Selected Topics in Optimization

Some slides borrowed from
http://www.stat.cmu.edu/~rvantibs/convexopt/

Overview

- Optimization problems are almost everywhere in statistics and machine learning.

$$
\min _{x} f(x)
$$

Idea/mod el

Optimization problem: inference model x

Example

- In a regression model, we want the model to minimize deviation from the dependent variable.
- In a classification model, we want the model to minimize classification error.
- In a generative model, we want to maximize the likelihood to produce the observed data.

Gradient descent

Consider unconstrained, smooth convex optimization

$$
\min _{x} f(x)
$$

i.e., f is convex and differentiable with $\operatorname{dom}(f)=\mathbb{R}^{n}$. Denote the optimal criterion value by $f^{\star}=\min _{x} f(x)$, and a solution by x^{\star}

Gradient descent: choose initial point $x^{(0)} \in \mathbb{R}^{n}$, repeat:

$$
x^{(k)}=x^{(k-1)}-t_{k} \cdot \nabla f\left(x^{(k-1)}\right), \quad k=1,2,3, \ldots
$$

Stop at some point

Gradient descent interpretation

At each iteration, consider the expansion

$$
f(y) \approx f(x)+\nabla f(x)^{T}(y-x)+\frac{1}{2 t}\|y-x\|_{2}^{2}
$$

Quadratic approximation, replacing usual Hessian $\nabla^{2} f(x)$ by $\frac{1}{t} I$

$$
\begin{array}{cc}
f(x)+\nabla f(x)^{T}(y-x) & \text { linear approximation to } f \\
\frac{1}{2 t}\|y-x\|_{2}^{2} & \text { proximity term to } x, \text { with weight } 1 /(2 t)
\end{array}
$$

Choose next point $y=x^{+}$to minimize quadratic approximation:

$$
x^{+}=x-t \nabla f(x)
$$

Blue point is x, red point is
$x^{+}=\underset{y}{\operatorname{argmin}} f(x)+\nabla f(x)^{T}(y-x)+\frac{1}{2 t}\|y-x\|_{2}^{2}$

Fixed step size

Simply take $t_{k}=t$ for all $k=1,2,3, \ldots$, can diverge if t is too big. Consider $f(x)=\left(10 x_{1}^{2}+x_{2}^{2}\right) / 2$, gradient descent after 8 steps:

Can be slow if t is too small. Same example, gradient descent after 100 steps:

Converges nicely when t is "just right". Same example, gradient descent after 40 steps:

Convergence analysis later will give us a precise idea of "just right"

Backtracking line search

One way to adaptively choose the step size is to use backtracking line search:

- First fix parameters $0<\beta<1$ and $0<\alpha \leq 1 / 2$
- At each iteration, start with $t=t_{\text {init }}$, and while

$$
f(x-t \nabla f(x))>f(x)-\alpha t\|\nabla f(x)\|_{2}^{2}
$$

shrink $t=\beta t$. Else perform gradient descent update

$$
x^{+}=x-t \nabla f(x)
$$

Simple and tends to work well in practice (further simplification: just take $\alpha=1 / 2$)

Backtracking interpretation

For us $\Delta x=-\nabla f(x)$

Backtracking picks up roughly the right step size (12 outer steps, 40 steps total):

Here $\alpha=\beta=0.5$

Practicalities

Stopping rule: stop when $\|\nabla f(x)\|_{2}$ is small

- Recall $\nabla f\left(x^{\star}\right)=0$ at solution x^{\star}
- If f is strongly convex with parameter m, then

$$
\|\nabla f(x)\|_{2} \leq \sqrt{2 m \epsilon} \Longrightarrow f(x)-f^{\star} \leq \epsilon
$$

Pros and cons of gradient descent:

- Pro: simple idea, and each iteration is cheap (usually)
- Pro: fast for well-conditioned, strongly convex problems
- Con: can often be slow, because many interesting problems aren't strongly convex or well-conditioned
- Con: can't handle nondifferentiable functions

Stochastic gradient descent

Consider minimizing a sum of functions

$$
\min _{x} \sum_{i=1}^{m} f_{i}(x)
$$

As $\nabla \sum_{i=1}^{m} f_{i}(x)=\sum_{i=1}^{m} \nabla f_{i}(x)$, gradient descent would repeat:

$$
x^{(k)}=x^{(k-1)}-t_{k} \cdot \sum_{i=1}^{m} \nabla f_{i}\left(x^{(k-1)}\right), \quad k=1,2,3, \ldots
$$

