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Methods to Learn
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Vector Data Set Data Sequence Data Text Data

Classification Logistic Regression; 
Decision Tree; KNN
SVM; NN

Naïve Bayes for Text

Clustering K-means; hierarchical
clustering; DBSCAN; 
Mixture Models

PLSA

Prediction Linear Regression
GLM*

Frequent Pattern 
Mining

Apriori; FP growth GSP; PrefixSpan

Similarity Search DTW



How to learn these algorithms?
•Three levels

• When it is applicable?
• Input, output, strengths, weaknesses, time 

complexity 

• How it works?
• Pseudo-code, work flows, major steps
• Can work out a toy problem by pen and paper

• Why it works?
• Intuition, philosophy, objective, derivation, proof
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Vector Data: Prediction

•Vector Data

•Linear Regression Model

•Model Evaluation and Selection

•Summary
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Example
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npx...nfx...n1x
...............
ipx...ifx...i1x
...............
1px...1fx...11xA matrix of n × 𝑝𝑝: 

• n data objects / points
• p attributes / dimensions



Attribute Type
•Numerical

• E.g., height, income

•Categorical / discrete
• E.g.,  Sex, Race
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Categorical Attribute Types
• Nominal: categories, states, or “names of things”

• Hair_color = {auburn, black, blond, brown, grey, red, white}
• marital status, occupation, ID numbers, zip codes

• Binary
• Nominal attribute with only 2 states (0 and 1)
• Symmetric binary: both outcomes equally important

• e.g., gender
• Asymmetric binary: outcomes not equally important.  

• e.g., medical test (positive vs. negative)
• Convention: assign 1 to most important outcome (e.g., HIV positive)

• Ordinal
• Values have a meaningful order (ranking) but magnitude between 

successive values is not known.
• Size = {small, medium, large}, grades, army rankings
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Basic Statistical Descriptions of Data

• Central Tendency
• Dispersion of the Data
• Graphic Displays
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Measuring the Central Tendency
• Mean (algebraic measure) (sample vs. population):

Note: n is sample size and N is population size. 

• Weighted arithmetic mean:

• Trimmed mean: chopping extreme values

• Median: 

• Middle value if odd number of values, or average of the 
middle two values otherwise

• Mode

• Value that occurs most frequently in the data

• Unimodal, bimodal, trimodal

• Empirical formula:
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Symmetric vs. Skewed Data
• Median, mean and mode of 

symmetric, positively and 
negatively skewed data

positively skewed negatively skewed

symmetric
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Measuring the Dispersion of Data
• Quartiles, outliers and boxplots

• Quartiles: Q1 (25th percentile), Q3 (75th percentile)

• Inter-quartile range: IQR = Q3 – Q1 

• Five number summary: min, Q1, median, Q3, max

• Outlier: usually, a value higher/lower than 1.5 x IQR of Q3 or Q1 

• Variance and standard deviation (sample: s, population: σ)

• Variance: (algebraic, scalable computation)
•

• 𝜎𝜎2 = 𝐸𝐸[ 𝑋𝑋 − 𝐸𝐸 𝑋𝑋 2] = 𝐸𝐸 𝑋𝑋2 − 𝐸𝐸 𝑋𝑋 2

• Standard deviation s (or σ) is the square root of variance s2 (orσ2)
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Graphic Displays of Basic Statistical Descriptions

• Histogram: x-axis are values, y-axis repres. frequencies 

• Scatter plot: each pair of values is a pair of coordinates and 

plotted as points in the plane
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Histogram Analysis

• Histogram: Graph display of tabulated 
frequencies, shown as bars

• It shows what proportion of cases fall 
into each of several categories

• Differs from a bar chart in that it is the 
area of the bar that denotes the value, 
not the height as in bar charts, a crucial 
distinction when the categories are not 
of uniform width

