CS145: INTRODUCTION TO DATA MINING

10: Vector Data: Mixture Model

Instructor: Yizhou Sun

yzsun@cs.ucla.edu

February 10, 2019

Methods to Learn

	Vector Data	Set Data	Sequence Data	Text Data
Classification	Logistic Regression; Decision Tree; KNN SVM; NN			Naïve Bayes for Text
Clustering	K-means; hierarchical clustering; DBSCAN; Mixture Models			PLSA
Prediction	Linear Regression GLM*			
Frequent Pattern Mining		Apriori; FP growth	GSP; PrefixSpan	
Similarity Search			DTW	

Vector Data: Mixture Model

Revisit K-means

Mixture Model and EM algorithm

Summary

Recall K-Means

Objective function

•
$$J = \sum_{j=1}^{k} \sum_{C(i)=j} ||x_i - c_j||^2$$

- Total within-cluster variance
- Re-arrange the objective function

$$\bullet J = \sum_{j=1}^{k} \sum_{i} w_{ij} ||x_i - c_j||^2$$

- $w_{ij} \in \{0,1\}$
- $w_{ij} = 1$, if x_i belongs to cluster j; $w_{ij} = 0$, otherwise
- Looking for:
 - The best assignment w_{ij}
 - The best center c_i

Solution of K-Means

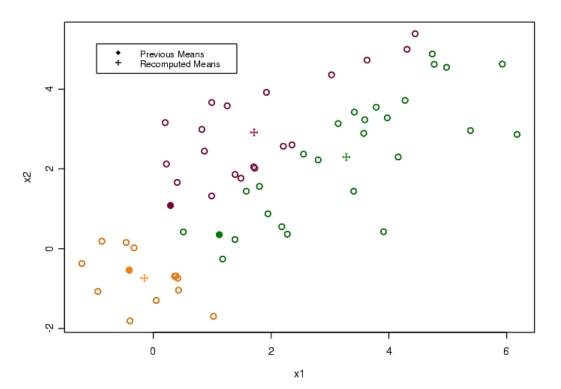
Iterations

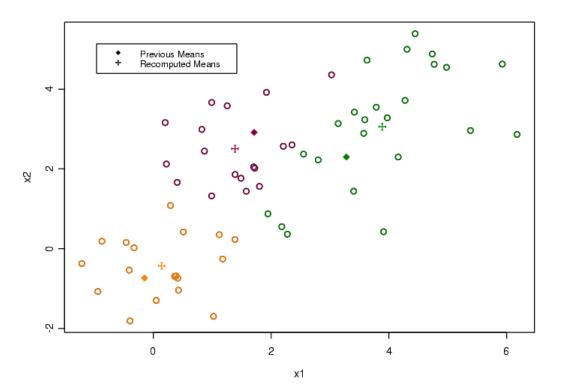
$$J = \sum_{j=1}^{k} \sum_{i} w_{ij} ||x_i - c_j||^2$$

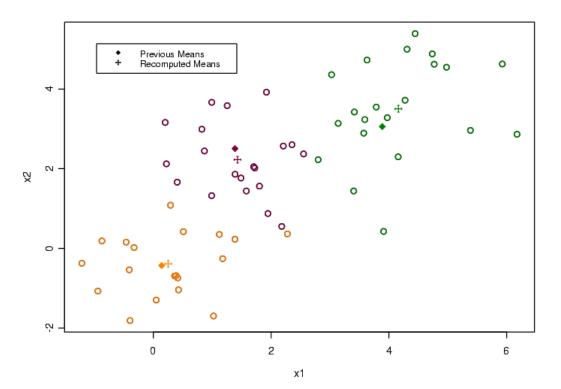
- Step 1: Fix centers c_j , find assignment w_{ij} that minimizes J
 - => $w_{ij} = 1$, if $||x_i c_j||^2$ is the smallest
- Step 2: Fix assignment w_{ij} , find centers that minimize J
 - => first derivative of J = 0

