrequent \rightarrow so do $<$ hab> and $<(a h) b>$

Seq. ID	Sequence
10	$<(\mathrm{bd}) \mathrm{cb}(\mathrm{ac})>$
20	$<(\mathrm{bf})(\mathrm{ce}) \mathrm{b}(\mathrm{fg})>$
30	$<(\mathrm{ah})(\mathrm{bf}) \mathrm{abf}>$
40	$<(\mathrm{be})(\mathrm{ce}) \mathrm{d}>$
50	$<\mathrm{a}(\mathrm{bd}) \mathrm{bcb}(\mathrm{ade})>$

Given support threshold min_sup $=2$

GSP—Generalized Sequential Pattern Mining

- GSP (Generalized Sequential Pattern) mining algorithm
- proposed by Agrawal and Srikant, EDBT"96
- Outline of the method
- Initially, every item in DB is a candidate of length-1
- for each level (i.e., sequences of length-k) do
- scan database to collect support count for each candidate sequence
- generate candidate length-($k+1$) sequences from length- k frequent sequences using Apriori
- repeat until no frequent sequence or no candidate can be found
- Major strength: Candidate pruning by Apriori

Finding Length-1 Sequential Patterns

- Examine GSP using an example
- Initial candidates: all singleton sequences

$$
\begin{aligned}
& -\langle\mathrm{a}\rangle,\langle\mathrm{b}\rangle,\langle\mathrm{c}\rangle,\langle\mathrm{d}\rangle,\langle\mathrm{e}\rangle,\langle\mathrm{f}\rangle,\langle\mathrm{g}\rangle, \\
& \text { <h> }
\end{aligned}
$$

- Scan database once, count support for candidates
min_sup $=2$

Seq. ID	Sequence
10	$<(\mathrm{bd}) \mathrm{cb}(\mathrm{ac})>$
20	$<(\mathrm{bf})(\mathrm{ce}) \mathrm{b}(\mathrm{fg})>$
30	$<(\mathrm{ah})(\mathrm{bf}) \mathrm{abf}>$
40	$<(\mathrm{be})(\mathrm{ce}) \mathrm{d}>$
50	$<\mathrm{a}(\mathrm{bd}) \mathrm{bcb}(\mathrm{ade})>$

Cand	Sup
<a>	3
	5
<c>	4
<d>	3
<e>	3
<f>	2
<g>	1
she	1

GSP: Generating Length-2 Candidates

51 length-2
Candidates

	$<a>$	$$	$<c>$	$<d>$	$<e>$	$<$ f>
<a>	<aa>	<ab>	<ac>	<ad>	<ae>	<af>
	<ba>	<bb>	<bc>	<bd>	<be>	<bf>
<c>	<ca>	<cb>	<cc>	<cd>	<ce>	<cf>
<d>	<da>	<db>	<dc>	<dd>	<de>	<df>
<e>	<ea>	<eb>	<ec>	<ed>	<ee>	<ef>
<f>	<fa>	<fb>	<fc>	<fd>	<fe>	<ff>

	$<\mathrm{a}>$	$<\mathrm{b}>$	$<\mathrm{c}>$	$<\mathrm{d}>$	$<\mathrm{e}>$	$<\mathrm{f}>$
$<\mathrm{a}>$		$<(\mathrm{ab})>$	$<(\mathrm{ac})>$	$<(\mathrm{ad})>$	$<(\mathrm{ae})>$	$<(\mathrm{af})>$
$<\mathrm{b}>$			$<(\mathrm{bc})>$	$<(\mathrm{bd})>$	$<(\mathrm{be})>$	$<(\mathrm{bf})>$
$<\mathrm{c}>$				$<(\mathrm{cd})>$	$<(\mathrm{ce})>$	$<(\mathrm{cf})>$
$<\mathrm{d}>$					$<(\mathrm{de})>$	$<(\mathrm{df})>$
$<\mathrm{e}>$						$<(\mathrm{ef})>$
$<\mathrm{f}>$						

Without Apriori
property,
$8 * 8+8 * 7 / 2=92$
candidates
Apriori prunes
44.57% candidates

How to Generate Candidates in General?