• The categories are usually specified as 
non-overlapping intervals of some 
variable. The categories (bars) must be 
adjacent
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Scatter plot
• Provides a first look at bivariate data to see clusters of points, 

outliers, etc
• Each pair of values is treated as a pair of coordinates and plotted 

as points in the plane
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Positively and Negatively Correlated Data

• The left half fragment is positively 

correlated

• The right half is negative correlated
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Uncorrelated Data
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Scatterplot Matrices

Matrix of scatterplots (x-y-diagrams) of the k-dim. data [total of 𝑘𝑘2 + 𝑘𝑘 unique scatterplots]
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Vector Data: Prediction

•Vector Data

•Linear Regression Model

•Model Evaluation and Selection

•Summary
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Linear Regression
•Ordinary Least Square Regression

• Closed form solution

• Gradient descent

•Linear Regression with Probabilistic 
Interpretation
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The Linear Regression Problem
•Any Attributes to Continuous Value: x ⇒ y

• {age; major ; gender; race} ⇒ GPA

• {income; credit score; profession} ⇒ loan

• {college; major ; GPA} ⇒ future income

• ...
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Example of House Price
Living Area (sqft) # of Beds Price (1000$)

2104 3 400

1600 3 330

2400 3 369

1416 2 232

3000 4 540
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x=(𝑥𝑥1, 𝑥𝑥2)′ y

𝑦𝑦 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1 + 𝛽𝛽2𝑥𝑥2



Illustration
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Formalization
• Data: n independent data objects

• 𝑦𝑦𝑖𝑖 , 𝑖𝑖 = 1, … ,𝑛𝑛

• 𝒙𝒙𝑖𝑖 = 𝑥𝑥𝑖𝑖1, 𝑥𝑥𝑖𝑖2, … , 𝑥𝑥𝑖𝑖𝑖𝑖
T, i = 1, … ,𝑛𝑛

• A constant factor is added to model the bias term, i. e. , 𝑥𝑥𝑖𝑖0 = 1

• New x: 𝒙𝒙𝑖𝑖 = 𝑥𝑥𝑖𝑖0, 𝑥𝑥𝑖𝑖1, 𝑥𝑥𝑖𝑖2, … , 𝑥𝑥𝑖𝑖𝑖𝑖
T

• Model:
• 𝑦𝑦: dependent variable
• 𝒙𝒙: explanatory variables
• 𝜷𝜷 = 𝛽𝛽0,𝛽𝛽1, … ,𝛽𝛽𝑖𝑖

𝑇𝑇: 𝑤𝑤𝑤𝑤𝑖𝑖𝑤𝑤𝑤𝑤𝑤 𝑣𝑣𝑤𝑤𝑣𝑣𝑤𝑤𝑣𝑣𝑣𝑣
• 𝑦𝑦 = 𝒙𝒙𝑇𝑇𝜷𝜷 = 𝛽𝛽0 + 𝑥𝑥1𝛽𝛽1 + 𝑥𝑥2𝛽𝛽2 + ⋯+ 𝑥𝑥𝑖𝑖𝛽𝛽𝑖𝑖

23



A 3-step Process
•Model Construction

• Use training data to find the best parameter 𝜷𝜷, 
denoted as �𝜷𝜷

•Model Selection
• Use validation data to select the best model

• E.g., Feature selection

•Model Usage
• Apply the model to the unseen data (test data): 
�𝑦𝑦 = 𝒙𝒙𝑇𝑇�𝜷𝜷
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Least Square Estimation
•Cost function (Mean Square Error): 

