CS145: INTRODUCTION TO DATA MINING

2: Vector Data: Prediction

Instructor: Yizhou Sun

yzsun@cs.ucla.edu

January 6, 2019

Methods to Learn

	Vector Data	Set Data	Sequence Data	Text Data
Classification	Logistic Regression; Decision Tree; KNN SVM; NN			Naïve Bayes for Text
Clustering	K-means; hierarchical clustering; DBSCAN; Mixture Models			PLSA
Prediction	Linear Regression GLM*			
Frequent Pattern Mining		Apriori; FP growth	GSP; PrefixSpan	
Similarity Search			DTW	

How to learn these algorithms?

Three levels

- When it is applicable?
 - Input, output, strengths, weaknesses, time complexity
- How it works?
 - Pseudo-code, work flows, major steps
 - Can work out a toy problem by pen and paper
- Why it works?
 - Intuition, philosophy, objective, derivation, proof

Vector Data: Prediction

- Linear Regression Model
- Model Evaluation and Selection
- Summary

Example

	Sex	Race	Height	Income	Marital Status	Years of Educ.	Liberal- ness
R1001	М	1	70	50	1	12	1.73
R1002	М	2	72	100	2	20	4.53
R1003	F	1	55	250	1	16	2.99
R1004	М	2	65	20	2	16	1.13
R1005	F	1	60	10	3	12	3.81
R1006	М	1	68	30	1	9	4.76
R1007	F	5	66	25	2	21	2.01
R1008	F	4	61	43	1	18	1.27
R1009	М	1	69	67	1	12	3.25

A matrix of $n \times p$:

- n data objects / points
- p attributes / dimensions

 $\begin{bmatrix} x_{11} & \cdots & x_{1f} & \cdots & x_{1p} \\ \cdots & \cdots & \cdots & \cdots \\ x_{i1} & \cdots & x_{if} & \cdots & x_{ip} \\ \cdots & \cdots & \cdots & \cdots \\ x_{n1} & \cdots & x_{nf} & \cdots & x_{np} \end{bmatrix}$

Attribute Type

Numerical

- E.g., height, income
- Categorical / discrete
 - E.g., Sex, Race

Categorical Attribute Types

- Nominal: categories, states, or "names of things"
 - *Hair_color* = {*auburn, black, blond, brown, grey, red, white*}
 - marital status, occupation, ID numbers, zip codes
- Binary
 - Nominal attribute with only 2 states (0 and 1)
 - <u>Symmetric binary</u>: both outcomes equally important
 - e.g., gender
 - <u>Asymmetric binary</u>: outcomes not equally important.
 - e.g., medical test (positive vs. negative)
 - Convention: assign 1 to most important outcome (e.g., HIV positive)
- Ordinal
 - Values have a meaningful order (ranking) but magnitude between successive values is not known.
 - *Size = {small, medium, large},* grades, army rankings

Basic Statistical Descriptions of Data

- Central Tendency
- Dispersion of the Data
- Graphic Displays

Measuring the Central Tendency

- Mean (algebraic measure) (sample vs. population):
 Note: n is sample size and N is population size.
 - Weighted arithmetic mean:
 - Trimmed mean: chopping extreme values
- Median:
 - Middle value if odd number of values, or average of the middle two values otherwise
- Mode
 - Value that occurs most frequently in the data
 - Unimodal, bimodal, trimodal
 - Empirical formula: $mean mode = 3 \times (mean median)$

Symmetric vs. Skewed Data

 Median, mean and mode of symmetric, positively and negatively skewed data

Measuring the Dispersion of Data

- Quartiles, outliers and boxplots
 - Quartiles: Q₁ (25th percentile), Q₃ (75th percentile)
 - Inter-quartile range: $IQR = Q_3 Q_1$
 - Five number summary: min, Q₁, median, Q₃, max
 - Outlier: usually, a value higher/lower than 1.5 x IQR of Q₃ or Q₁
- Variance and standard deviation (sample: s, population: σ)
 - Variance: (algebraic, scalable computation)