- From L_{k-1} to C_{k}
- Step 1: join
- s_{1} and s_{2} can join, if dropping first item in s_{1} is the same as dropping the last item in s_{2}
- Examples:
- <(12)3> join <(2)34> = <(12)34>
- <(12) $3>$ join <(2)(34)> $=<(12)(34)>$
- Step 2: pruning
- Check whether all length $\mathrm{k}-1$ subsequences of a candidate is contained in L_{k-1}

The GSP Mining Process

$5^{\text {th }}$ scan: 1 cand. 1 length- 5 seq. pat.
$4^{\text {th }}$ scan: 8 cand. 7 length- 4 seq. pat.
$3^{\text {rd }}$ scan: 46 cand. 20 length -3 seq. pat. 20 cand. not in DB at all $2^{\text {nd }}$ scan: 51 cand. 19 length-2 seq. pat. 10 cand. not in DB at all $1^{\text {st }}$ scan: 8 cand. 6 length- 1 seq. pat.

min_sup $=2$	Seq. ID	Sequence
	10	<(bd)cb(ac)>
	20	<(bf)(ce)b(fg)>
	30	<(ah)(bf)abf>
	40	<(be)(ce)d>
	50	<a(bd)bcb(ade)>

Candidate Generate-and-test: Drawbacks

- A huge set of candidate sequences generated.
- Especially 2-item candidate sequence.
- Multiple Scans of database needed.
- The length of each candidate grows by one at each database scan.
- Inefficient for mining long sequential patterns.
- A long pattern grow up from short patterns
- The number of short patterns is exponential to the length of mined patterns.

*The SPADE Algorithm

- SPADE (Sequential PAttern Discovery using Equivalent Class) developed by Zaki 2001
- A vertical format sequential pattern mining method
- A sequence database is mapped to a large set of
- Item: <SID, EID>
- Sequential pattern mining is performed by
- growing the subsequences (patterns) one item at a time by Apriori candidate generation

*The SPADE Algorithm

SID	EID	Items
1	1	a
1	2	abc
1	3	ac
1	4	d
1	5	cf
2	1	ad
2	2	c
2	3	bc
2	4	ae
3	1	ef
3	2	ab
3	3	df
3	4	c
3	5	b
4	1	e
4	2	g
4	3	af
4	4	c
4	5	b
4	6	c

a		b		\cdots
SID	EID	SID	EID	\cdots
1	1	1	2	
1	2	2	3	
1	3	3	2	
2	1	3	5	
2	4	4	5	
3	2			
4	3			

Join two tables

ab				ba				\cdots
SID	EID (a)	EID(b)	SID	EID (b)	EID(a)	\cdots		
1	1	2	1	2	3			
2	1	3	2	3	4			
3	2	5						
4	3	5						

aba				
SID	EID (a)	EID(b)	EID(a)	\cdots
1	1	2	3	
2	1	3	4	

Data Mining: Concepts and Techniques

Bottlenecks of GSP and SPADE

- A huge set of candidates could be generated
- 1,000 frequent length- 1 sequences generate s huge number of length- 2 candidates!

$$
1000 \times 1000+\frac{1000 \times 999}{2}=1,499,500
$$

- Multiple scans of database in mining
- Breadth-first search
- Mining long sequential patterns
- Needs an exponential number of short candidates
- A length- 100 sequential pattern needs 10^{30} candidate sequences!

