CS145: INTRODUCTION TO DATA MINING

7: Vector Data: K Nearest Neighbor

Instructor: Yizhou Sun

yzsun@cs.ucla.edu

February 4, 2019

Methods to Learn: Last Lecture

	Vector Data	Set Data	Sequence Data	Text Data
Classification	Logistic Regression; Decision Tree; KNN SVM; NN			Naïve Bayes for Text
Clustering	K-means; hierarchical clustering; DBSCAN; Mixture Models			PLSA
Prediction	Linear Regression GLM*			
Frequent Pattern Mining		Apriori; FP growth	GSP; PrefixSpan	
Similarity Search			DTW	

Methods to Learn

	Vector Data	Set Data	Sequence Data	Text Data
Classification	Logistic Regression; Decision Tree; KNN SVM; NN			Naïve Bayes for Text
Clustering	K-means; hierarchical clustering; DBSCAN; Mixture Models			PLSA
Prediction	Linear Regression GLM*			
Frequent Pattern Mining		Apriori; FP growth	GSP; PrefixSpan	
Similarity Search			DTW	

K Nearest Neighbor

Introduction

- kNN
- Similarity and Dissimilarity
- Summary

Lazy vs. Eager Learning

- Lazy vs. eager learning
 - Lazy learning (e.g., instance-based learning): Simply stores training data (or only minor processing) and waits until it is given a test tuple
 - Eager learning (the above discussed methods): Given a set of training tuples, constructs a classification model before receiving new (e.g., test) data to classify
- Lazy: less time in training but more time in predicting
- Accuracy
 - Lazy method effectively uses a richer hypothesis space since it uses many local linear functions to form an implicit global approximation to the target function
 - Eager: must commit to a single hypothesis that covers the entire instance space

Lazy Learner: Instance-Based Methods

- Instance-based learning:
 - Store training examples and delay the processing ("lazy evaluation") until a new instance must be classified
- Typical approaches
 - k-nearest neighbor approach
 - Instances represented as points in, e.g., a Euclidean space.
 - Locally weighted regression
 - Constructs local approximation

K Nearest Neighbor

- Introduction
- •kNN \leftarrow
- Similarity and Dissimilarity
- Summary

The k-Nearest Neighbor Algorithm

- All instances correspond to points in the n-D space
- The nearest neighbor are defined in terms of a distance measure, $dist(X_1, X_2)$
- Target function could be discrete- or real- valued
- For discrete-valued, k-NN returns the most common value among the k training examples nearest to x_a
- Vonoroi diagram: the decision surface induced by 1-NN for a typical set of training examples

kNN Example

X = (length, lightness)

 $Classes = \{salmon, sea bass, eel\}$

Task: Identify fish given its (length, lightness)

K=5: 3 sea bass, 1 eel, 1 salmon \Rightarrow sea bass

kNN Algorithm Summary

- Choose K
- For a given new instance X_{new} , find K closest training points w.r.t. a distance measure
- •Classify $X_{new} = \text{majority vote among}$ the K points

Discussion on the k-NN Algorithm

- k-NN for real-valued prediction for a given unknown tuple
 - Returns the mean values of the *k* nearest neighbors
- <u>Distance-weighted</u> nearest neighbor algorithm
 - Weight the contribution of each of the k neighbors according to their distance to the query x_q
 - Give greater weight to closer neighbors $e.g., w_i = \frac{1}{d(x_q, x_i)^2}$

•
$$y_q = \frac{\sum w_i y_i}{\sum w_i}$$
, where x_i 's are x_q 's nearest neighbors $w_i = \exp(-d(x_q, x_i)^2/2\sigma^2)$

- Robust to noisy data by averaging k-nearest neighbors
- <u>Curse of dimensionality</u>: distance between neighbors could be dominated by irrelevant attributes
 - To overcome it, axes stretch or elimination of the least relevant attributes

Selection of k for kNN

- The number of neighbors k
 - Small k: overfitting (high var., low bias)
 - Big k: bringing too many irrelevant points (high bias, low var.)

More discussions:

http://scott.fortmann-roe.com/docs/BiasVariance.html

K Nearest Neighbor

- Introduction
- kNN
- Similarity and Dissimilarity
- Summary

Similarity and Dissimilarity

Similarity

- Numerical measure of how alike two data objects are
- Value is higher when objects are more alike
- Often falls in the range [0,1]
- Dissimilarity (e.g., distance)
 - Numerical measure of how different two data objects are
 - Lower when objects are more alike
 - Minimum dissimilarity is often 0
 - Upper limit varies
- Proximity refers to a similarity or dissimilarity

Data Matrix and Dissimilarity Matrix

Data matrix

- n data points with p dimensions
- Two modes

$$\begin{bmatrix} x_{11} & \cdots & x_{1f} & \cdots & x_{1p} \\ \cdots & \cdots & \cdots & \cdots \\ x_{i1} & \cdots & x_{if} & \cdots & x_{ip} \\ \cdots & \cdots & \cdots & \cdots \\ x_{n1} & \cdots & x_{nf} & \cdots & x_{np} \end{bmatrix}$$

