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Methods to Learn
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Vector Data Set Data Sequence Data Text Data

Classification Logistic Regression; 
Decision Tree; KNN;
SVM; NN

Naïve Bayes for Text

Clustering K-means; hierarchical
clustering; DBSCAN; 
Mixture Models

PLSA

Prediction Linear Regression
GLM*

Frequent Pattern 
Mining

Apriori; FP growth GSP; PrefixSpan

Similarity Search DTW



Sequence Data
• Introduction

•GSP

•PrefixSpan

•Summary
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Sequence Database
•A sequence database consists of 
sequences of ordered elements or events, 
recorded with or without a concrete 
notion of time.
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SID sequence

10 <a(abc)(ac)d(cf)>

20 <(ad)c(bc)(ae)>

30 <(ef)(ab)(df)cb>

40 <eg(af)cbc>



Example: Music
•Music: midi files
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Example: DNA Sequence
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Sequence Databases & Sequential 
Patterns

• Transaction databases vs. sequence databases
• Frequent patterns vs. (frequent) sequential patterns 
• Applications of sequential pattern mining

• Customer shopping sequences: 
• First buy computer, then CD-ROM, and then digital 

camera, within 3 months.
• Medical treatments, natural disasters (e.g., 
earthquakes), science & eng. processes, stocks and 
markets, etc.

• Telephone calling patterns, Weblog click streams
• Program execution sequence data sets
• DNA sequences and gene structures

7



8

What Is Sequential Pattern Mining?

•Given a set of sequences, find the complete 
set of frequent subsequences

A sequence database
A sequence : < (ef) (ab)  (df) c b >

An element may contain a set of items.
Items within an element are unordered
and we list them alphabetically.

<a(bc)dc> is a subsequence of 
<a(abc)(ac)d(cf)>

Given support threshold min_sup =2, <(ab)c> is a sequential 
pattern

SID sequence
10 <a(abc)(ac)d(cf)>
20 <(ad)c(bc)(ae)>
30 <(ef)(ab)(df)cb>
40 <eg(af)cbc>



Sequence
•Event / element

• An non-empty set of items, e.g., e=(ab)

•Sequence
• An ordered list  of events, e.g., 𝑠𝑠 =< 𝑒𝑒1𝑒𝑒2 … 𝑒𝑒𝑙𝑙 >

•Length of a sequence
• The number of instances of items in a sequence

• The length of < (ef) (ab)  (df) c b > is 8 (Not 5!)
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Subsequence
•Subsequence

• For two sequences 𝛼𝛼 =< 𝑎𝑎1𝑎𝑎2 …𝑎𝑎𝑛𝑛 > and 
𝛽𝛽 =< 𝑏𝑏1𝑏𝑏2 … 𝑏𝑏𝑚𝑚 >, 𝛼𝛼 is called a subsequence 
of 𝛽𝛽 if there exists integers 1 ≤ 𝑗𝑗1 < 𝑗𝑗2 < ⋯ <
𝑗𝑗𝑛𝑛 ≤ 𝑚𝑚, such that 𝑎𝑎1 ⊆ 𝑏𝑏𝑗𝑗1 , … , 𝑎𝑎𝑛𝑛 ⊆ 𝑏𝑏𝑗𝑗𝑛𝑛

•Supersequence
• If 𝛼𝛼 is a subsequence of 𝛽𝛽, 𝛽𝛽 is a 
supersequence of 𝛼𝛼
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e.g., <a(bc)dc> is a subsequence of <a(abc)(ac)d(cf)>



Sequential Pattern
•Support of a sequence 𝛼𝛼

• Number of sequences in the database that are 
supersequence of 𝛼𝛼

•𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡𝑆𝑆 𝛼𝛼
•𝛼𝛼 is frequent if 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡𝑆𝑆 𝛼𝛼 ≥
min _𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

•A frequent sequence is called sequential 
pattern
• l-pattern if the length of the sequence is l
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Example
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A sequence database

Given support threshold min_sup =2, <(ab)c> is a sequential 
pattern

SID sequence
10 <a(abc)(ac)d(cf)>
20 <(ad)c(bc)(ae)>
30 <(ef)(ab)(df)cb>
40 <eg(af)cbc>



Challenges on Sequential Pattern 
Mining

• A huge number of possible sequential patterns are hidden in 
databases

• A mining algorithm should 

• find the complete set of patterns, when 
possible, satisfying the minimum support 
(frequency) threshold

