CS145: INTRODUCTION TO DATA MINING

3: Vector Data: Logistic Regression

Instructor: Yizhou Sun

yzsun@cs.ucla.edu

January 14, 2019

Methods to Learn

	Vector Data	Set Data	Sequence Data	Text Data
Classification	Logistic Regression; Decision Tree; KNN SVM; NN			Naïve Bayes for Text
Clustering	K-means; hierarchical clustering; DBSCAN; Mixture Models			PLSA
Prediction	Linear Regression GLM*			
Frequent Pattern Mining		Apriori; FP growth	GSP; PrefixSpan	
Similarity Search			DTW	

Vector Data: Logistic Regression

- Classification: Basic Concepts
- Logistic Regression Model
- Generalized Linear Model*
- Summary

Supervised vs. Unsupervised Learning

- Supervised learning (classification)
 - Supervision: The training data (observations, measurements, etc.) are accompanied by **labels** indicating the class of the observations
 - New data is classified based on the training set
- Unsupervised learning (clustering)
 - The class labels of training data is unknown
 - Given a set of measurements, observations, etc.
 with the aim of establishing the existence of classes or clusters in the data

Prediction Problems: Classification vs. Numeric Prediction

Classification

- predicts categorical class labels
- classifies data (constructs a model) based on the training set and the values (class labels) in a classifying attribute and uses it in classifying new data
- Numeric Prediction
 - models continuous-valued functions, i.e., predicts unknown or missing values
- Typical applications
 - Medical diagnosis: if a tumor is cancerous or benign
 - Fraud detection: if a transaction is fraudulent
 - Web page categorization: which category it is

Classification—A Two-Step Process (1)

- Model construction: describing a set of predetermined classes
 - Each tuple/sample is assumed to belong to a predefined class, as determined by the class label attribute
 - For data point $i : \langle x_i, y_i \rangle$
 - Features: x_i; class label: y_i
 - The model is represented as classification rules, decision trees, or mathematical formulae
 - Also called classifier
 - The set of tuples used for model construction is training set

Classification—A Two-Step Process (2)

- Model usage: for classifying future or unknown objects
 - Estimate accuracy of the model
 - The known label of test sample is compared with the classified result from the model
 - Test set is independent of training set (otherwise overfitting)
 - Accuracy rate is the percentage of test set samples that are correctly classified by the model
 - Most used for binary classes
 - If the accuracy is acceptable, use the model to classify new data
- Note: If the test set is used to select models, it is called validation (test) set

Process (1): Model Construction

Process (2): Using the Model in Prediction

Vector Data: Logistic Regression

- Classification: Basic Concepts
- Logistic Regression Model
- Generalized Linear Model*
- Summary

Linear Regression VS. Logistic Regression

- Linear Regression (prediction)
 - Y: continuous value $(-\infty, +\infty)$

•
$$\mathbf{Y} = \mathbf{x}^T \boldsymbol{\beta} = \beta_0 + x_1 \beta_1 + x_2 \beta_2 + \dots + x_p \beta_p$$

• $\mathbf{Y} | \mathbf{x}, \boldsymbol{\beta} \sim N(\mathbf{x}^T \boldsymbol{\beta}, \sigma^2)$

- Logistic Regression (classification)
 - Y: discrete value from m classes

•
$$p(Y = C_j | \boldsymbol{x}, \beta) \in [0, 1]$$
 and $\sum_j p(Y = C_j | \boldsymbol{x}, \beta) = 1$

Logistic Function

Modeling Probabilities of Two Classes

_

•
$$P(Y = 1 | \boldsymbol{x}, \beta) = \sigma(\boldsymbol{x}^T \beta) = \frac{1}{1 + \exp\{-\boldsymbol{x}^T \beta\}} = \frac{\exp\{\boldsymbol{x}^T \beta\}}{1 + \exp\{\boldsymbol{x}^T \beta\}}$$

• $P(Y = 0 | \boldsymbol{x}, \beta) = 1 - \sigma(\boldsymbol{x}^T \beta) = \frac{\exp\{-\boldsymbol{x}^T \beta\}}{1 + \exp\{-\boldsymbol{x}^T \beta\}} = \frac{1}{1 + \exp\{\boldsymbol{x}^T \beta\}}$

$$\beta = \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_p \end{pmatrix}$$

- In other words
 - y| $\boldsymbol{x}, \beta \sim Bernoulli(\sigma(\boldsymbol{x}^T \beta))$

The 1-d Situation

• $P(Y = 1 | x, \beta_0, \beta_1) = \sigma(\beta_1 x + \beta_0)$

Example

ሲ

Parameter Estimation

MLE estimation

- Given a dataset *D*, with *n* data points
- For a single data object with attributes x_i , class label y_i
 - Let $p_i = p(y_i = 1 | \mathbf{x}_i, \beta)$, the prob. of *i* in class 1
 - The probability of observing y_i would be
 - If $y_i = 1$, then p_i
 - If $y_i = 0$, then $1 p_i$
 - Combing the two cases: $p_i^{y_i}(1-p_i)^{1-y_i}$

$$L = \prod_{i} p_{i}^{y_{i}} (1 - p_{i})^{1 - y_{i}} = \prod_{i} \left(\frac{\exp\{x^{T}\beta\}}{1 + \exp\{x^{T}\beta\}} \right)^{y_{i}} \left(\frac{1}{1 + \exp\{x^{T}\beta\}} \right)^{1 - y_{i}}$$