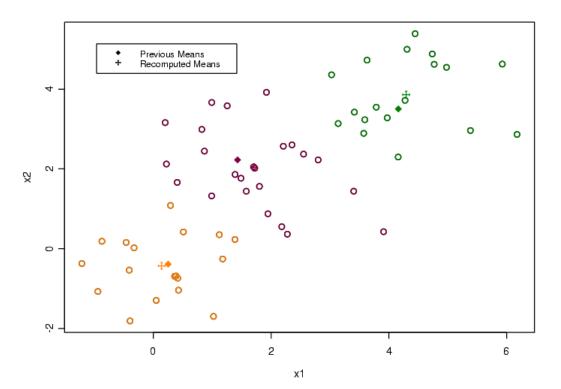
• =>
$$\frac{\partial J}{\partial c_i}$$
 = $-2\sum_i w_{ij}(x_i - c_j) = 0$

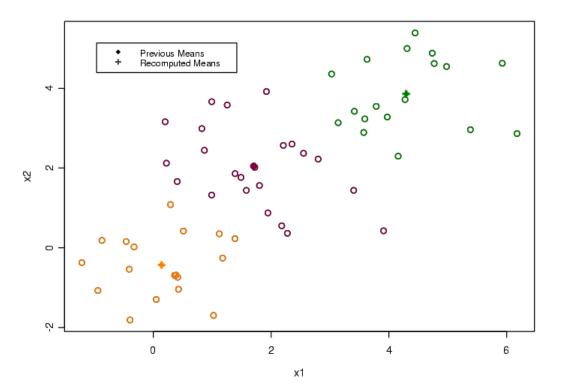
- $\bullet => c_j = \frac{\sum_i w_{ij} x_i}{\sum_i w_{ij}}$
 - Note $\sum_i w_{ij}$ is the total number of objects in cluster j

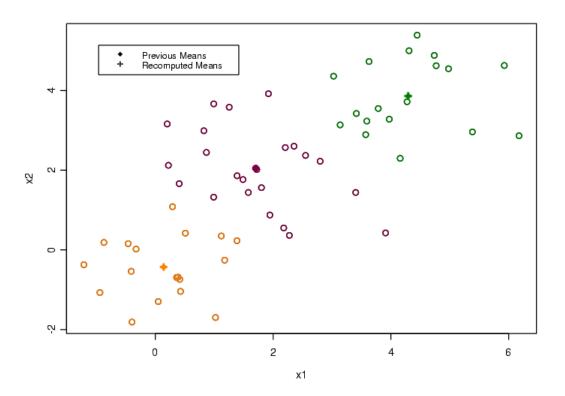










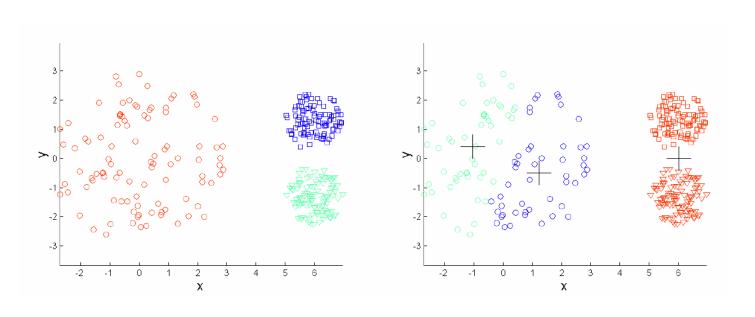


Converges! Why?

Limitations of K-Means

- K-means has problems when clusters are of different
 - Sizes and density
 - Non-Spherical Shapes

Limitations of K-Means: Different Sizes and Variances

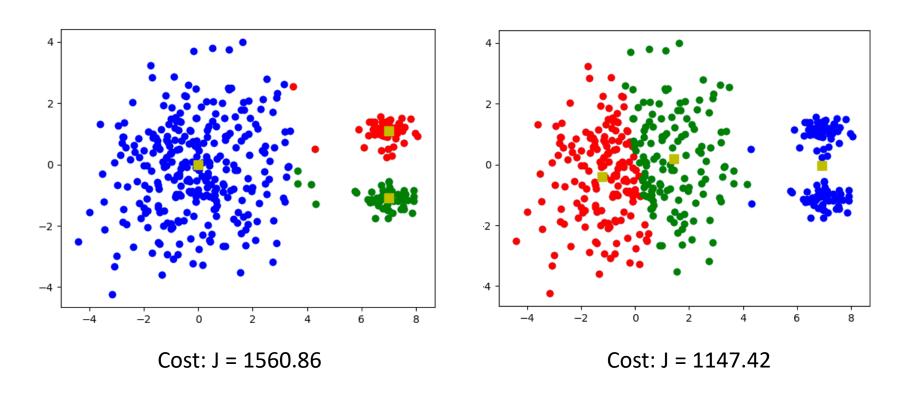


Original Points

K-means (3 Clusters)