• be highly efficient, scalable, involving only a 
small  number of database scans

• be able to incorporate various kinds of user-
specific constraints 
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Sequential Pattern Mining Algorithms

• Concept introduction and an initial Apriori-like algorithm

• Agrawal & Srikant. Mining sequential patterns, ICDE’95

• Apriori-based method: GSP (Generalized Sequential Patterns: Srikant &  
Agrawal @ EDBT’96)

• Pattern-growth methods: FreeSpan & PrefixSpan (Han et al.@KDD’00; Pei, et 
al.@ICDE’01)

• Vertical format-based mining: SPADE (Zaki@Machine Leanining’00)

• Constraint-based sequential pattern mining (SPIRIT: Garofalakis, Rastogi, 
Shim@VLDB’99; Pei, Han, Wang @ CIKM’02)

• Mining closed sequential patterns: CloSpan (Yan, Han & Afshar @SDM’03)



Sequence Data
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•Summary
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The Apriori Property of Sequential Patterns

• A basic property: Apriori (Agrawal & Sirkant’94) 

• If a sequence S is not frequent 

• Then none of the super-sequences of S is frequent

• E.g, <hb> is infrequent  so do <hab> and <(ah)b>

<a(bd)bcb(ade)>50
<(be)(ce)d>40

<(ah)(bf)abf>30
<(bf)(ce)b(fg)>20
<(bd)cb(ac)>10

SequenceSeq. ID Given support threshold
min_sup =2 
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GSP—Generalized Sequential Pattern Mining

• GSP (Generalized Sequential Pattern) mining algorithm

• proposed by Agrawal and Srikant, EDBT’96
• Outline of the method

• Initially, every item in DB is a candidate of length-1
• for each level (i.e., sequences of length-k) do

• scan database to collect support count for each candidate 
sequence

• generate candidate length-(k+1) sequences from length-k 
frequent sequences using Apriori 

• repeat until no frequent sequence or no candidate can 
be found

• Major strength: Candidate pruning by Apriori
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Finding Length-1 Sequential Patterns

• Examine GSP using an example 
• Initial candidates: all singleton sequences

• <a>, <b>, <c>, <d>, <e>, <f>, <g>, 
<h>

• Scan database once, count support for 
candidates

<a(bd)bcb(ade)>50
<(be)(ce)d>40

<(ah)(bf)abf>30
<(bf)(ce)b(fg)>20
<(bd)cb(ac)>10

SequenceSeq. ID
min_sup =2 

Cand Sup
<a> 3
<b> 5
<c> 4
<d> 3
<e> 3
<f> 2
<g> 1
<h> 1
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GSP: Generating Length-2 Candidates

<a> <b> <c> <d> <e> <f>

<a> <aa> <ab> <ac> <ad> <ae> <af>

<b> <ba> <bb> <bc> <bd> <be> <bf>

<c> <ca> <cb> <cc> <cd> <ce> <cf>

<d> <da> <db> <dc> <dd> <de> <df>

<e> <ea> <eb> <ec> <ed> <ee> <ef>

<f> <fa> <fb> <fc> <fd> <fe> <ff>

<a> <b> <c> <d> <e> <f>

<a> <(ab)> <(ac)> <(ad)> <(ae)> <(af)>

<b> <(bc)> <(bd)> <(be)> <(bf)>

<c> <(cd)> <(ce)> <(cf)>

<d> <(de)> <(df)>

<e> <(ef)>

<f>

51 length-2
Candidates

Without Apriori 
property,
8*8+8*7/2=92 
candidates

Apriori prunes 
44.57% candidates



How to Generate Candidates in 
General?

•From 𝐿𝐿𝑘𝑘−1 to 𝐶𝐶𝑘𝑘
•Step 1: join

• 𝑠𝑠1 𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠2 can join, if dropping first item in 𝑠𝑠1
is the same as dropping the last item in 𝑠𝑠2

• Examples: 
• <(12)3> join <(2)34> = <(12)34>
• <(12)3> join <(2)(34)> = <(12)(34)>

•Step 2: pruning
• Check whether all length k-1 subsequences of a 
candidate is contained in 𝐿𝐿𝑘𝑘−1

20
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The GSP Mining Process

<a> <b> <c> <d> <e> <f> <g> <h>

<aa> <ab> … <af> <ba> <bb> … <ff> <(ab)> … <(ef)>

<abb> <aab> <aba> <baa> <bab> …

<abba> <(bd)bc> …

<(bd)cba>

1st scan: 8 cand. 6 length-1 seq. 
pat.

