CS145: INTRODUCTION TO DATA MINING

7: Vector Data: K Nearest Neighbor

Instructor: Yizhou Sun

yzsun@cs.ucla.edu

February 4, 2019

Methods to Learn: Last Lecture

	Vector Data	Set Data	Sequence Data	Text Data
Classification	Logistic Regression; Decision Tree; KNN SVM; NN			Naïve Bayes for Text
Clustering	K-means; hierarchical clustering; DBSCAN; Mixture Models			PLSA
Prediction	Linear Regression GLM*			
Frequent Pattern		Apriori; FP growth	GSP; PrefixSpan	
Mining			DTW	
Similarity Search				

Methods to Learn

	Vector Data	Set Data	Sequence Data	Text Data
Classification	Logistic Regression; Decision Tree; KNN SVM; NN			Naïve Bayes for Text
Clustering	K-means; hierarchical clustering; DBSCAN; Mixture Models			PLSA
Prediction	Linear Regression GLM*			
Frequent Pattern		Apriori; FP growth	GSP; PrefixSpan	
Mining			DTW	
Similarity Search				

K Nearest Neighbor

- Introduction
-kNN
- Similarity and Dissimilarity
-Summary

Lazy vs. Eager Learning

- Lazy vs. eager learning
- Lazy learning (e.g., instance-based learning): Simply stores training data (or only minor processing) and waits until it is given a test tuple
- Eager learning (the above discussed methods): Given a set of training tuples, constructs a classification model before receiving new (e.g., test) data to classify
- Lazy: less time in training but more time in predicting
- Accuracy
- Lazy method effectively uses a richer hypothesis space since it uses many local linear functions to form an implicit global approximation to the target function
- Eager: must commit to a single hypothesis that covers the entire instance space

Lazy Learner: Instance-Based Methods

- Instance-based learning:
- Store training examples and delay the processing ("lazy evaluation") until a new instance must be classified
- Typical approaches
- k-nearest neighbor approach
- Instances represented as points in, e.g., a Euclidean space.
- Locally weighted regression
- Constructs local approximation

K Nearest Neighbor

- Introduction
-kNN \longmapsto
- Similarity and Dissimilarity
-Summary

The \boldsymbol{k}-Nearest Neighbor Algorithm

- All instances correspond to points in the n-D space
- The nearest neighbor are defined in terms of a distance measure, $\operatorname{dist}\left(\mathbf{X}_{\mathbf{1}}, \mathbf{X}_{\mathbf{2}}\right)$
- Target function could be discrete- or real- valued
- For discrete-valued, k-NN returns the most common value among the k training examples nearest to x_{q}
- Vonoroi diagram: the decision surface induced by 1-NN for a typical set of training examples

kNN Example

$X=($ length, lightness $)$
Classes $=\{$ salmon, sea bass, eel $\}$
Task: Identify fish given its (length, lightness)

$K=5: 3$ sea bass, 1 eel, 1 salmon \Rightarrow sea bass

kNN Algorithm Summary

-Choose K

- For a given new instance $X_{\text {new }}$, find K closest training points w.r.t. a distance measure
- Classify $X_{\text {new }}=$ majority vote among the K points

Discussion on the k-NN Algorithm

- k-NN for real-valued prediction for a given unknown tuple
- Returns the mean values of the k nearest neighbors
- Distance-weighted nearest neighbor algorithm
- Weight the contribution of each of the k neighbors according to their distance to the query x_{q}
- Give greater weight to closer neighbors e.g., $w_{i}=\frac{1}{d\left(x_{q}, x_{i}\right)^{2}}$
- $y_{q}=\frac{\sum w_{i} y_{i}}{\sum w_{i}}$, where $x_{i}{ }^{\prime}$ s are x_{q} 's nearest neighbors $\quad w_{i}=\exp \left(-d\left(x_{q}, x_{i}\right)^{2} / 2 \sigma^{2}\right)$
- Robust to noisy data by averaging k-nearest neighbors
- Curse of dimensionality: distance between neighbors could be dominated by irrelevant attributes
- To overcome it, axes stretch or elimination of the least relevant attributes

Selection of k for kNN

- The number of neighbors k
- Small k: overfitting (high var., low bias)
- Big k: bringing too many irrelevant points (high bias, low var.)
$\mathrm{k}=3$

