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Methods to Learn
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Vector Data Set Data Sequence Data Text Data

Classification Logistic Regression; 
Decision Tree; KNN
SVM; NN

Naïve Bayes for Text

Clustering K-means; hierarchical
clustering; DBSCAN; 
Mixture Models

PLSA

Prediction Linear Regression
GLM*

Frequent Pattern 
Mining

Apriori; FP growth GSP; PrefixSpan

Similarity Search DTW



Vector Data: Trees

•Tree-based Prediction and Classification

•Classification Trees

•Regression Trees

•Random Forest

•Summary
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Tree-based Models
•Use trees to partition the data into 
different regions and make predictions
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Easy to Interpret
•A path from root to a leaf node 
corresponds to a rule
• E.g., if age<=30 and student=no

then target value=no
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Vector Data: Trees

•Tree-based Prediction and Classification

•Classification Trees

•Regression Trees

•Random Forest

•Summary
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Decision Tree Induction: An Example
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 Training data set: Buys_xbox
 The data set follows an example of 

Quinlan’s ID3 (Playing Tennis)
 Resulting tree:

age income student credit_rating buys_Xbox
<=30 high no fair no
<=30 high no excellent no
31…40 high no fair yes
>40 medium no fair yes
>40 low yes fair yes
>40 low yes excellent no
31…40 low yes excellent yes
<=30 medium no fair no
<=30 low yes fair yes
>40 medium yes fair yes
<=30 medium yes excellent yes
31…40 medium no excellent yes
31…40 high yes fair yes
>40 medium no excellent no

age?

overcast

student? credit rating?

<=30 >40

no yes yes

yes

31..40

fairexcellentyesno
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		age		income		student		credit_rating		buys_Xbox

		<=30		high		no		fair		no

		<=30		high		no		excellent		no

		31…40		high		no		fair		yes

		>40		medium		no		fair		yes

		>40		low		yes		fair		yes

		>40		low		yes		excellent		no

		31…40		low		yes		excellent		yes

		<=30		medium		no		fair		no

		<=30		low		yes		fair		yes

		>40		medium		yes		fair		yes

		<=30		medium		yes		excellent		yes

		31…40		medium		no		excellent		yes

		31…40		high		yes		fair		yes

		>40		medium		no		excellent		no







How to choose attributes?

8

Ages

Yes
Yes
No
No
No

Yes
Yes
Yes
Yes

Yes
Yes
Yes
No
No

<=30 31…40 >40

VS.

Credit_Rating

Yes
Yes
Yes
No
No
No

Yes
Yes
Yes
Yes
Yes
Yes
No
No

Excellent Fair

Q: Which attribute is better for the classification task?



Brief Review of Entropy
•Entropy (Information Theory)

• A measure of uncertainty (impurity) associated 
with a random variable

• Calculation: For a discrete random variable Y
taking m distinct values {𝑦𝑦1, … ,𝑦𝑦𝑚𝑚},
•𝐻𝐻 𝑌𝑌 = −∑𝑖𝑖=1𝑚𝑚 𝑝𝑝𝑖𝑖log(𝑝𝑝𝑖𝑖) , where 𝑝𝑝𝑖𝑖 = 𝑃𝑃(𝑌𝑌 = 𝑦𝑦𝑖𝑖)

• Interpretation:
• Higher entropy => higher uncertainty
• Lower entropy => lower uncertainty

m = 2 9



Conditional Entropy
•How much uncertainty of 𝑌𝑌 if we know an 
attribute 𝑋𝑋? 
•𝐻𝐻 𝑌𝑌 𝑋𝑋 = ∑𝑥𝑥 𝑝𝑝 𝑥𝑥 𝐻𝐻(𝑌𝑌|𝑋𝑋 = 𝑥𝑥)
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Ages

Yes
Yes
No
No
No

Yes
Yes
Yes
Yes

Yes
Yes
Yes
No
No

<=30 31…40 >40

Weighted average of entropy at each branch!



Attribute Selection Measure: 
Information Gain (ID3/C4.5)

 Select the attribute with the highest information gain
 Let pi be the probability that an arbitrary tuple in D 

belongs to class Ci, estimated by |Ci, D|/|D|
 Expected information (entropy) needed to classify a 

tuple in D:

 Information needed (after using A to split D into v 
partitions) to classify D (conditional entropy):

 Information gained by branching on attribute A

11

)(log)( 2
1

i

m

i
i ppDInfo ∑

=

−=

)(
||
||

)(
1

j

v

j

j
A DInfo

D
D

DInfo ×=∑
=

(D)InfoInfo(D)Gain(A) A−=



Attribute Selection: Information Gain

Class P: buys_xbox = “yes”
Class N: buys_xbox = “no”

means “age <=30” has 5 out of 
14 samples, with 2 yes’es  and 3 
no’s.   Hence

Similarly,

age pi ni I(pi, ni)
<=30 2 3 0.971
31…40 4 0 0
>40 3 2 0.971
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age income student credit_rating buys_xbox

