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Overview

• Optimization	  problems	   are	  almost	  everywhere	  in	  
statistics	  and	  machine	   learning.	  
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Example

• In	  a	  regression	  model,	  we	  want	  the	  model	   to	  
minimize	  deviation	   from	  the	  dependent	   variable.
• In	  a	  classification	   model,	  we	  want	  the	  model	   to	  
minimize	  classification	   error.	  
• In	  a	  generative	  model,	  we	  want	  to	  maximize	  the	  
likelihood	   to	  produce	   the	  observed	  data.
• …	  



Gradient descent

Consider unconstrained, smooth convex optimization

min
x

f(x)

i.e., f is convex and differentiable with dom(f) = Rn. Denote the
optimal criterion value by f? = minx f(x), and a solution by x?

Gradient descent: choose initial point x(0) ∈ Rn, repeat:

x(k) = x(k−1) − tk · ∇f(x(k−1)), k = 1, 2, 3, . . .

Stop at some point
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Gradient descent interpretation

At each iteration, consider the expansion

f(y) ≈ f(x) +∇f(x)T (y − x) +
1

2t
‖y − x‖22

Quadratic approximation, replacing usual Hessian ∇2f(x) by 1
t I

f(x) +∇f(x)T (y − x) linear approximation to f

1
2t‖y − x‖22 proximity term to x, with weight 1/(2t)

Choose next point y = x+ to minimize quadratic approximation:

x+ = x− t∇f(x)
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Blue point is x, red point is

x+ = argmin
y

f(x) +∇f(x)T (y − x) +
1

2t
‖y − x‖22
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Fixed step size

Simply take tk = t for all k = 1, 2, 3, . . ., can diverge if t is too big.
Consider f(x) = (10x21 + x22)/2, gradient descent after 8 steps:
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Can be slow if t is too small. Same example, gradient descent after
100 steps:
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Converges nicely when t is “just right”. Same example, gradient
descent after 40 steps:
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Convergence analysis later will give us a precise idea of “just right”
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Backtracking line search

One way to adaptively choose the step size is to use backtracking
line search:

• First fix parameters 0 < β < 1 and 0 < α ≤ 1/2

• At each iteration, start with t = tinit, and while

f(x− t∇f(x)) > f(x)− αt‖∇f(x)‖22

shrink t = βt. Else perform gradient descent update

x+ = x− t∇f(x)

Simple and tends to work well in practice (further simplification:
just take α = 1/2)
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Backtracking interpretation9.2 Descent methods 465

t

f(x + t∆x)

t = 0 t0

f(x) + αt∇f(x)T ∆xf(x) + t∇f(x)T ∆x

Figure 9.1 Backtracking line search. The curve shows f , restricted to the line
over which we search. The lower dashed line shows the linear extrapolation
of f , and the upper dashed line has a slope a factor of α smaller. The
backtracking condition is that f lies below the upper dashed line, i.e., 0 ≤
t ≤ t0.

The line search is called backtracking because it starts with unit step size and
then reduces it by the factor β until the stopping condition f(x + t∆x) ≤ f(x) +
αt∇f(x)T ∆x holds. Since ∆x is a descent direction, we have ∇f(x)T ∆x < 0, so
for small enough t we have

f(x + t∆x) ≈ f(x) + t∇f(x)T ∆x < f(x) + αt∇f(x)T ∆x,

which shows that the backtracking line search eventually terminates. The constant
α can be interpreted as the fraction of the decrease in f predicted by linear extrap-
olation that we will accept. (The reason for requiring α to be smaller than 0.5 will
become clear later.)

The backtracking condition is illustrated in figure 9.1. This figure suggests,
and it can be shown, that the backtracking exit inequality f(x + t∆x) ≤ f(x) +
αt∇f(x)T ∆x holds for t ≥ 0 in an interval (0, t0]. It follows that the backtracking
line search stops with a step length t that satisfies

t = 1, or t ∈ (βt0, t0].