$$
\sum_{i=1}^{100}\binom{100}{i}=2^{100}-1 \approx 10^{30}
$$

Sequence Data

- Introduction

-GSP

- PrefixSpan
-Summary

Prefix and Suffix

Assume a pre-specified order on items, e.g., alphabetical order

- <a>, <aa>, <a(ab)> and <a(abc)> are prefixes of sequence <a(abc)(ac)d(cf)>
- Note $\langle\mathrm{a}(\mathrm{ac})>$ is not a prefix of $\langle\mathrm{a}(\mathrm{abc})(\mathrm{ac}) \mathrm{d}(\mathrm{cf})>$
- Given sequence <a(abc)(ac)d(cf)>

Prefix	Suffix
$<\mathrm{a}>$	$<(\mathrm{abc})(\mathrm{ac}) \mathrm{d}(\mathrm{cf})>$
$<\mathrm{aa}>$	$<\left(_\mathrm{bc}\right)(\mathrm{ac}) \mathrm{d}(\mathrm{cf})>$
$<\mathrm{a}(\mathrm{ab})>$	$<\left(_\mathrm{c}\right)(\mathrm{ac}) \mathrm{d}(\mathrm{cf})>$

- (_bc) means: the last element in the prefix together with (bc) form one element

Prefix-based Projection

Given a sequence, α, let α^{\prime} be subsequence of α

- α^{\prime} is called a projection of α w.r.t. prefix β, if only and only if
- α^{\prime} has prefix β, and
- α^{\prime} is the maximum subsequence of α with prefix β
- Example:
$-<a d(c f)>$ is a projection of <a(abc)(ac)d(cf)> w.r.t. prefix <ad>

SID	sequence
10	$<\mathrm{a}(\mathrm{abc})(\mathrm{ac}) \mathrm{d}(\mathrm{cf})>$
20	$<(\mathrm{ad}) \mathrm{c}(\mathrm{bc})(\mathrm{ae})>$
30	$<(\mathrm{ef})(\mathrm{ab})(\mathrm{df}) \mathrm{cb}>$
40	$<e g(\mathrm{af}) \mathrm{cbc}>$

Projected (Suffix) Database

- Let α be a sequential pattern, α-projected database is the collection of suffixes of projections of sequences in the database w.r.t. prefix α
- Examples
- <a>-projected database
- <(abc)(ac)d(cf)>
- <(_d)c(bc)(ae)>
- <(_b)(df)cb>
- <(_f)cbc>

SID	sequence
10	$<\mathrm{a}(\mathrm{abc})(\mathrm{ac}) \mathrm{d}(\mathrm{cf})>$
20	$<(\mathrm{ad}) \mathrm{c}(\mathrm{bc})(\mathrm{ae})>$
30	$<(\mathrm{ef})(\mathrm{ab})(\mathrm{df}) \mathrm{cb}>$
40	$<e g(\mathrm{af}) \mathrm{cbc}>$

- <ab>-projected database
- <(_c) $(a c) d(c f)>(<a(b c)(a c) d(c f)>$ is the projection of $<a(a b c)(a c) d(c f)>$ w.r.t. prefix <ab>)
- <(_c)(ae)> (<a(bc)(ae)> is the projection of <(ad)c(bc)(ae)> w.r.t. prefix <ab>)
- <c> (<abc> is the projection of <eg(af)cbc> w.r.t prefix <ab>)

Mining Sequential Patterns by Prefix Projections

- Step 1: find length-1 sequential patterns
$-\langle\mathrm{a}\rangle,\langle\mathrm{b}\rangle,\langle\mathrm{c}\rangle,\langle\mathrm{d}\rangle,\langle\mathrm{e}\rangle,\langle\mathrm{f}\rangle$
- Step 2: divide search space. The complete set of seq. pat. can be partitioned into 6 subsets:
- The ones having prefix <a>;
- The ones having prefix ;
- The ones having prefix <f>
- Step 3: mine each subset recursively via corresponding projected databases

SID	sequence
10	$<\mathrm{a}(\mathrm{abc})(\mathrm{ac}) \mathrm{d}(\mathrm{cf})>$
20	$<(\mathrm{ad}) \mathrm{c}(\mathrm{bc})(\mathrm{ae})>$
30	$<(\mathrm{ef})(\mathrm{ab})(\mathrm{df}) \mathrm{cb}>$
40	$<\mathrm{eg}(\mathrm{af}) \mathrm{cbc}>$