$\mathrm{k}=5$

$\mathrm{k}=117$

- More discussions:
http://scott.fortmann-roe.com/docs/BiasVariance.html

K Nearest Neighbor

- Introduction
-kNN
- Similarity and Dissimilarity
-Summary

Similarity and Dissimilarity

- Similarity
- Numerical measure of how alike two data objects are
- Value is higher when objects are more alike
- Often falls in the range [0,1]
- Dissimilarity (e.g., distance)
- Numerical measure of how different two data objects are
- Lower when objects are more alike
- Minimum dissimilarity is often 0
- Upper limit varies
- Proximity refers to a similarity or dissimilarity

Data Matrix and Dissimilarity Matrix

- Data matrix
- n data points with p dimensions
- Two modes

$$
\left[\begin{array}{ccccc}
x_{11} & \ldots & x_{1 f} & \ldots & x_{1 p} \\
\ldots & \ldots . & \ldots & \ldots & \ldots \\
x_{i 1} & \ldots & x_{i f} & \ldots & x_{i p} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
x_{n 1} & \ldots & x_{n f} & \ldots & x_{n p}
\end{array}\right]
$$

- Dissimilarity matrix
- n data points, but registers only the distance
- A triangular matrix
- Single mode
$\left[\begin{array}{ccccc}0 & & & & \\ d(2,1) & 0 & & & \\ d(3,1) & d(3,2) & 0 & & \\ : & : & : & & \\ d(n, 1) & d(n, 2) & \ldots & \ldots & 0\end{array}\right]$

Example:

Data Matrix and Dissimilarity Matrix

Data Matrix

point	attribute1	attribute2
$\boldsymbol{x} \mathbf{1}$	1	2
$\boldsymbol{x} \mathbf{2}$	3	5
$\boldsymbol{x} 3$	2	0
$\boldsymbol{x} 4$	4	5

Dissimilarity Matrix
(with Euclidean Distance)

	$\boldsymbol{x 1}$	$\boldsymbol{x} \mathbf{2}$	$\boldsymbol{x} \mathbf{3}$	$\boldsymbol{x} \mathbf{4}$
$\boldsymbol{x} \mathbf{1}$	0			
$\boldsymbol{x} \mathbf{2}$	3.61	0		
$\boldsymbol{x} \mathbf{3}$	2.24	5.1	0	
$\boldsymbol{x} \mathbf{4}$	4.24	1	5.39	0

Distance on Numeric Data: Minkowski Distance

- Minkowski distance: A popular distance measure

$$
d(i, j)=\sqrt[h]{\left|x_{i 1}-x_{j 1}\right|^{h}+\left|x_{i 2}-x_{j 2}\right|^{h}+\cdots+\left|x_{i p}-x_{j p}\right|^{h}}
$$

where $i=\left(x_{\mathrm{i} 1}, x_{\mathrm{i} 2}, \ldots, x_{\mathrm{ip}}\right)$ and $j=\left(x_{\mathrm{j} 1}, x_{\mathrm{j} 2}, \ldots, x_{\mathrm{jp}}\right)$ are two p dimensional data objects, and h is the order (the distance so defined is also called L -h norm)

- Properties
- $\mathrm{d}(\mathrm{i}, \mathrm{j})>0$ if $\mathrm{i} \neq \mathrm{j}$, and $\mathrm{d}(\mathrm{i}, \mathrm{i})=0$ (Positive definiteness)
- $d(i, j)=d(j, i) \quad$ (Symmetry)
- $\mathrm{d}(\mathrm{i}, \mathrm{j}) \leq \mathrm{d}(\mathrm{i}, \mathrm{k})+\mathrm{d}(\mathrm{k}, \mathrm{j}) \quad$ (Triangle Inequality)
- A distance that satisfies these properties is a metric

Special Cases of Minkowski Distance

- $h=1$: Manhattan (city block, L_{1} norm) distance
- E.g., the Hamming distance: the number of bits that are different between two binary vectors

$$
d(i, j)=\left|x_{i_{1}}-x_{j_{1}}\right|+\left|x_{i_{2}}-x_{j_{2}}\right|+\ldots+\left|x_{i_{p}}-x_{j_{p}}\right|
$$

- $h=$ 2: (L_{2} norm) Euclidean distance

$$
d(i, j)=\sqrt{\left(\left|x_{i_{1}}-x_{j_{1}}\right|^{2}+\left|x_{i_{2}}-x_{j_{2}}\right|^{2}+\ldots+\left|x_{i_{p}}-x_{j_{p}}\right|^{2}\right)}
$$