<=30 high no fair no
<=30 high no excellent no
31…40 high no fair yes
>40 medium no fair yes
>40 low yes fair yes
>40 low yes excellent no
31…40 low yes excellent yes
<=30 medium no fair no
<=30 low yes fair yes
>40 medium yes fair yes
<=30 medium yes excellent yes
31…40 medium no excellent yes
31…40 high yes fair yes
>40 medium no excellent no
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Sheet1

		age		pi		ni		I(pi, ni)

		<=30		2		3		0.971

		31…40		4		0		0

		>40		3		2		0.971






Sheet1

		age		income		student		credit_rating		buys_xbox

		<=30		high		no		fair		no

		<=30		high		no		excellent		no

		31…40		high		no		fair		yes

		>40		medium		no		fair		yes

		>40		low		yes		fair		yes

		>40		low		yes		excellent		no

		31…40		low		yes		excellent		yes

		<=30		medium		no		fair		no

		<=30		low		yes		fair		yes

		>40		medium		yes		fair		yes

		<=30		medium		yes		excellent		yes

		31…40		medium		no		excellent		yes

		31…40		high		yes		fair		yes

		>40		medium		no		excellent		no







Attribute Selection for a Branch
•
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age?

overcast

? ?

<=30 >40

yes

31..40

Which attribute next?

age income student credit_rating buys_xbox
<=30 high no fair no
<=30 high no excellent no
<=30 medium no fair no
<=30 low yes fair yes
<=30 medium yes excellent yes

𝐷𝐷𝑎𝑎𝑎𝑎𝑎𝑎≤30

• 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐷𝐷𝑎𝑎𝑎𝑎𝑎𝑎≤30 = −2
5

log2
2
5
− 3

5
log2

3
5

= 0.971
• 𝐺𝐺𝐺𝐺𝐺𝐺𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎≤30 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

= 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐷𝐷𝑎𝑎𝑎𝑎𝑎𝑎≤30 − 𝐼𝐼𝐼𝐼𝐼𝐼𝑜𝑜𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝐷𝐷𝑎𝑎𝑎𝑎𝑎𝑎≤30 = 0.571
• 𝐺𝐺𝐺𝐺𝐺𝐺𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎≤30 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 0.971
• 𝐺𝐺𝐺𝐺𝐺𝐺𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎≤30 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 0.02
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		age		income		student		credit_rating		buys_xbox

		<=30		high		no		fair		no

		<=30		high		no		excellent		no

		<=30		medium		no		fair		no

		<=30		low		yes		fair		yes

		<=30		medium		yes		excellent		yes







Algorithm for Decision Tree Induction
• Basic algorithm (a greedy algorithm)

• Tree is constructed in a top-down recursive divide-and-conquer 
manner

• At start, all the training examples are at the root
• Attributes are categorical (if continuous-valued, they are discretized 

in advance)
• Examples are partitioned recursively based on selected attributes
• Test attributes are selected on the basis of a heuristic or statistical 

measure (e.g., information gain)
• Conditions for stopping partitioning

• All samples for a given node belong to the same class
• There are no remaining attributes for further partitioning –

majority voting is employed for classifying the leaf
• There are no samples left – use majority voting in the parent 

partition
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Computing Information-Gain for 
Continuous-Valued Attributes

• Let attribute A be a continuous-valued attribute

• Must determine the best split point for A

• Sort the value A in increasing order

• Typically, the midpoint between each pair of adjacent values is 
considered as a possible split point
• (ai+ai+1)/2 is the midpoint between the values of ai and ai+1

• The point with the minimum expected information requirement
for A is selected as the split-point for A

• Split:

• D1 is the set of tuples in D satisfying A ≤ split-point, and D2 is the 
set of tuples in D satisfying A > split-point

15



Gain Ratio for Attribute Selection (C4.5)

• Information gain measure is biased towards attributes with a 
large number of values

• C4.5 (a successor of ID3) uses gain ratio to overcome the problem 
(normalization to information gain)

• GainRatio(A) = Gain(A)/SplitInfo(A)
• Ex.

• gain_ratio(income) = 0.029/1.557 = 0.019
• The attribute with the maximum gain ratio is selected as the 

splitting attribute
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*Gini Index (CART, IBM IntelligentMiner)

• If a data set D contains examples from n classes, gini index, gini(D) 
is defined as

where pj is the relative frequency of class j in D
• If a data set D is split on A into two subsets D1 and D2, the gini

index gini(D) is defined as

• Reduction in Impurity:

• The attribute provides the smallest ginisplit(D) (or the largest 
reduction in impurity) is chosen to split the node (need to 
enumerate all the possible splitting points for each attribute)
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*Computation of Gini Index 
• Ex.  D has 9 tuples in buys_computer = “yes” and 5 in “no”

• Suppose the attribute income partitions D into 10 in D1: {low, 
medium} and 4 in D2: {high}

Gini{low,high} is 0.458; Gini{medium,high} is 0.450.  Thus, split on the 
{low,medium} (and {high}) since it has the lowest Gini index
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Comparing Attribute Selection Measures

•The three measures, in general, return 
good results but
• Information gain: 

• biased towards multivalued attributes

• Gain ratio: 
• tends to prefer unbalanced splits in which one partition is 

much smaller than the others (why?)