•
$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} = \frac{1}{n-1} \left[\sum_{i=1}^{n} x_{i}^{2} - \frac{1}{n} (\sum_{i=1}^{n} x_{i})^{2} \right]$$

•
$$\sigma^2 = E[(X - E(X))^2] = E(X^2) - (E(X))^2$$

• Standard deviation s (or σ) is the square root of variance s² (or σ^{2})

Graphic Displays of Basic Statistical Descriptions

• **Histogram**: x-axis are values, y-axis repres. frequencies

 Scatter plot: each pair of values is a pair of coordinates and plotted as points in the plane

Histogram Analysis

- Histogram: Graph display of tabulated frequencies, shown as bars
- It shows what proportion of cases fall into each of several categories
- Differs from a bar chart in that it is the area of the bar that denotes the value, not the height as in bar charts, a crucial distinction when the categories are not of uniform width
- The categories are usually specified as a non-overlapping intervals of some variable. The categories (bars) must be adjacent

Scatter plot

- Provides a first look at bivariate data to see clusters of points, outliers, etc
- Each pair of values is treated as a pair of coordinates and plotted as points in the plane

Positively and Negatively Correlated Data

- The left half fragment is positively correlated
- The right half is negative correlated

Uncorrelated Data

Scatterplot Matrices

Vector Data: Prediction

- Vector Data
- Linear Regression Model
- Model Evaluation and Selection
- Summary

Linear Regression

- Ordinary Least Square Regression
 - Closed form solution
 - Gradient descent
- Linear Regression with Probabilistic
 Interpretation

The Linear Regression Problem

- Any Attributes to Continuous Value: $\mathbf{x} \Rightarrow \mathbf{y}$
 - {age; major ; gender; race} \Rightarrow GPA

- {income; credit score; profession} ⇒ loan
- {college; major ; GPA} ⇒ future income

Example of House Price

Living Area (sqft)	# of Beds	Price (1000\$)	
2104	3	400	
1600	3	330	
2400	3	369	
1416	2	232	
3000	4	540	
x= (x ₁ , x	У		

 $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2$

Illustration

22

Formalization

- Data: n independent data objects
 - y_i , i = 1, ..., n
 - $\boldsymbol{x}_{i} = (x_{i1}, x_{i2}, \dots, x_{ip})^{\mathrm{T}}, i = 1, \dots, n$
 - A constant factor is added to model the bias term, i.e., $x_{i0} = 1$
 - New x: $\boldsymbol{x}_{i} = (x_{i0}, x_{i1}, x_{i2}, \dots, x_{ip})^{\mathrm{T}}$

• Model:

- y: *dependent variable*
- **x**: explanatory variables
- $\boldsymbol{\beta} = (\beta_0, \beta_1, \dots, \beta_p)^T$: weight vector
- $y = \mathbf{x}^T \boldsymbol{\beta} = \beta_0 + x_1 \beta_1 + x_2 \beta_2 + \dots + x_p \beta_p$

A 3-step Process

Model Construction

- Use training data to find the best parameter $\boldsymbol{\beta}$, denoted as $\widehat{\boldsymbol{\beta}}$
- Model Selection
 - Use validation data to select the best model
 - E.g., Feature selection

Model Usage

• Apply the model to the unseen data (test data): $\hat{y} = x^T \hat{\beta}$

Least Square Estimation

Cost function (Mean Square Error):

•
$$J(\boldsymbol{\beta}) = \frac{1}{2} \sum_{i} (\boldsymbol{x}_{i}^{T} \boldsymbol{\beta} - y_{i})^{2} / n$$

• Matrix form:

• $J(\boldsymbol{\beta}) = (X\boldsymbol{\beta} - \boldsymbol{y})^T (X\boldsymbol{\beta} - \boldsymbol{y})/2n$ or $||X\boldsymbol{\beta} - \boldsymbol{y}||^2/2n$ $\begin{bmatrix} 1, x_{11} & \dots & x_{1f} & \dots & x_{1p} \\ \dots & \dots & \dots & \dots & \dots \\ 1, x_{i1} & \dots & x_{if} & \dots & x_{ip} \\ \dots & \dots & \dots & \dots & \dots \\ 1, x_{n1} & \dots & x_{nf} & \dots & x_{np} \end{bmatrix}$