• 𝐽𝐽 𝜷𝜷 = 1
2
∑𝑖𝑖 𝒙𝒙𝑖𝑖𝑇𝑇𝜷𝜷 − 𝑦𝑦𝑖𝑖

2 /𝑛𝑛

•Matrix form: 
• 𝐽𝐽 𝜷𝜷 = X𝜷𝜷 − 𝒚𝒚 𝑇𝑇(𝑋𝑋𝜷𝜷 − 𝒚𝒚)/2𝑛𝑛

or X𝜷𝜷 − 𝒚𝒚 2/2𝑛𝑛

25𝑿𝑿:𝒏𝒏 × 𝒑𝒑 + 𝟏𝟏 matrix

























npx...nfx...n1x
...............
ipx...ifx...i1x
...............
1px...1fx...11x

,1

,1

,1 𝑦𝑦1
⋮
𝑦𝑦𝑖𝑖
⋮
𝑦𝑦𝑛𝑛

y:𝒏𝒏 × 𝟏𝟏 𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯



Ordinary Least Squares (OLS)
• Goal: find �𝜷𝜷 that minimizes 𝐽𝐽 𝜷𝜷

• 𝐽𝐽 𝜷𝜷 = 1
2𝑛𝑛

X𝜷𝜷 − 𝑦𝑦 𝑇𝑇 𝑋𝑋𝜷𝜷 − 𝑦𝑦

= 1
2𝑛𝑛

(𝜷𝜷𝑇𝑇𝑋𝑋𝑇𝑇𝑋𝑋𝜷𝜷 − 𝑦𝑦𝑇𝑇𝑋𝑋𝜷𝜷 − 𝜷𝜷𝑇𝑇𝑋𝑋𝑇𝑇𝑦𝑦 + 𝑦𝑦𝑇𝑇𝑦𝑦)

• Ordinary least squares
• Set first derivative of 𝐽𝐽 𝜷𝜷 as 0 

• 𝜕𝜕𝜕𝜕
𝜕𝜕𝜷𝜷

= (𝑋𝑋𝑇𝑇𝑋𝑋𝜷𝜷 − 𝑋𝑋𝑇𝑇𝑦𝑦)/𝑛𝑛 = 0

• ⇒ �𝜷𝜷 = 𝑋𝑋𝑇𝑇𝑋𝑋 −1𝑋𝑋𝑇𝑇𝑦𝑦

More about matrix calculus: 
https://atmos.washington.edu/~dennis/MatrixCalculus.pdf
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Gradient Descent
•Minimize the cost function by moving 
down in the steepest direction
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Batch Gradient Descent
• Move in the direction of steepest descend

Repeat until converge {

}
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𝜷𝜷(𝑡𝑡+1):=𝜷𝜷(t) − 𝜂𝜂 𝜕𝜕𝜕𝜕
𝜕𝜕𝜷𝜷

|𝜷𝜷=𝜷𝜷(t) ,

Where 𝐽𝐽 𝜷𝜷 = 1
2
∑𝑖𝑖 𝒙𝒙𝑖𝑖𝑇𝑇𝜷𝜷 − 𝑦𝑦𝑖𝑖

2/𝑛𝑛 = ∑𝑖𝑖 𝐽𝐽𝑖𝑖(𝜷𝜷)/𝑛𝑛 and
𝜕𝜕𝐽𝐽
𝜕𝜕𝜷𝜷

= �
𝑖𝑖

𝜕𝜕𝐽𝐽𝑖𝑖
𝜕𝜕𝜷𝜷

/𝑛𝑛 = �
𝑖𝑖

𝒙𝒙𝑖𝑖 𝒙𝒙𝑖𝑖𝑇𝑇𝜷𝜷 − 𝑦𝑦𝑖𝑖 /𝑛𝑛

e.g., 𝜂𝜂 = 0.01



Stochastic Gradient Descent
• When a new observation, i, comes in, update 
weight immediately (extremely useful for large-
scale datasets):

Repeat {
for i=1:n {

𝜷𝜷(𝑡𝑡+1):=𝜷𝜷(t) + 𝜂𝜂(𝑦𝑦𝑖𝑖 − 𝒙𝒙𝑖𝑖𝑇𝑇𝜷𝜷(𝑡𝑡))𝒙𝒙𝑖𝑖
}

}
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If the prediction for object i is smaller than the real value, 
𝜷𝜷 should move forward to the direction of 𝒙𝒙𝑖𝑖