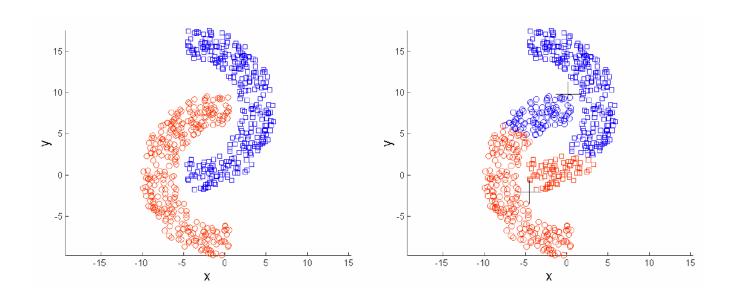
Example

Consider the cost of K-means in two cases



Recall:
$$J = \sum_{j=1}^{k} \sum_{C(i)=j} ||x_i - c_j||^2$$

Limitations of K-Means: Non-Spherical Shapes



Original Points

K-means (2 Clusters)

Vector Data: Mixture Model

Revisit K-means

Mixture Model and EM algorithm

Summary

Hard Clustering vs. Soft Clustering

Hard Clustering

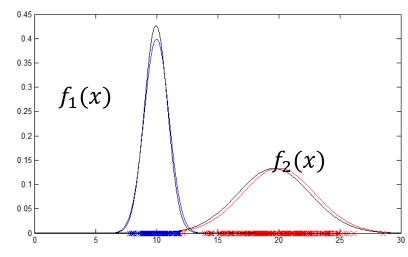
- Every object *i* is assigned to one cluster *j*, e.g., k-means
 - $w_{ij} = \{0,1\} \ and \ \sum_{j} w_{ij} = 1$

Soft Clustering

- Every object *i* is assigned with a probability to different clusters
 - $w_{ij} \in [0,1] \ and \ \sum_{j} w_{ij} = 1$

Mixture Model-Based Clustering

- A set C of k probabilistic clusters $C_1, ..., C_k$
 - probability density functions: $f_1, ..., f_k$
 - Cluster prior probabilities: $w_1, ..., w_k, \sum_j w_j = 1$
- Joint Probability of an object i and its cluster
 C_i is:
 - $p(x_i, z_i = C_j) = w_j f_j(x_i)$
 - z_i : hidden random variable
- Probability of *i* is:
 - $p(x_i) = \sum_j w_j f_j(x_i)$



Maximum Likelihood Estimation

• Since objects are assumed to be generated independently, for a data set $D = \{x_1, ..., x_n\}$, we have,

$$p(D) = \prod_{i} p(x_i) = \prod_{i} \sum_{j} w_j f_j(x_i)$$

$$\Rightarrow log p(D) = \sum_{i} log p(x_i) = \sum_{i} log \sum_{j} w_j f_j(x_i)$$

 Task: Find k probabilistic clusters s.t. p(D) is maximized

The EM (Expectation Maximization) Algorithm

- The (EM) algorithm: A framework to approach maximum likelihood or maximum a posteriori estimates of parameters in statistical models.
 - **E-step** assigns objects to clusters according to the current soft clustering or parameters of probabilistic clusters

•
$$w_{ij}^{t+1} = p\left(z_i = j \middle| \theta_j^t, x_i\right) \propto p\left(x_i \middle| z_i = j, \theta_j^t\right) p(z_i = j)$$

- **M-step** finds the new clustering or parameters that maximize the expected likelihood, with respect to conditional distribution $p\left(z_i = j \middle| \theta_j^t, x_i\right)$
 - $\theta^{t+1} = argmax_{\theta} \sum_{i} \sum_{j} w_{ij}^{t+1} \log p(x_i, z_i = j | \theta)$

Gaussian Mixture Model

- Generative model
 - For each object:
 - Pick its cluster, i.e., a distribution component: $Z \sim Multinoulli(w_1, ..., w_k)$
 - Sample a value from the selected distribution: $X|Z\sim N\left(\mu_Z,\sigma_Z^2\right)$
- Overall likelihood function
 - $L(D|\theta) = \prod_i \sum_j w_j p(x_i|\mu_j, \sigma_j^2)$ s.t. $\sum_j w_j = 1$ and $w_j \ge 0$
 - Q: What is θ here?