X: n imes (p+1) matrix

y: $n \times 1$ vector

Ordinary Least Squares (OLS)

• Goal: find $\widehat{\beta}$ that minimizes $J(\beta)$

•
$$J(\boldsymbol{\beta}) = \frac{1}{2n} (X\boldsymbol{\beta} - y)^T (X\boldsymbol{\beta} - y)$$

= $\frac{1}{2n} (\boldsymbol{\beta}^T X^T X \boldsymbol{\beta} - y^T X \boldsymbol{\beta} - \boldsymbol{\beta}^T X^T y + y^T y)$

- Ordinary least squares
 - Set first derivative of $J(\beta)$ as 0

•
$$\frac{\partial J}{\partial \boldsymbol{\beta}} = (X^T X \boldsymbol{\beta} - X^T y)/n = 0$$

•
$$\Rightarrow \widehat{\boldsymbol{\beta}} = (X^T X)^{-1} X^T y$$

$$\begin{bmatrix}
z & \frac{\partial z}{\partial x} \\
Ax & A^T \\
x^T A & A \\
x^T x & 2x \\
x^T Ax & Ax + A^T x
\end{bmatrix}$$

More about matrix calculus:

https://atmos.washington.edu/~dennis/MatrixCalculus.pdf

Gradient Descent

 Minimize the cost function by moving down in the steepest direction

Batch Gradient Descent

• Move in the direction of steepest descend

Repeat until converge { $\boldsymbol{\beta}^{(t+1)} := \boldsymbol{\beta}^{(t)} - \eta \frac{\partial J}{\partial \boldsymbol{\beta}} |_{\boldsymbol{\beta} = \boldsymbol{\beta}^{(t)}}, \quad \text{e.g., } \eta = 0.01$ } Where $J(\boldsymbol{\beta}) = \frac{1}{2} \sum_{i} (\boldsymbol{x}_{i}^{T} \boldsymbol{\beta} - y_{i})^{2} / n = \sum_{i} J_{i}(\boldsymbol{\beta}) / n \text{ and}$

$$\frac{\partial J}{\partial \boldsymbol{\beta}} = \sum_{i} \frac{\partial J_{i}}{\partial \boldsymbol{\beta}} / n = \sum_{i} x_{i} \left(\boldsymbol{x}_{i}^{T} \boldsymbol{\beta} - y_{i} \right) / n$$

Stochastic Gradient Descent

- When a new observation, *i*, comes in, update weight immediately (extremely useful for large-scale datasets):
 - Repeat { for i=1:n { $\beta^{(t+1)} := \beta^{(t)} + \eta(y_i - x_i^T \beta^{(t)}) x_i$ }

If the prediction for object *i* is smaller than the real value, β should move forward to the direction of x_i

Probabilistic Interpretation

Review of normal distribution

Probabilistic Interpretation

• Model:
$$y_i = x_i^T \beta + \varepsilon_i$$

• $\varepsilon_i \sim N(0, \sigma^2)$
• $y_i | x_i, \beta \sim N(x_i^T \beta, \sigma^2)$

•
$$E(y_i|x_i) = x_i^T \beta$$

• Likelihood:

•
$$L(\boldsymbol{\beta}) = \prod_i p(y_i | x_i, \beta)$$

$$= \prod_{i} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\{-\frac{\left(y_i - x_i^T \boldsymbol{\beta}\right)^2}{2\sigma^2}\}$$

- Maximum Likelihood Estimation
 - find $\hat{\boldsymbol{\beta}}$ that maximizes $L(\boldsymbol{\beta})$
 - $\arg \max L = \arg \min J$, Equivalent to OLS!

Other Practical Issues

- Handle different scales of numerical attributes
 - Z-score: $z = \frac{x-\mu}{\sigma}$
 - x: raw score to be standardized, μ : mean of the population, σ : standard deviation

What if some attributes are nominal?

- Set dummy variables Type equation here.
 - E.g., x = 1, if sex = F; x = 0, if sex = M
 - Nominal variable with multiple values?
 - Create more dummy variables for one variable

What if some attribute are ordinal?