The first case occurs when the step length t = 1 satisfies the backtracking condition,
i.e., 1 ≤ t0. In particular, we can say that the step length obtained by backtracking
line search satisfies

t ≥ min{1,βt0}.

When dom f is not all of Rn, the condition f(x+ t∆x) ≤ f(x)+αt∇f(x)T ∆x
in the backtracking line search must be interpreted carefully. By our convention
that f is infinite outside its domain, the inequality implies that x + t∆x ∈ dom f .
In a practical implementation, we first multiply t by β until x + t∆x ∈ dom f ;

For us ∆x = −∇f(x)
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Backtracking picks up roughly the right step size (12 outer steps,
40 steps total):
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Here α = β = 0.5
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Practicalities

Stopping rule: stop when ‖∇f(x)‖2 is small

• Recall ∇f(x?) = 0 at solution x?

• If f is strongly convex with parameter m, then

‖∇f(x)‖2 ≤
√

2mε =⇒ f(x)− f? ≤ ε

Pros and cons of gradient descent:

• Pro: simple idea, and each iteration is cheap (usually)

• Pro: fast for well-conditioned, strongly convex problems

• Con: can often be slow, because many interesting problems
aren’t strongly convex or well-conditioned

• Con: can’t handle nondifferentiable functions
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Stochastic gradient descent

Consider minimizing a sum of functions

min
x

m∑

i=1

fi(x)

As ∇∑m
i=1 fi(x) =

∑m
i=1∇fi(x), gradient descent would repeat:

x(k) = x(k−1) − tk ·
m∑

i=1

∇fi(x(k−1)), k = 1, 2, 3, . . .

In comparison, stochastic gradient descent or SGD (or incremental
gradient descent) repeats:

x(k) = x(k−1) − tk · ∇fik(x(k−1)), k = 1, 2, 3, . . .

where ik ∈ {1, . . .m} is some chosen index at iteration k
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Two rules for choosing index ik at iteration k:

• Cyclic rule: choose ik = 1, 2, . . .m, 1, 2, . . .m, . . .

• Randomized rule: choose ik ∈ {1, . . .m} uniformly at random

Randomized rule is more common in practice

What’s the difference between stochastic and usual (called batch)
methods? Computationally, m stochastic steps ≈ one batch step.
But what about progress?

• Cyclic rule, m steps: x(k+m) = x(k) − t∑m
i=1∇fi(x(k+i−1))

• Batch method, one step: x(k+1) = x(k) − t∑m
i=1∇fi(x(k))

• Difference in direction is
∑m

i=1[∇fi(x(k+i−1))−∇fi(x(k))]
So SGD should converge if each ∇fi(x) doesn’t vary wildly with x

Rule of thumb: SGD thrives far from optimum, struggles close to
optimum ... (we’ll revisit in just a few lectures)
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Convex sets and functions

Convex set: C ⊆ Rn such that

x, y ∈ C =⇒ tx+ (1− t)y ∈ C for all 0 ≤ t ≤ 124 2 Convex sets

Figure 2.2 Some simple convex and nonconvex sets. Left. The hexagon,
which includes its boundary (shown darker), is convex. Middle. The kidney
shaped set is not convex, since the line segment between the two points in
the set shown as dots is not contained in the set. Right. The square contains
some boundary points but not others, and is not convex.

Figure 2.3 The convex hulls of two sets in R2. Left. The convex hull of a
set of fifteen points (shown as dots) is the pentagon (shown shaded). Right.
The convex hull of the kidney shaped set in figure 2.2 is the shaded set.

Roughly speaking, a set is convex if every point in the set can be seen by every other
point, along an unobstructed straight path between them, where unobstructed
means lying in the set. Every affine set is also convex, since it contains the entire
line between any two distinct points in it, and therefore also the line segment
between the points. Figure 2.2 illustrates some simple convex and nonconvex sets
in R2.