• *Gini index: 
• biased to multivalued attributes

19



*Other Attribute Selection Measures
• CHAID: a popular decision tree algorithm, measure based on χ2 test for 

independence

• C-SEP: performs better than info. gain and gini index in certain cases

• G-statistic: has a close approximation to χ2 distribution 

• MDL (Minimal Description Length) principle (i.e., the simplest solution is 
preferred): 

• The best tree as the one that requires the fewest # of bits to both (1) encode 

the tree, and (2) encode the exceptions to the tree

• Multivariate splits (partition based on multiple variable combinations)

• CART: finds multivariate splits based on a linear comb. of attrs.

• Which attribute selection measure is the best?

• Most give good results, none is significantly superior than others

20



Overfitting and Tree Pruning

• Overfitting:  An induced tree may overfit the training data 
• Too many branches, some may reflect anomalies due to noise or 

outliers
• Poor accuracy for unseen samples

• Two approaches to avoid overfitting 
• Prepruning: Halt tree construction early ̵ do not split a node if 

this would result in the goodness measure falling below a 
threshold

• Difficult to choose an appropriate threshold
• Postpruning: Remove branches from a “fully grown” tree—get a 

sequence of progressively pruned trees

• Use validation dataset to decide which is the “best 
pruned tree”

21



Vector Data: Trees

•Tree-based Prediction and Classification

•Classification Trees

•Regression Trees

•Random Forest

•Summary
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From Classification to Prediction
•Target variable

• From categorical variable to continuous 
variable

•Attribute selection criterion
• Measure the purity of continuous target 
variable in each partition

•Leaf node
• A simple model for that partition, e.g., average

23



Attribute Selection
• Reduction of Variance
• For attribute A, weighted average variance

𝑉𝑉𝑉𝑉𝑉𝑉 𝐷𝐷𝑗𝑗 = �
𝑦𝑦∈𝐷𝐷𝑗𝑗

𝑦𝑦 − �𝑦𝑦 2/|𝐷𝐷𝑗𝑗| ,

where �𝑦𝑦 = �
𝑦𝑦∈𝐷𝐷𝑗𝑗

𝑦𝑦 /|𝐷𝐷𝑗𝑗|

• Pick the attribute with the lowest weighted average 
variance
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Leaf Node Model
•Take the average of the partition for leave 
node l
• �𝑦𝑦𝑙𝑙 = ∑𝑦𝑦∈𝐷𝐷𝑙𝑙 𝑦𝑦 /|𝐷𝐷𝑙𝑙|

25



Example: Predict Baseball Player Salary

•Dataset: (years, hits)=>Salary
• Colors indicate value of salary (blue: low, red: 
high)
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A Regression Tree Built
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A Different Angle to View the Tree
•A leaf is corresponding to a box in the 
plane
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R1: Year < 4.5

R3: Year > 4.5 & Hits >= 117.5

R2: Year > 4.5 & Hits < 117.5



Trees vs. Linear Models
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Ground Truth:
Linear Boundary

Ground Truth:
Non-Linear Boundary

Fitted Model:
Linear Model

Fitted Model:
Trees



Vector Data: Trees

•Tree-based Prediction and Classification

•Classification Trees

•Regression Trees

•Random Forest

•Summary
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A Single Tree or a Set of Trees?
•Limitation of single tree

• Accuracy is not very high

• Overfitting

•A set of trees
• The idea of ensemble

31



The Idea of Bagging
•Bagging: Bootstrap Aggregating

32



Why It Works? 
•Each classifier produces the prediction

•𝑓𝑓𝑖𝑖 𝑥𝑥

•The error will be reduced if we use the 
average of multiple classifiers

•𝑣𝑣𝑣𝑣𝑣𝑣 ∑𝑖𝑖 𝑓𝑓𝑖𝑖 𝑥𝑥
𝑡𝑡

= 𝑣𝑣𝑣𝑣𝑣𝑣(𝑓𝑓𝑖𝑖 𝑥𝑥 )/𝑡𝑡
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Random Forest
• Sample t times data collection: random sample 

with replacement for objects, 𝑛𝑛′ ≤ 𝑛𝑛
• Sample 𝒑𝒑′variables: Select a subset of variables 

for each data collection, e.g., 𝑝𝑝′ = 𝑝𝑝

• Construct t trees for each data collection using 
selected subset of variables

• Aggregate the prediction results for new data
• Majority voting for classification
• Average for prediction
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Properties of Random Forest
•Strengths

• Good accuracy for classification tasks

• Can handle large-scale of dataset

• Can handle missing data to some extent

•Weaknesses
• Not so good for predictions tasks

• Lack of interpretation
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Vector Data: Trees

•Tree-based Prediction and Classification

•Classification Trees

•Regression Trees

•Random Forest

•Summary
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Summary

•Classification Trees

• Predict categorical labels, information gain, 

tree construction

•Regression Trees

• Predict numerical variable, variance reduction

•Random Forest

• A set of trees, bagging
37
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