2nd scan: 51 cand. 19 length-2 seq. 
pat. 10 cand. not in DB at all

3rd scan: 46 cand. 20 length-3 seq. 
pat. 20 cand. not in DB at all

4th scan: 8 cand. 7 length-4 seq. 
pat. 

5th scan: 1 cand. 1 length-5 seq. 
pat. 

Cand. cannot pass 
sup. threshold

Cand. not in DB at all

<a(bd)bcb(ade)>50

<(be)(ce)d>40

<(ah)(bf)abf>30

<(bf)(ce)b(fg)>20

<(bd)cb(ac)>10

SequenceSeq. ID

min_sup =2 
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Candidate Generate-and-test: Drawbacks
• A huge set of candidate sequences generated.

• Especially 2-item candidate sequence.
• Multiple Scans of database needed.

• The length of each candidate grows by one at each 

database scan.
• Inefficient for mining long sequential patterns.

• A long pattern grow up from short patterns

• The number of short patterns is exponential to 

the length of mined patterns.
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*The SPADE Algorithm

• SPADE (Sequential PAttern Discovery using Equivalent Class) 
developed by Zaki 2001

• A vertical format sequential pattern mining method

• A sequence database is mapped to a large set of 

• Item: <SID, EID>

• Sequential pattern mining is performed by 

• growing the subsequences (patterns) one item 

at a time by Apriori candidate generation
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*The SPADE Algorithm

Join two tables



November 21, 2018 Data Mining: Concepts and Techniques 25

Bottlenecks of GSP and SPADE

• A huge set of candidates could be generated

• 1,000 frequent length-1 sequences generate s huge number of length-2 

candidates!

• Multiple scans of database in mining

• Breadth-first search

• Mining long sequential patterns

• Needs an exponential number of short candidates

• A length-100 sequential pattern needs 1030

candidate sequences!
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Prefix and Suffix

• <a>, <aa>, <a(ab)> and <a(abc)> are prefixes of 
sequence <a(abc)(ac)d(cf)>

• Note <a(ac)> is not a prefix of <a(abc)(ac)d(cf)>

• Given sequence <a(abc)(ac)d(cf)>

• (_bc) means: the last element in the prefix together with (bc) 

form one element

Prefix Suffix
<a> <(abc)(ac)d(cf)>
<aa> <(_bc)(ac)d(cf)>

<a(ab)> <(_c)(ac)d(cf)>

Assume a pre-specified order on items, e.g., alphabetical order



Prefix-based Projection
•Given a sequence, 𝛼𝛼, let 𝛼𝛼′ be subsequence 
of 𝛼𝛼
•𝛼𝛼′ is called a projection of 𝛼𝛼 w.r.t. prefix 𝛽𝛽, if only 
and only if
• 𝛼𝛼′ has prefix 𝛽𝛽, and 
• 𝛼𝛼′ is the maximum subsequence of 𝛼𝛼 with prefix 𝛽𝛽

• Example:
• <ad(cf)> is a projection 
of <a(abc)(ac)d(cf)> w.r.t. prefix <ad>

28

SID sequence
10 <a(abc)(ac)d(cf)>
20 <(ad)c(bc)(ae)>
30 <(ef)(ab)(df)cb>
40 <eg(af)cbc>



Projected (Suffix) Database
• Let 𝛼𝛼 be a sequential pattern, 𝛼𝛼-projected 

database is the collection of suffixes of 
projections of sequences in the database w.r.t. 
prefix 𝛼𝛼
• Examples

• <a>-projected database
• <(abc)(ac)d(cf)>
• <(_d)c(bc)(ae)>
• <(_b)(df)cb>
• <(_f)cbc>

• <ab>-projected database
• <(_c)(ac)d(cf)> (<a(bc)(ac)d(cf)> is the projection of <a(abc)(ac)d(cf)> w.r.t. 

prefix <ab>)
• <(_c)(ae)> (<a(bc)(ae)> is the projection of <(ad)c(bc)(ae)> w.r.t. prefix <ab>)
• <c> (<abc> is the projection of <eg(af)cbc> w.r.t prefix <ab>)
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SID sequence
10 <a(abc)(ac)d(cf)>
20 <(ad)c(bc)(ae)>
30 <(ef)(ab)(df)cb>
40 <eg(af)cbc>
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Mining Sequential Patterns by Prefix Projections