We call a point of the form θ1x1 + · · · + θkxk, where θ1 + · · · + θk = 1 and
θi ≥ 0, i = 1, . . . , k, a convex combination of the points x1, . . . , xk. As with affine
sets, it can be shown that a set is convex if and only if it contains every convex
combination of its points. A convex combination of points can be thought of as a
mixture or weighted average of the points, with θi the fraction of xi in the mixture.

The convex hull of a set C, denoted conv C, is the set of all convex combinations
of points in C:

conv C = {θ1x1 + · · · + θkxk | xi ∈ C, θi ≥ 0, i = 1, . . . , k, θ1 + · · · + θk = 1}.

As the name suggests, the convex hull conv C is always convex. It is the smallest
convex set that contains C: If B is any convex set that contains C, then conv C ⊆
B. Figure 2.3 illustrates the definition of convex hull.

The idea of a convex combination can be generalized to include infinite sums, in-
tegrals, and, in the most general form, probability distributions. Suppose θ1, θ2, . . .

Convex function: f : Rn → R such that dom(f) ⊆ Rn convex, and

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) for 0 ≤ t ≤ 1

and all x, y ∈ dom(f)

Chapter 3

Convex functions

3.1 Basic properties and examples

3.1.1 Definition

A function f : Rn → R is convex if dom f is a convex set and if for all x,
y ∈ dom f , and θ with 0 ≤ θ ≤ 1, we have

f(θx + (1 − θ)y) ≤ θf(x) + (1 − θ)f(y). (3.1)

Geometrically, this inequality means that the line segment between (x, f(x)) and
(y, f(y)), which is the chord from x to y, lies above the graph of f (figure 3.1).
A function f is strictly convex if strict inequality holds in (3.1) whenever x ̸= y
and 0 < θ < 1. We say f is concave if −f is convex, and strictly concave if −f is
strictly convex.

For an affine function we always have equality in (3.1), so all affine (and therefore
also linear) functions are both convex and concave. Conversely, any function that
is convex and concave is affine.

A function is convex if and only if it is convex when restricted to any line that
intersects its domain. In other words f is convex if and only if for all x ∈ dom f and

(x, f(x))

(y, f(y))

Figure 3.1 Graph of a convex function. The chord (i.e., line segment) be-
tween any two points on the graph lies above the graph. 16



Convex optimization problems

Optimization problem:

min
x∈D

f(x)

subject to gi(x) ≤ 0, i = 1, . . .m

hj(x) = 0, j = 1, . . . r

Here D = dom(f) ∩⋂m
i=1 dom(gi) ∩

⋂p
j=1 dom(hj), common

domain of all the functions

This is a convex optimization problem provided the functions f
and gi, i = 1, . . .m are convex, and hj , j = 1, . . . p are affine:

hj(x) = aTj x+ bj , j = 1, . . . p
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Local minima are global minima

For convex optimization problems, local minima are global minima

Formally, if x is feasible—x ∈ D, and satisfies all constraints—and
minimizes f in a local neighborhood,

f(x) ≤ f(y) for all feasible y, ‖x− y‖2 ≤ ρ,
then

f(x) ≤ f(y) for all feasible y

This is a very useful
fact and will save us
a lot of trouble!
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Nonconvex	  Problem

• Convex	   problem:	  convex	  objective	   function,	  
convex	  constraints,	   convex	  domain
• Non-‐convex	   problem:	   not	  all	  above	  conditions	   are	  
met.
• Usually	   find	  approximations	   or	  local	  optimum.	  



Summary

• GD/SGD:	  both	  simple	   implementation
• SGD:	  fewer	  iterations	  of	  the	  whole	  dataset,	  fast	  
especially	  when	  data	  size	  is	  large;	  more	  able	  to	  get	  
over	   local	  optimums	  for	  non-‐convex	  problems.	  
• GD:	  less	  tricky	  stepsize tuning.

• Second-‐order	   methods	   (e.g.	  Newton	  methods,	   L-‐
BFGS):
• Simple	  stepsize tuning;	  closer	  to	  optimum	  for	  non-‐
convex	  problems.
• More	  memory	  cost.