Finding Seq. Patterns with Prefix <a>

- Only need to consider projections w.r.t. <a>
- <a>-projected (suffix) database:
- <(abc)(ac)d(cf)>
- <(_d)c(bc)(ae)>
- <(_b)(df)cb>
- <(_f)cbc>

SID	sequence
10	$<\mathrm{a}(\mathrm{abc})(\mathrm{ac}) \mathrm{d}(\mathrm{cf})>$
20	$<(\mathrm{ad}) \mathrm{c}(\mathrm{bc})(\mathrm{ae})>$
30	$<(\mathrm{ef})(\mathrm{ab})(\mathrm{df}) \mathrm{cb}>$
40	$<\mathrm{eg}(\mathrm{af}) \mathrm{cbc}>$

- Find all the length-2 seq. pat. Having prefix <a>: <aa>, <ab>, <(ab)>, <ac>, <ad>, <af>
- Further partition into 6 subsets
- Having prefix <aa>;
- ...
- Having prefix <af>

Why are those 6 subsets?

- By scanning the <a>-projected database once, its locally frequent items are identified as
$\cdot a: 2, b: 4, _b: 2, c: 4, d: 2$, and $f: 2$.
-Thus all the length-2 sequential patterns prefixed with $\langle a\rangle$ are found, and they are:
- <aa> : $2,\langle a b>: 4,<(a b)>: 2,\langle a c>: 4,\langle a d>: 2$, and <af>: 2.

Completeness of PrefixSpan

SDB

SID	sequence
10	$<a(a b c)(a c) d(\mathrm{cf})>$
20	$<(\mathrm{ad}) \mathrm{c}(\mathrm{bc})(\mathrm{ae})>$
30	$<(\mathrm{ef})(\mathrm{ab})(\mathrm{df}) \mathrm{cb}>$
40	$<e g(\mathrm{af}) \mathrm{cbc}>$

Length-1 sequential patterns <a>, , <c>, <d>, <e>, <f>

Examples

- <aa>-projected database
- < (_bc)(ac)d(cf)>
- <(_e)>
<a>-projected database:
- <(abc)(ac)d(cf)>
- <(_d)c(bc)(ae)>
- <(_b)(df)cb>
- <(_f)cbc>
- <ab>-projected database
- <(_c)(ac)d(cf)>
- < (_c)(ae)>
$-\langle c>$
- <(ab)>-projected database
- <(_c)(ac)d(cf)>
- <(df)cb>

Reference: http://hanj.cs.illinois.edu/pdf/tkde04_spgjn.pdf

Efficiency of PrefixSpan

- No candidate sequence needs to be generated
- Projected databases keep shrinking
- Major cost of PrefixSpan: Constructing projected databases
- Can be improved by pseudo-projections

*Speed-up by Pseudo-projection

- Major cost of PrefixSpan: projection
- Postfixes of sequences often appear repeatedly in recursive projected databases
- When (projected) database can be held in main memory, use pointers to form projections $\quad s=<a(a b c)(a c) d(c f)>$
- Pointer to the sequence

*Pseudo-Projection vs. Physical Projection

- Pseudo-projection avoids physically copying postfixes
- Efficient in running time and space when database can be held in main memory
- However, it is not efficient when database cannot fit in main memory
- Disk-based random accessing is very costly
- Suggested Approach:
- Integration of physical and pseudo-projection
- Swapping to pseudo-projection when the data set fits in memory

Performance on Data Set C10T8S818

*Performance on Data Set Gazelle

Effect of Pseudo-Projection

Sequence Data

- Introduction

-GSP

- PrefixSpan
-Summary

Summary

- Sequential Pattern Mining
- GSP, PrefixSpan