Probabilistic Interpretation 
•Review of normal distribution 

• X~𝑁𝑁 𝜇𝜇,𝜎𝜎2 ⇒ 𝑓𝑓 𝑋𝑋 = 𝑥𝑥 = 1
2𝜋𝜋𝜎𝜎2

𝑤𝑤−
𝑥𝑥−𝜇𝜇 2

2𝜎𝜎2
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Probabilistic Interpretation
• Model: 𝑦𝑦𝑖𝑖 = 𝑥𝑥𝑖𝑖𝑇𝑇𝛽𝛽 + ε𝑖𝑖

• ε𝑖𝑖~𝑁𝑁(0,𝜎𝜎2)
• 𝑦𝑦𝑖𝑖|𝑥𝑥𝑖𝑖 ,𝛽𝛽~𝑁𝑁(𝑥𝑥𝑖𝑖𝑇𝑇𝛽𝛽,𝜎𝜎2)

• 𝐸𝐸 𝑦𝑦𝑖𝑖 𝑥𝑥𝑖𝑖 = 𝑥𝑥𝑖𝑖𝑇𝑇𝛽𝛽
• Likelihood:

• 𝐿𝐿 𝜷𝜷 = ∏𝑖𝑖 𝑝𝑝 𝑦𝑦𝑖𝑖 𝑥𝑥𝑖𝑖 ,𝛽𝛽)

= ∏𝑖𝑖
1

2𝜋𝜋𝜎𝜎2
exp{−

𝑦𝑦𝑖𝑖−𝒙𝒙𝑖𝑖
𝑇𝑇𝜷𝜷

2

2𝜎𝜎2
}

• Maximum Likelihood Estimation
• find �𝜷𝜷 that maximizes L 𝜷𝜷
• arg max 𝐿𝐿 = arg min 𝐽𝐽, Equivalent to OLS!
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Other Practical Issues
• Handle different scales of numerical attributes

• Z-score: 𝑧𝑧 = 𝑥𝑥−𝜇𝜇
𝜎𝜎

• x: raw score to be standardized, μ: mean of the population, σ: standard 
deviation

• What if some attributes are nominal?
• Set dummy variables

• E.g., 𝑥𝑥 = 1, 𝑖𝑖𝑓𝑓 𝑠𝑠𝑤𝑤𝑥𝑥 = 𝐹𝐹; 𝑥𝑥 = 0, 𝑖𝑖𝑓𝑓 𝑠𝑠𝑤𝑤𝑥𝑥 = 𝑀𝑀
• Nominal variable with multiple values? 

• Create more dummy variables for one variable

• What if some attribute are ordinal?
• replace xif by their rank 
• map the range of each variable onto [0, 1] by replacing i-th object in 

the f-th variable by 𝑧𝑧𝑖𝑖𝑖𝑖 =
𝑟𝑟𝑖𝑖𝑖𝑖−1
𝑀𝑀𝑖𝑖−1

32

},...,1{ fif Mr ∈

Type equation here.



Other Practical Issues
•What if 𝑋𝑋𝑇𝑇𝑋𝑋 is not invertible?

• Add a small portion of identity matrix, λ𝐼𝐼, to it
• ridge regression or linear regression with l2 norm 

regularization

•What if non-linear correlation exists?
• Transform features, say, 𝑥𝑥 to 𝑥𝑥2
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Vector Data: Prediction

•Vector Data

•Linear Regression Model

•Model Evaluation and Selection

•Summary
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Model Selection Problem
• Basic problem: 

• how to choose between competing linear regression 
models 

• Model too simple: 
• “underfit” the data; poor predictions; high bias; low 

variance 
• Model too complex: 

• “overfit” the data; poor predictions; low bias; high 
variance 

• Model just right: 
• balance bias and variance to get good predictions 
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Bias and Variance
• Bias: 𝐸𝐸(𝑓𝑓 𝑥𝑥 ) − 𝑓𝑓(𝑥𝑥)

• How far away is the expectation of the estimator to the true 
value? The smaller the better. 