- Dissimilarity matrix
 - n data points, but registers only the distance
 - A triangular matrix
 - Single mode

```
\begin{bmatrix} 0 & & & & & \\ d(2,1) & 0 & & & \\ d(3,1) & d(3,2) & 0 & & \\ \vdots & \vdots & \vdots & & \\ d(n,1) & d(n,2) & \dots & \dots & 0 \end{bmatrix}
```

Example:

Data Matrix and Dissimilarity Matrix

Data Matrix

point	attribute1	attribute2
<i>x1</i>	1	2
<i>x</i> 2	3	5
<i>x</i> 3	2	0
<i>x4</i>	4	5

Dissimilarity Matrix

(with Euclidean Distance)

	<i>x1</i>	<i>x</i> 2	<i>x3</i>	<i>x4</i>
<i>x1</i>	0			
<i>x</i> 2	3.61	0		
<i>x</i> 3	2.24	5.1	0	
<i>x4</i>	4.24	1	5.39	0

Distance on Numeric Data: Minkowski Distance

Minkowski distance: A popular distance measure

$$d(i,j) = \sqrt[h]{|x_{i1} - x_{j1}|^h + |x_{i2} - x_{j2}|^h + \dots + |x_{ip} - x_{jp}|^h}$$
where $i = (x_{i1}, x_{i2}, ..., x_{ip})$ and $j = (x_{j1}, x_{j2}, ..., x_{jp})$ are two p -

where $i = (x_{i1}, x_{i2}, ..., x_{ip})$ and $j = (x_{j1}, x_{j2}, ..., x_{jp})$ are two pdimensional data objects, and h is the order (the distance so defined is also called L-h norm)

- Properties
 - d(i, j) > 0 if $i \neq j$, and d(i, i) = 0 (Positive definiteness)
 - d(i, j) = d(j, i) (Symmetry)
 - $d(i, j) \le d(i, k) + d(k, j)$ (Triangle Inequality)
- A distance that satisfies these properties is a metric

Special Cases of Minkowski Distance

- h = 1: Manhattan (city block, L₁ norm) distance
 - E.g., the Hamming distance: the number of bits that are different between two binary vectors

$$d(i,j) = |x_{i_1} - x_{j_1}| + |x_{i_2} - x_{j_2}| + ... + |x_{i_p} - x_{j_p}|$$

• h = 2: (L₂ norm) Euclidean distance

$$d(i,j) = \sqrt{(|x_{i1} - x_{j1}|^2 + |x_{i2} - x_{j2}|^2 + ... + |x_{ip} - x_{jp}|^2)}$$

- $h \to \infty$. "supremum" (L_{max} norm, L_{∞} norm) distance.
 - This is the maximum difference between any component (attribute) of the vectors

$$d(i,j) = \lim_{h \to \infty} \left(\sum_{f=1}^{p} |x_{if} - x_{jf}|^h \right)^{\frac{1}{h}} = \max_{f} |x_{if} - x_{jf}|$$

Example: Minkowski Distance

point	attribute 1	attribute 2
x1	1	2
x2	3	5
х3	2	0
x4	4	5

Dissimilarity Matrices

Manhattan (L₁)

L	x1	x2	x3	x4
x1	0			
x2	5	0		
x 3	3	6	0	
x4	6	1	7	0

Euclidean (L₂)

L2	x 1	x2 x3		x1 x2 x3			
x1	0						
x2	3.61	0					
x3	2.24	5.1	0				
x4	4.24	1	5.39	0			

Supremum

${ m L}_{\infty}$	x1	x2	х3	x4
x1	0			
x 2	3	0		
x 3	2	5	0	
x4	3	1	5	0

Standardizing Numeric Data

- z-score: $z = \frac{x \mu}{\sigma}$
 - X: raw score to be standardized, μ : mean of the population, σ : standard deviation
 - the distance between the raw score and the population mean in units of the standard deviation
 - negative when the raw score is below the mean, "+" when above
- An alternative way: Calculate the mean absolute deviation

$$s_f = \frac{1}{n}(|x_{1f} - m_f| + |x_{2f} - m_f| + ... + |x_{nf} - m_f|)$$
 where
$$m_f = \frac{1}{n}(x_{1f} + x_{2f} + ... + x_{nf})$$

$$z_{if} = \frac{x_i - m_f}{s_f}$$
 • standardized measure (z-score):

Using mean absolute deviation is more robust than using standard deviation

Proximity Measure for Nominal Attributes

- Can take 2 or more states, e.g., red, yellow, blue, green (generalization of a binary attribute)
- Method 1: Simple matching
 - m: # of matches, p: total # of variables

$$d(i,j) = \frac{p-m}{p}$$

- Method 2: Use a large number of binary attributes
 - creating a new binary attribute for each of the M nominal states