- replace x_{if} by their rank $r_{if} \in \{1, \dots, M_f\}$
- map the range of each variable onto [0, 1] by replacing *i*-th object in the *f*-th variable by $z_{if} = \frac{r_{if}-1}{M_f-1}$

Other Practical Issues

- What if $X^T X$ is not invertible?
 - Add a small portion of identity matrix, λI , to it
 - ridge regression or linear regression with I2 norm regularization

$$\sum_{i} (y_i - \mathbf{x}_i^T \boldsymbol{\beta})^2 + \lambda \sum_{j=1}^p \beta_j^2$$

- What if non-linear correlation exists?
 - Transform features, say, x to x^2

Vector Data: Prediction

- Vector Data
- Linear Regression Model
- Model Evaluation and Selection
- Summary

Model Selection Problem

• Basic problem:

- how to choose between competing linear regression models
- Model too simple:
 - "underfit" the data; poor predictions; high bias; low variance
- Model too complex:
 - "overfit" the data; poor predictions; low bias; high variance
- Model just right:
 - balance bias and variance to get good predictions

Bias and Variance

• Bias: $E(\hat{f}(x)) - f(x)$ Estimated predictor $\hat{f}(x): x^T \hat{\beta}$ • How far away is the expectation of the estimator to the true value? The smaller the better.

• Variance:
$$Var\left(\hat{f}(x)\right) = E\left[\left(\hat{f}(x) - E\left(\hat{f}(x)\right)\right)^2\right]$$

- How variant is the estimator? The smaller the better.
- Reconsider mean square error
 - $J(\widehat{\boldsymbol{\beta}})/n = \sum_{i} (\boldsymbol{x}_{i}^{T} \widehat{\boldsymbol{\beta}} y_{i})^{2}/n$
 - Can be considered as

•
$$E[(\hat{f}(x) - f(x) - \varepsilon)^2] = bias^2 + variance + noise$$

Note $E(\varepsilon) = 0, Var(\varepsilon) = \sigma^2$

Bias-Variance Trade-off

Example: degree d in regression

1.
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

2.
$$h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2$$

3.
$$h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_3 x^3$$

$$\vdots$$

10.
$$h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_{10} x^{10}$$

http://www.holehouse.org/mlclass/10_Advice_for_applying_machine_learning.html

Example: regularization term in regression

Linear regression with regularization

Model: $h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$ $J(\theta) = \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \frac{\lambda}{2m} \sum_{j=1}^m \theta_j^2$

Cross-Validation

- Partition the data into K folds
 - Use K-1 fold as training, and 1 fold as testing
 - Calculate the average accuracy best on K training-testing pairs
 - Accuracy on validation/test dataset!
 - Mean square error can again be used: $\sum_{i} (\mathbf{x}_{i}^{T} \widehat{\boldsymbol{\beta}} y_{i})^{2} / n$

AIC & BIC*

- AIC and BIC can be used to test the quality of statistical models
 - AIC (Akaike information criterion)
 - $AIC = 2k 2\ln(\hat{L}),$
 - where k is the number of parameters in the model and \hat{L} is the likelihood under the estimated parameter
 - BIC (Bayesian Information criterion)
 - BIC = $kln(n) 2ln(\hat{L})$,
 - Where n is the number of objects

Stepwise Feature Selection

Avoid brute-force selection

• 2^p

- Forward selection
 - Starting with the best single feature
 - Always add the feature that improves the performance best
 - Stop if no feature will further improve the performance

Backward elimination

- Start with the full model
- Always remove the feature that results in the best performance enhancement
- Stop if removing any feature will get worse performance

Vector Data: Prediction

- Vector Data
- Linear Regression Model
- Model Evaluation and Selection

Summary

- What is vector data?
 - Attribute types
 - Basic statistics
 - Visualization
- Linear regression
 - OLS
 - Probabilistic interpretation
- Model Evaluation and Selection
 - Bias-Variance Trade-off
 - Mean square error
 - Cross-validation, AIC, BIC, step-wise feature selection