- $h \rightarrow \infty$. "supremum" ($\mathrm{L}_{\text {max }}$ norm, L_{∞} norm) distance.
- This is the maximum difference between any component (attribute) of the vectors

$$
d(i, j)=\lim _{h \rightarrow \infty}\left(\sum_{f=1}^{p}\left|x_{i f}-x_{j f}\right|^{h}\right)^{\frac{1}{h}}=\max _{f}^{p}\left|x_{i f}-x_{j f}\right|
$$

Example: Minkowski Distance

Dissimilarity Matrices

point	attribute 1	attribute 2
$\mathbf{x} \mathbf{1}$	1	2
$\mathbf{x} \mathbf{2}$	3	5
$\mathbf{x} 3$	2	0
$\mathbf{x} \mathbf{4}$	4	5

Manhattan (L_{1})

\mathbf{L}	$\mathbf{x} 1$	$\mathbf{x} 2$	$\mathbf{x 3}$	$\mathbf{x 4}$
$\mathbf{x} \mathbf{1}$	0			
$\mathbf{x} \mathbf{2}$	5	0		
$\mathbf{x} 3$	3	6	0	
$\mathbf{x 4}$	6	1	7	0

Euclidean (L_{2})

$\mathbf{L 2}$	$\mathbf{x 1}$	$\mathbf{x} 2$	$\mathbf{x 3}$	$\mathbf{x 4}$
$\mathbf{x 1}$	0			
$\mathbf{x 2}$	3.61	0		
$\mathbf{x 3}$	2.24	5.1	0	
$\mathbf{x 4}$	4.24	1	5.39	0

Supremum

\mathbf{L}_{∞}	$\mathbf{x 1}$	$\mathbf{x} 2$	$\mathbf{x 3}$	$\mathbf{x 4}$
$\mathbf{x 1}$	0			
$\mathbf{x} \mathbf{2}$	3	0		
$\mathbf{x 3}$	2	5	0	
$\mathbf{x 4}$	3	1	5	0

Standardizing Numeric Data

- Z-score: $\quad Z=\frac{X-\mu}{\sigma}$
- X: raw score to be standardized, μ : mean of the population, σ : standard deviation
- the distance between the raw score and the population mean in units of the standard deviation
- negative when the raw score is below the mean, " + " when above
- An alternative way: Calculate the mean absolute deviation

$$
\begin{aligned}
& \qquad s_{f}=\frac{1}{n}\left(\left|x_{1 f}-m_{f}\right|+\left|x_{2 f}-m_{f}\right|+\ldots+\left|x_{n f}-m_{f}\right|\right) \\
& \text { where } \quad m_{f}=\frac{1}{n}\left(x_{1 f}+x_{2 f}+\ldots+x_{n f}\right) . \\
& \text { - standardized measure (z-score): }
\end{aligned} Z_{i f}=\frac{x_{i f}-m_{f}}{S_{f}}
$$

where

- Using mean absolute deviation is more robust than using standard deviation

Proximity Measure for Nominal Attributes

- Can take 2 or more states, e.g., red, yellow, blue, green (generalization of a binary attribute)
- Method 1: Simple matching
- m: \# of matches, p : total \# of variables

$$
d(i, j)=\frac{p-m}{p}
$$

- Method 2: Use a large number of binary attributes
- creating a new binary attribute for each of the M nominal states

Proximity Measure for Binary Attributes

- A contingency table for binary data

	Object j			
Object i	1	q	0	sum
	0	s	t	$q+r$
ry	sum	$q+s$	$r+t$	$p+t$

- Distance measure for symmetric binary variables:

$$
d(i, j)=\frac{r+s}{q+r+s+t}
$$

- Distance measure for asymmetric binary variables:
- Jaccard coefficient (similarity measure for asymmetric binary variables):

$$
d(i, j)=\frac{r+s}{q+r+s}
$$

$$
\operatorname{sim}_{J a c c a r d}(i, j)=\frac{q}{q+r+s}
$$

Dissimilarity between Binary Variables

- Example

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	M	Y	N	P	N	N	N
Mary	F	Y	N	P	N	P	N
Jim	M	Y	P	N	N	N	N