Apply EM algorithm: 1-d

- An iterative algorithm (at iteration t+1)
 - E(expectation)-step
 - Evaluate the weight w_{ij} when μ_j, σ_j , w_j are given $w_{ij}^{t+1} = \frac{w_j^t p[x_i | \mu_j^t, (\sigma_j^2)^t]}{\sum_k w_k^t p(x_i | \mu_k^t, (\sigma_k^2)^t)}$

•
$$w_{ij}^{t+1} = \frac{w_j^t p(x_i | \mu_j^t, (\sigma_j^2)^t)}{\sum_k w_k^t p(x_i | \mu_k^t, (\sigma_k^2)^t)}$$

- M(maximization)-step
 - Find μ_i , σ_i , w_i that maximize the weighted log likelihood, where w_{ij} 's are the weights: $\sum_{ij} w_{ij}^{t+1} log w_i p(x_i | \mu_i, \sigma_i^2)$
 - It is equivalent to Gaussian distribution parameter estimation when each point has a weight belonging to each distribution

•
$$\mu_j^{t+1} = \frac{\sum_i w_{ij}^{t+1} x_i}{\sum_i w_{ij}^{t+1}}; (\sigma_j^2)^{t+1} = \frac{\sum_i w_{ij}^{t+1} (x_i - \mu_j^{t+1})^2}{\sum_i w_{ij}^{t+1}}; w_j^{t+1} = \sum_i w_{ij}^{t+1} / n$$

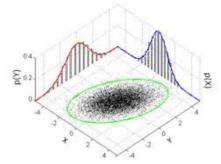
Example: 1-D GMM

- Blue curve: ground truth distribution
- Sample data points from blue curve
- Red curve: estimated distribution



2-d Gaussian

- Bivariate Gaussian distribution
 - Two dimensional random variable: $X = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix}$ $\begin{pmatrix} X_1 \\ X_2 \end{pmatrix} \sim N(\boldsymbol{\mu} = \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}, \boldsymbol{\Sigma} = \begin{pmatrix} \sigma_1^2 & \sigma(X_1, X_2) \\ \sigma(X_1, X_2) & \sigma_2^2 \end{pmatrix})$
 - μ_1 and μ_2 are means of X_1 and X_2
 - σ_1 and σ_2 are standard deviations of X_1 and X_2
 - $\sigma(X_1, X_2)$ is the covariance between X_1 and X_2 , i.e., $\sigma(X_1, X_2) = E(X_1 \mu_1)(X_2 \mu_2)$



Apply EM algorithm: 2-d

- An iterative algorithm (at iteration t+1)
 - E(expectation)-step
 - Evaluate the weight w_{ij} when μ_j , Σ_j , w_j are given

•
$$w_{ij}^{t+1} = \frac{w_j^t p(x_i | \boldsymbol{\mu}_j^t, \boldsymbol{\Sigma}_j^t)}{\boldsymbol{\Sigma}_j w_j^t p(x_i | \boldsymbol{\mu}_j^t, \boldsymbol{\Sigma}_j^t)}$$

- M(maximization)-step
 - Find μ_j , Σ_j , w_j that maximize the weighted likelihood, where w_{ij} 's are weights: $\sum_{ij} w_{ij}^{t+1} log w_j p(\mathbf{x}_i | \boldsymbol{\mu}_j, \Sigma_j)$
 - It is equivalent to Gaussian distribution parameter estimation when each point has a weight belonging to each distribution

•
$$\mu_j^{t+1} = \frac{\sum_i w_{ij}^{t+1} x_i}{\sum_i w_{ij}^{t+1}}; (\sigma_{j,1}^2)^{t+1} = \frac{\sum_i w_{ij}^{t+1} ||x_{i,1} - \mu_{j,1}^{t+1}||^2}{\sum_i w_{ij}^{t+1}}; (\sigma_{j,2}^2)^{t+1} = \frac{\sum_i w_{ij}^{t+1} ||x_{i,2} - \mu_{j,2}^{t+1}||^2}{\sum_i w_{ij}^{t+1}};$$