Proximity Measure for Binary Attributes

A contingency table for binary data

- Distance measure for symmetric binary variables:
- Distance measure for asymmetric binary variables:
- Jaccard coefficient (similarity measure for asymmetric binary variables):

$$d(i,j) = \frac{r+s}{q+r+s+t}$$

$$d(i,j) = \frac{r+s}{q+r+s}$$

$$sim_{Jaccard}(i, j) = \frac{q}{q + r + s}$$

Dissimilarity between Binary Variables

Example

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	M	Y	N	P	N	N	N
Mary	F	Y	N	P	N	P	N
Jim	M	Y	P	N	N	N	N

- Gender is a symmetric attribute
- The remaining attributes are asymmetric binary
- Let the values Y and P be 1, and the value N 0

$$d(jack, mary) = \frac{0+1}{2+0+1} = 0.33$$

$$d(jack, jim) = \frac{1+1}{1+1+1} = 0.67$$

$$d(jim, mary) = \frac{1+2}{1+1+2} = 0.75$$

Ordinal Variables

- Order is important, e.g., rank
- Can be treated like interval-scaled
 - replace x_{if} by their rank $r_{if} \in \{1, ..., M_f\}$
 - map the range of each variable onto [0, 1] by replacing *i*-th object in the *f*-th variable by

$$z_{if} = \frac{r_{if} - 1}{M_f - 1}$$

 compute the dissimilarity using methods for interval-scaled variables

Attributes of Mixed Type

- A database may contain all attribute types
 - Nominal, symmetric binary, asymmetric binary, numeric, ordinal
- One may use a weighted formula to combine their effects

$$d(i,j) = \frac{\sum_{f=1}^{p} \delta_{ij}^{(f)} d_{ij}^{(f)}}{\sum_{f=1}^{p} \delta_{ij}^{(f)}}$$

• f is binary or nominal:

$$d_{ij}^{(f)} = 0$$
 if $x_{if} = x_{jf}$, or $d_{ij}^{(f)} = 1$ otherwise

- f is numeric: use the normalized distance
- f is ordinal
 - Compute ranks r_{if} and $z_{if} = \frac{r_{if}-1}{M_f-1}$ Treat z_{if} as interval-scaled

Cosine Similarity

• A **document** can be represented by thousands of attributes, each recording the *frequency* of a particular word (such as keywords) or phrase in the document.

Document	team	coach	hockey	baseball	soccer	penalty	score	win	loss	season
Document1	5	0	3	0	2	0	0	2	0	0
Document2	3	0	2	0	1	1	0	1	0	1
Document3	0	7	0	2	1	0	0	3	0	0
Document4	0	1	0	0	1	2	2	0	3	0

- Other vector objects: gene features in micro-arrays, ...
- Applications: information retrieval, biologic taxonomy, gene feature mapping, ...
- Cosine measure: If d_1 and d_2 are two vectors (e.g., term-frequency vectors), then $\cos(d_1, d_2) = (d_1 \bullet d_2) / ||d_1|| ||d_2||$,

where \bullet indicates vector dot product, | | d | |: the length of vector d

Example: Cosine Similarity

- $cos(d_1, d_2) = (d_1 \cdot d_2) / ||d_1|| ||d_2||$, where • indicates vector dot product, ||d|: the length of vector d
- Ex: Find the **similarity** between documents 1 and 2.

$$d_I$$
 = (5, 0, 3, 0, 2, 0, 0, 2, 0, 0)
 d_2 = (3, 0, 2, 0, 1, 1, 0, 1, 0, 1)

$$d_{1} \bullet d_{2} = 5 * 3 + 0 * 0 + 3 * 2 + 0 * 0 + 2 * 1 + 0 * 1 + 0 * 1 + 2 * 1 + 0 * 0 + 0 * 1 = 25$$

$$| | d_{1} | | = (5 * 5 + 0 * 0 + 3 * 3 + 0 * 0 + 2 * 2 + 0 * 0 + 0 * 0 + 2 * 2 + 0 * 0 + 0 * 0)^{0.5} = (42)^{0.5} = 6.481$$

$$| | d_{2} | | = (3 * 3 + 0 * 0 + 2 * 2 + 0 * 0 + 1 * 1 + 1 * 1 + 0 * 0 + 1 * 1 + 0 * 0 + 1 * 1)^{0.5} = (17)^{0.5} = 4.12$$

$$\cos(d_{1}, d_{2}) = 0.94$$

K Nearest Neighbor

- Introduction
- kNN
- Similarity and Dissimilarity
- Summary

Summary

- Instance-Based Learning
 - Lazy learning vs. eager learning; K-nearest neighbor algorithm; Similarity / dissimilarity measures