Selected Topics in
Optimization

Some slides borrowed from
http://www.stat.cmu.edu/~ryantibs/convexopt/




Overview

* Optimization problems are almost everywhere in
statistics and machine learning.
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Example

* In a regression model, we want the model to
minimize deviation from the dependent variable.

* |In a classification model, we want the model to
minimize classification error.

* In a generative model, we want to maximize the
likelihood to produce the observed data.



Gradient descent

Consider unconstrained, smooth convex optimization
min f(x)
€T

i.e., f is convex and differentiable with dom(f) = R™. Denote the
optimal criterion value by f* = min, f(z), and a solution by z*

Gradient descent: choose initial point (?) € R™, repeat:
) = =1 g Vf(x(k_l)), k=1,2,3,...

Stop at some point



Gradient descent interpretation

At each iteration, consider the expansion

Fl) ~ (@) + V5@ 5~ 2) + oy — 3

Quadratic approximation, replacing usual Hessian V2 f(x) by %I

f@)+ V@) (y—z) linear approximation to f

>=|ly — |3 proximity term to x, with weight 1/(2t)

Choose next point y = x to minimize quadratic approximation:

T =2 —tVf(x)



Blue point is z, red point is
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Fixed step size

Simply take t, =t for all k =1,2,3, ..., can diverge if ¢ is too big.
Consider f(z) = (1022 + 23)/2, gradient descent after 8 steps:
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Can be slow if t is too small. Same example, gradient descent after
100 steps:
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Converges nicely when t is “just right”. Same example, gradient
descent after 40 steps:
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Convergence analysis later will give us a precise idea of “just right”
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Backtracking line search

One way to adaptively choose the step size is to use backtracking
line search:

e First fix parameters 0 < f < 1land 0 < o < 1/2

e At each iteration, start with ¢ = t;n;:, and while

fl@ =tV f(x)) > f(x) = at|Vf(2)]3
shrink ¢t = t. Else perform gradient descent update

T =2 —tVf(x)

Simple and tends to work well in practice (further simplification:
just take a = 1/2)
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Backtracking interpretation

fz +tAz)

f(@) +tVf(x)T Az flx) +atVf(x)T Az

1 t
t=0 to

For us Ax = =V f(x)
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Backtracking picks up roughly the right step size (12 outer steps,
40 steps total):
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Here a = 8 =0.5



Practicalities

Stopping rule: stop when ||V f(x)||2 is small
e Recall Vf(z*) = 0 at solution z*
e If f is strongly convex with parameter m, then

IVF(@)l2 < V2me = f(z) - " <e

Pros and cons of gradient descent:

e Pro: simple idea, and each iteration is cheap (usually)

Pro: fast for well-conditioned, strongly convex problems

Con: can often be slow, because many interesting problems
aren’t strongly convex or well-conditioned

Con: can’t handle nondifferentiable functions
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Stochastic gradient descent

Consider minimizing a sum of functions
m
min ;fz(l‘)
As V", filx) =301, Vfi(x), gradient descent would repeat:

aF) = =1 g ZVf k=) k=1,2,3,...

In comparison, stochastic gradient descent or SGD (or incremental
gradient descent) repeats:

a®) = gk g Vfik(l‘(kil))u k=1,2,3,...

where i, € {1,...m} is some chosen index at iteration k
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Two rules for choosing index iy at iteration k:
e Cyclic rule: choose iy, =1,2,...m,1,2,...m,...
e Randomized rule: choose ij, € {1,...m} uniformly at random

Randomized rule is more common in practice

What's the difference between stochastic and usual (called batch)
methods? Computationally, m stochastic steps &~ one batch step.
But what about progress?

o Cyclic rule, m steps: z(F+™) = (k) — ¢S~ 7 f; (p(k+i=1))

o Batch method, one step: x(*+1) = (k) — 3™ 7 f;(2(R))

o Difference in direction is 37 [V f;(x*T1=D) — V f;(2(®)]

So SGD should converge if each V f;(x) doesn’t vary wildly with x

Rule of thumb: SGD thrives far from optimum, struggles close to
optimum ... (we'll revisit in just a few lectures)
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Convex sets and functions

Convex set: C' C R™ such that
z,yeC = te+(1—-t)yeC forall 0<t<1

O &

Convex function: f:R™ — R such that dom(f) C R™ convex, and
fltz+ (A =t)y) <tf(z)+ (1 —-1)f(y) for 0<t <1
and all z,y € dom(f)

(v, f(v))
(, f(x)
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Convex optimization problems

Optimization problem:
min f(x)
subject to  ¢g;(x) <0,i=1,...m

Here D = dom(f) N2, dom(g;) N(;—, dom(h;), common
domain of all the functions

This is a convex optimization problem provided the functions f
and g;,7 = 1,...m are convex, and h;,j = 1,...p are affine:

hj(:v):ajrqubj, j=1,...p
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Local minima are global minima

For convex optimization problems, local minima are global minima

Formally, if x is feasible—x € D, and satisfies all constraints—and
minimizes f in a local neighborhood,

f(x) < f(y) for all feasible y, ||z —y|l2 < p,

then
f(x) < f(y) for all feasible y
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This is a very useful
fact and will save us
a lot of trouble!
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Nonconvex Problem

* Convex problem: convex objective function,
convex constraints, convex domain

* Non-convex problem: not all above conditions are
met.

* Usually find approximations or local optimum.



Summary

* GD/SGD: both simple implementation

* SGD: fewer iterations of the whole dataset, fast
especially when data size is large; more able to get
over local optimums for non-convex problems.

* GD: less tricky stepsize tuning.

* Second-order methods (e.g. Newton methods, L-
BFGS):

* Simple stepsize tuning; closer to optimum for non-
convex problems.

* More memory cost.