Optimization

Step size

Equivalent to maximize log likelihood

•
$$logL = \sum_{i} y_i \boldsymbol{x}_i^T \boldsymbol{\beta} - log(1 + exp\{\boldsymbol{x}_i^T \boldsymbol{\beta}\})$$

Gradient ascent update:

$$\beta^{new} = \beta^{old} + \eta \frac{\partial logL(\beta)}{\partial \beta}$$

Newton-Raphson update

$$\beta^{new} = \beta^{old} - \left(\frac{\partial^2 log L(\beta)}{\partial \beta \partial \beta^T}\right)^{-1} \frac{\partial log L(\beta)}{\partial \beta}$$

• where derivatives are evaluated at β^{old}

First Derivative

It is a (p+1) vector, with jth element as

$$\frac{\partial log L(\beta)}{\partial \beta_j} = \sum_{i=1}^N y_i x_{ij} - \sum_{i=1}^N \frac{x_{ij} e^{\beta^T \mathbf{x}_i}}{(1 + e^{\beta^T \mathbf{x}_i})} p_i(\beta)$$
$$= \sum_{i=1}^N y_i x_{ij} - \sum_{i=1}^N p_i(\beta) x_{ij}$$
$$= \sum_{i=1}^N x_{ij} (y_i - p_i(\beta))$$

For j = 0, 1, ..., p

Second Derivative

It is a (p+1) by (p+1) matrix, Hessian Matrix, with jth row and nth column as

An Alternative View of the Objective Function

Cross entropy loss

- Measure the difference from the predicted distribution (p) to the ground truth distribution (q)
 - Cross entropy from q to p: H(q,p) =
 - $-\sum_k q_k \log(p_k)$
- In the classification setting
 - $q_0 = 1$ and $q_1 = 0$, if y = 0; $q_0 = 0$ and $q_1 = 1$, if y = 1

•
$$p_0 = \frac{1}{1 + \exp\{x^T \beta\}}$$
 and $p_1 = \frac{\exp\{x^T \beta\}}{1 + \exp\{x^T \beta\}}$

An Alternative View of the Objective Function (Cont.)

- If y = 0• $H(q, p) = \log(1 + exp\{x^T\beta\})$ • If y = 1
 - $H(q,p) = -\mathbf{x}^T \beta + \log(1 + exp\{\mathbf{x}^T \beta\})$
- Putting together
 - $H(q,p) = -y \mathbf{x}^T \beta + \log(1 + exp\{\mathbf{x}^T \beta\})$
- The goal: minimize the mean cross entropy loss over all the data points

What about Multiclass Classification?

 It is easy to handle under logistic regression, say M classes, using softmax function

•
$$P(Y = j | x) = \frac{\exp\{x^T \beta_j\}}{1 + \sum_{m=1}^{M-1} \exp\{x^T \beta_m\}}$$
, for j = 1, ..., $M - 1$

•
$$P(Y = M | x) = \frac{1}{1 + \sum_{m=1}^{M-1} \exp\{x^T \beta_m\}}$$

Loss function

• Cross entropy loss from observed class distribution (e.g., (0,0,1,0,0)) to p

Vector Data: Logistic Regression

- Classification: Basic Concepts
- Logistic Regression Model
- •Generalized Linear Model* 🦊
- Summary

Recall Linear Regression and Logistic Regression

- Linear Regression
 - y| $\boldsymbol{x}, \beta \sim N(\boldsymbol{x}^T \beta, \sigma^2)$
- Logistic Regression
 - y|**x**, β ~Bernoulli($\sigma(\mathbf{x}^T\beta)$)

- How about other distributions?
 - Yes, as long as they belong to exponential family

Exponential Family

Canonical Form

•
$$p(y;\eta) = b(y) \exp(\eta^T T(y) - a(\eta))$$

• η : natural parameter

- T(y): sufficient statistic
- $a(\eta)$: log partition function for normalization
- b(y): function that only dependent on y

Examples of Exponential Family

- Many: $p(y;\eta) = b(y) \exp(\eta^T T(y) a(\eta))$
 - Gaussian, Bernoulli, Poisson, beta, Dirichlet, categorical, ...
- For Gaussian (not interested in σ)

$$p(y;\phi) = \phi^{y}(1-\phi)^{1-y} \qquad T(y) = y$$

=
$$\exp(y\log\phi + (1-y)\log(1-\phi)) \qquad a(\eta) = -\log(1-\phi)$$

=
$$\exp\left(\left(\log\left(\frac{\phi}{1-\phi}\right)\right)y + \log(1-\phi)\right) \qquad = \log(1+e^{\eta})$$

$$b(y) = 1$$

$$\eta$$

Recipe of GLMs

- Determines a distribution for y
 E.g., Gaussian, Bernoulli, Poisson
- \bullet Form the linear predictor for η

• $\eta = \mathbf{x}^T \beta$

- Determines a link function: $\mu = g^{-1}(\eta)$
 - Connects the linear predictor to the mean of the distribution
 - E.g., $\mu = \eta$ for Gaussian, $\mu = \sigma(\eta)$ for Bernoulli, $\mu = exp(\eta)$ for Poisson

Vector Data: Logistic Regression

- Classification: Basic Concepts
- Logistic Regression Model
- Generalized Linear Model*
- Summary 🦊

Summary

What is classification

- Supervised learning vs. unsupervised learning, classification vs. prediction
- Logistic regression
 - Sigmoid function, multiclass classification
- Generalized linear model*
 - Exponential family, link function