- Gender is a symmetric attribute
- The remaining attributes are asymmetric binary
- Let the values Y and P be 1 , and the value N 0

$$
\begin{aligned}
& d(\text { jack, mary })=\frac{0+1}{2+0+1}=0.33 \\
& d(\text { jack, jim })=\frac{1+1}{1+1+1}=0.67 \\
& d(\text { jim }, \text { mary })=\frac{1+2}{1+1+2}=0.75
\end{aligned}
$$

Ordinal Variables

- Order is important, e.g., rank
- Can be treated like interval-scaled
- replace $x_{i f}$ by their rank $\quad r_{i f} \in\left\{1, \ldots, M_{f}\right\}$
- map the range of each variable onto $[0,1]$ by replacing i-th object in the f-th variable by

$$
z_{i f}=\frac{r_{i f}-1}{M_{f}-1}
$$

- compute the dissimilarity using methods for interval-scaled variables

Attributes of Mixed Type

- A database may contain all attribute types
- Nominal, symmetric binary, asymmetric binary, numeric, ordinal
- One may use a weighted formula to combine their effects

$$
d(i, j)=\frac{\sum_{f=1}^{p} \delta_{i j}^{(f)} d_{i j}^{(f)}}{\sum_{f=1}^{p} \delta_{i j}^{(f)}}
$$

- f is binary or nominal:
$\mathrm{d}_{\mathrm{ij}}{ }^{(\mathrm{f})}=0$ if $\mathrm{x}_{\mathrm{if}}=\mathrm{x}_{\mathrm{jf}}$, or $\mathrm{d}_{\mathrm{ij}}{ }^{(\mathrm{f})}=1$ otherwise
- f is numeric: use the normalized distance
- f is ordinal
- Compute ranks $r_{\text {if }}$ and $z_{i f}=\frac{r_{i f}-1}{M_{f}-1}$
- Treat $z_{i f}$ as interval-scaled

Cosine Similarity

- A document can be represented by thousands of attributes, each recording the frequency of a particular word (such as keywords) or phrase in the document.

Document	team coach	hockey	baseball	soccer	penalty	score	win	loss	season	
Document1	5	0	3	0	2	0	0	2	0	0
Document2	3	0	2	0	1	1	0	1	0	1
Document3	0	7	0	2	1	0	0	3	0	0
Document4	0	1	0	0	1	2	2	0	3	0

- Other vector objects: gene features in micro-arrays, ...
- Applications: information retrieval, biologic taxonomy, gene feature mapping, ...
- Cosine measure: If d_{1} and d_{2} are two vectors (e.g., term-frequency vectors), then

$$
\cos \left(d_{1}, d_{2}\right)=\left(d_{1} \bullet d_{2}\right) /\left\|d_{1}\right\|\left\|d_{2}\right\|
$$

where \bullet indicates vector dot product, $||d||$: the length of vector d

Example: Cosine Similarity

- $\cos \left(d_{1}, d_{2}\right)=\left(d_{1} \bullet d_{2}\right) /\left\|d_{1}\right\|\left\|d_{2}\right\|$,
where \bullet indicates vector dot product, $||d|$: the length of vector d
- Ex: Find the similarity between documents 1 and 2.

$$
\begin{aligned}
& d_{1}=(5,0,3,0,2,0,0,2,0,0) \\
& d_{2}=(3,0,2,0,1,1,0,1,0,1) \\
& d_{1} \bullet d_{2}=5^{*} 3+0^{*} 0+3^{*} 2+0^{*} 0+2^{*} 1+0^{*} 1+0^{*} 1+2^{*} 1+0^{*} 0+0^{*} 1=25 \\
& \left|\left|d_{1}\right|\right|=\left(5^{*} 5+0^{*} 0+3^{*} 3+0^{*} 0+2^{*} 2+0^{*} 0+0^{*} 0+2^{*} 2+0^{*} 0+0^{*} 0\right)^{0.5=(42)^{0.5}=}=6.481 \\
& \left|\left|d_{2}\right|\right|=\left(3^{*} 3+0^{*} 0+2^{*} 2+0^{*} 0+1^{*} 1+1^{*} 1+0^{*} 0+1^{* *} 1+0^{*} 0+1^{*} 1\right)^{0.5=(17)^{0.5}}=4.12 \\
& \cos \left(d_{1}, d_{2}\right)=0.94
\end{aligned}
$$

K Nearest Neighbor

- Introduction
-kNN
- Similarity and Dissimilarity
- Summary

Summary

- Instance-Based Learning
- Lazy learning vs. eager learning; K-nearest neighbor algorithm; Similarity / dissimilarity measures