In comparison, stochastic gradient descent or SGD (or incremental gradient descent) repeats:

$$
x^{(k)}=x^{(k-1)}-t_{k} \cdot \nabla f_{i_{k}}\left(x^{(k-1)}\right), \quad k=1,2,3, \ldots
$$

where $i_{k} \in\{1, \ldots m\}$ is some chosen index at iteration k

Two rules for choosing index i_{k} at iteration k :

- Cyclic rule: choose $i_{k}=1,2, \ldots m, 1,2, \ldots m, \ldots$
- Randomized rule: choose $i_{k} \in\{1, \ldots m\}$ uniformly at random Randomized rule is more common in practice

What's the difference between stochastic and usual (called batch) methods? Computationally, m stochastic steps \approx one batch step. But what about progress?

- Cyclic rule, m steps: $x^{(k+m)}=x^{(k)}-t \sum_{i=1}^{m} \nabla f_{i}\left(x^{(k+i-1)}\right)$
- Batch method, one step: $x^{(k+1)}=x^{(k)}-t \sum_{i=1}^{m} \nabla f_{i}\left(x^{(k)}\right)$
- Difference in direction is $\sum_{i=1}^{m}\left[\nabla f_{i}\left(x^{(k+i-1)}\right)-\nabla f_{i}\left(x^{(k)}\right)\right]$ So SGD should converge if each $\nabla f_{i}(x)$ doesn't vary wildly with x

Rule of thumb: SGD thrives far from optimum, struggles close to optimum ... (we'll revisit in just a few lectures)

References and further reading

- D. Bertsekas (2010), "Incremental gradient, subgradient, and proximal methods for convex optimization: a survey"
- S. Boyd and L. Vandenberghe (2004), "Convex optimization", Chapter 9
- T. Hastie, R. Tibshirani and J. Friedman (2009), "The elements of statistical learning", Chapters 10 and 16
- Y. Nesterov (1998), "Introductory lectures on convex optimization: a basic course", Chapter 2
- L. Vandenberghe, Lecture notes for EE 236C, UCLA, Spring 2011-2012

Convex sets and functions

Convex set: $C \subseteq \mathbb{R}^{n}$ such that

$$
x, y \in C \quad \Longrightarrow \quad t x+(1-t) y \in C \text { for all } 0 \leq t \leq 1
$$

Convex function: $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that $\operatorname{dom}(f) \subseteq \mathbb{R}^{n}$ convex, and

$$
f(t x+(1-t) y) \leq t f(x)+(1-t) f(y) \text { for } 0 \leq t \leq 1
$$

and all $x, y \in \operatorname{dom}(f)$

Convex optimization problems

Optimization problem:

$$
\begin{array}{ll}
\min _{x \in D} & f(x) \\
\text { subject to } & g_{i}(x) \leq 0, i=1, \ldots m \\
& h_{j}(x)=0, j=1, \ldots r
\end{array}
$$

Here $D=\operatorname{dom}(f) \cap \bigcap_{i=1}^{m} \operatorname{dom}\left(g_{i}\right) \cap \bigcap_{j=1}^{p} \operatorname{dom}\left(h_{j}\right)$, common domain of all the functions

This is a convex optimization problem provided the functions f and $g_{i}, i=1, \ldots m$ are convex, and $h_{j}, j=1, \ldots p$ are affine:

$$
h_{j}(x)=a_{j}^{T} x+b_{j}, \quad j=1, \ldots p
$$

Local minima are global minima

For convex optimization problems, local minima are global minima
Formally, if x is feasible- $x \in D$, and satisfies all constraints-and minimizes f in a local neighborhood,

$$
f(x) \leq f(y) \text { for all feasible } y,\|x-y\|_{2} \leq \rho,
$$

then

$$
f(x) \leq f(y) \text { for all feasible } y
$$

This is a very useful fact and will save us a lot of trouble!

Convex

Nonconvex

Nonconvex Problem

- Convex problem: convex objective function, convex constraints, convex domain
- Non-convex problem: not all above conditions are met.
- Usually find approximations or local optimum.

Summary

- GD/SGD: both simple implementation
- SGD: fewer iterations of the whole dataset, fast especially when data size is large; more able to get over local optimums for non-convex problems.
- GD: less tricky stepsize tuning.
- Second-order methods (e.g. Newton methods, LBFGS):
- Simple stepsize tuning; closer to optimum for nonconvex problems.
- More memory cost.