• Variance: 𝑉𝑉𝑉𝑉𝑣𝑣 𝑓𝑓 𝑥𝑥 = 𝐸𝐸[ 𝑓𝑓 𝑥𝑥 − 𝐸𝐸 𝑓𝑓 𝑥𝑥
2

]
• How variant is the estimator? The smaller the better. 

• Reconsider mean square error

• 𝐽𝐽 �𝜷𝜷 /𝑛𝑛 = ∑𝑖𝑖 𝒙𝒙𝑖𝑖𝑇𝑇�𝜷𝜷 − 𝑦𝑦𝑖𝑖
2

/𝑛𝑛
• Can be considered as

• 𝐸𝐸[ 𝑓𝑓 𝑥𝑥 − 𝑓𝑓(𝑥𝑥) − 𝜀𝜀
2

] = 𝑏𝑏𝑖𝑖𝑉𝑉𝑠𝑠2 + 𝑣𝑣𝑉𝑉𝑣𝑣𝑖𝑖𝑉𝑉𝑛𝑛𝑣𝑣𝑤𝑤 + 𝑛𝑛𝑣𝑣𝑖𝑖𝑠𝑠𝑤𝑤

36
Note 𝐸𝐸 𝜀𝜀 = 0,𝑉𝑉𝑉𝑉𝑣𝑣 𝜀𝜀 = 𝜎𝜎2

True predictor 𝑓𝑓 𝑥𝑥 : 𝑥𝑥𝑇𝑇𝜷𝜷
Estimated predictor 𝑓𝑓 𝑥𝑥 : 𝑥𝑥𝑇𝑇�𝜷𝜷



Bias-Variance Trade-off
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Example: degree d in regression
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http://www.holehouse.org/mlclass/10_Advice_for_applying_machine_learning.html



Example: regularization term in 
regression
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Cross-Validation
•Partition the data into K folds

• Use K-1 fold as training, and 1 fold as testing

• Calculate the average accuracy best on K 
training-testing pairs
• Accuracy on validation/test dataset!

• Mean square error can again be used: ∑𝑖𝑖 𝒙𝒙𝑖𝑖𝑇𝑇�𝜷𝜷 − 𝑦𝑦𝑖𝑖
2

/𝑛𝑛
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AIC & BIC*
•AIC and BIC can be used to test the quality 
of statistical models
• AIC (Akaike information criterion)

• 𝐴𝐴𝐼𝐼𝐴𝐴 = 2𝑘𝑘 − 2ln(�𝐿𝐿), 
• where k is the number of parameters in the model 

and �𝐿𝐿 is the likelihood under the estimated 
parameter

• BIC (Bayesian Information criterion)
• B𝐼𝐼𝐴𝐴 = 𝑘𝑘𝑘𝑘𝑛𝑛(𝑛𝑛) − 2ln(�𝐿𝐿), 
• Where n is the number of objects
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Stepwise Feature Selection
• Avoid brute-force selection

• 2𝑖𝑖

• Forward selection
• Starting with the best single feature
• Always add the feature that improves the performance 

best
• Stop if no feature will further improve the performance

• Backward elimination
• Start with the full model
• Always remove the feature that results in the best 

performance enhancement
• Stop if removing any feature will get worse performance
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Vector Data: Prediction

•Vector Data

•Linear Regression Model

•Model Evaluation and Selection

•Summary
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Summary
• What is vector data?

• Attribute types
• Basic statistics
• Visualization

• Linear regression
• OLS
• Probabilistic interpretation

• Model Evaluation and Selection
• Bias-Variance Trade-off 
• Mean square error
• Cross-validation, AIC, BIC, step-wise feature selection

44
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