• Step 1: find length-1 sequential patterns

• <a>, <b>, <c>, <d>, <e>, <f>
• Step 2: divide search space. The complete set of seq. pat. can be 

partitioned into 6 subsets:

• The ones having prefix <a>;
• The ones having prefix <b>;
• …
• The ones having prefix <f>

• Step 3: mine each subset recursively via 
corresponding projected databases

SID sequence
10 <a(abc)(ac)d(cf)>
20 <(ad)c(bc)(ae)>
30 <(ef)(ab)(df)cb>
40 <eg(af)cbc>
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Finding Seq. Patterns with Prefix <a>

• Only need to consider projections w.r.t. <a>

• <a>-projected (suffix) database: 
• <(abc)(ac)d(cf)>
• <(_d)c(bc)(ae)>
• <(_b)(df)cb>
• <(_f)cbc>

• Find all the length-2 seq. pat. Having prefix <a>: <aa>, <ab>, <(ab)>, <ac>, 
<ad>, <af>

• Further partition into 6 subsets
• Having prefix <aa>;
• …
• Having prefix <af>

SID sequence
10 <a(abc)(ac)d(cf)>
20 <(ad)c(bc)(ae)>
30 <(ef)(ab)(df)cb>
40 <eg(af)cbc>



Why are those 6 subsets?
•By scanning the <a>-projected database 
once, its locally frequent items are 
identified as 
• a : 2, b : 4, _b : 2, c : 4, d : 2, and f : 2. 

•Thus all the length-2 sequential patterns 
prefixed with <a> are found, and they are:
• <aa> : 2, <ab> : 4, <(ab)> : 2, <ac> : 4, <ad> : 2, 
and <af > : 2.
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Completeness of PrefixSpan

SID sequence
10 <a(abc)(ac)d(cf)>
20 <(ad)c(bc)(ae)>
30 <(ef)(ab)(df)cb>
40 <eg(af)cbc>

SDB
Length-1 sequential patterns
<a>, <b>, <c>, <d>, <e>, <f>

<a>-projected database
<(abc)(ac)d(cf)>
<(_d)c(bc)(ae)>
<(_b)(df)cb>
<(_f)cbc>

Length-2 sequential
patterns
<aa>, <ab>, <(ab)>,
<ac>, <ad>, <af>

Having prefix <a>

Having prefix <aa>

<aa>-proj. db … <af>-proj. db

Having prefix <af>

<b>-projected database …
Having prefix <b>

Having prefix <c>, …, <f>

… …



Examples 
• <aa>-projected database

• <(_bc)(ac)d(cf)>
• <(_e)> 

• <ab>-projected database
• <(_c)(ac)d(cf)>
• <(_c)(ae)>
• <c>

• <(ab)>-projected database
• <(_c)(ac)d(cf)>
• <(df)cb>

34

<a>-projected database: 
• <(abc)(ac)d(cf)>
• <(_d)c(bc)(ae)>
• <(_b)(df)cb>
• <(_f)cbc>

Reference: http://hanj.cs.illinois.edu/pdf/tkde04_spgjn.pdf
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Efficiency of PrefixSpan

•No candidate sequence needs to be 

generated

•Projected databases keep shrinking

•Major cost of PrefixSpan: Constructing 

projected databases

• Can be improved by pseudo-projections
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*Speed-up by Pseudo-projection

• Major cost of PrefixSpan: projection

• Postfixes of sequences often appear 

repeatedly in recursive projected 

databases
• When (projected) database can be held in main 

memory, use pointers to form projections

• Pointer to the sequence

• Offset of the postfix

s=<a(abc)(ac)d(cf)>

<(abc)(ac)d(cf)>

<(_c)(ac)d(cf)>

<a>

<ab>
s|<a>: ( , 2)

s|<ab>: ( , 4)



37

*Pseudo-Projection vs. Physical Projection

• Pseudo-projection avoids physically copying postfixes

• Efficient in running time and space when 
database can be held in main memory

• However, it is not efficient when database cannot fit in main 
memory

• Disk-based random accessing is very costly
• Suggested Approach:

• Integration of physical and pseudo-projection

• Swapping to pseudo-projection when the data 
set fits in memory
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Performance on Data Set C10T8S8I8
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*Performance on Data Set Gazelle
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Effect of Pseudo-Projection
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Summary 
•Sequential Pattern Mining

• GSP, PrefixSpan
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