•
$$(\sigma(X_1, X_2)_j)^{t+1} = \frac{\sum_i w_{ij}^{t+1} (x_{i,1} - \mu_{j,1}^{t+1}) (x_{i,2} - \mu_{j,2}^{t+1})}{\sum_i w_{ij}^{t+1}}; w_j^{t+1} \propto \sum_i w_{ij}^{t+1}$$

K-Means: A Special Case of Gaussian Mixture Model

• When each Gaussian component with covariance matrix $\sigma^2 I$, and with the same size w_j

Soft K-means

•
$$w_{ij} \propto p(x_i | \mu_j, \sigma^2) w_j \propto \exp\left\{-\frac{(x_i - \mu_j)^2}{2\sigma^2}\right\} w_j$$

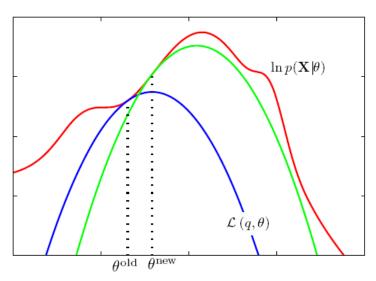
- When $\sigma^2 \rightarrow 0$
 - Soft assignment becomes hard assignment
 - $w_{ij} \rightarrow 1$, if x_i is closest to μ_j (why?)

Mapping Soft Clustering to Hard Clustering

- For evaluation purpose
 - $j^* = \operatorname{argmax}_j w_{ij}$
 - $w_{ij^*} = 1$; $w_{ij} = 0$ for all other $j \neq j^*$
- Example:
 - K = 3; the output of GMM for object i is
 - $w_{i1} = 0.7, w_{i2} = 0.2, w_{i3} = 0.1$
 - \Rightarrow mapping result: assign i to cluster 1

Why EM Works?*

- E-Step: computing a **tight** lower bound L of the original objective function I at θ_{old}
- M-Step: find θ_{new} to maximize the lower bound
- $l(\theta_{new}) \ge L(\theta_{new}) \ge L(\theta_{old}) = l(\theta_{old})$



How to Find Tight Lower Bound?*

$$\ell(\theta) = \log \sum_{h} p(d, h; \theta)$$

$$= \log \sum_{h} \frac{q(h)}{q(h)} p(d, h; \theta)$$

$$= \log \sum_{h} q(h) \frac{p(d, h; \theta)}{q(h)}$$

$$= q(h) \text{ the key to tight lower bound we want to get}$$

Jensen's inequality

$$\log \sum_{h} q(h) \frac{p(d, h; \theta)}{q(h)} \ge \left(\sum_{h} q(h) \log \frac{p(d, h; \theta)}{q(h)} \right)$$

the tight lower bound

- When "=" holds to get a tight lower bound?
 - $q(h) = p(h|d, \theta)$ (why?)

In GMM Case*

$$L(D; \theta) = \sum_{i} \log \sum_{j} w_{j} p(x_{i} | \mu_{j}, \sigma_{j}^{2})$$

$$\geq \sum_{i} \sum_{j} w_{ij} \left(\log w_{j} p(x_{i} | \mu_{j}, \sigma_{j}^{2}) - \log w_{ij} \right)$$

$$\log L(x_{i}, z_{i} = j | \theta)$$
Does not involve θ , can be dropped

Advantages and Disadvantages of GMM

Strength

- Mixture models are more general than partitioning: different densities and sizes of clusters
- Clusters can be characterized by a small number of parameters
- The results may satisfy the statistical assumptions of the generative models

Weakness

- Converge to local optimal (overcome: run multi-times w. random initialization)
- Computationally expensive if the number of distributions is large
- Hard to estimate the number of clusters
- Can only deal with spherical clusters

Vector Data: Mixture Model

Revisit K-means

Mixture Model and EM algorithm

Summary

Summary

- Revisit k-means
 - Limitations
- Mixture models
 - Gaussian mixture model; multinomial mixture model; EM algorithm; Connection to k-means