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Methods to Learn
| |VectorData [SetData |SequenceData |TextData

Classification Logistic Regression; Naive Bayes for Text
Decision Tree; KNN
SVM; NN

Clustering K-means; hierarchical PLSA

clustering; DBSCAN;
Mixture Models

Prediction Linear Regression
GLM*
Frequent Pattern Apriori; FP growth GSP; PrefixSpan
Mining
Similarity Search DTW




Vector Data: Mixture Model

-Revisit K-means @

* Mixture Model and EM algorithm

Summary



Recall K-Means

» Objective function

] =X Y= 1% — ¢
» Total within-cluster variance
- Re-arrange the objective function

— V'K
] = Zj=12iwij| Xi — Cj||2
*wij €10,1}

*w;; = 1,if x; belongs to cluster j; w;; =
0, otherwise

» Looking for:
* The best assignment w;;
* The best center ¢;

Ik




Solution of K-Means

* [terations =y 1Zw-j||x-—c,-||2

» Step 1: Fix centers ¢j, find assignment w;; that
minimizes J

c=>Wij = Lif |[x; _C]”Z

is the smallest

* Step 2: Fix assignment wy, find centers that
minimize |/

« => first derivative of ] =0

d
o =>a_c]- = -2 Ziwl](xl c]) 0
]

° =>Cj =

* Note }}; w;; is the total number of objects in cluster |
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Limitations of K-Means

- K-means has problems when clusters are
of different

* S1zes and density

» Non-Spherical Shapes
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Limitations of K-Means: Different Sizes
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Example

« Consider the cost of K-means in two cases

Cost: J =1560.86 Cost: 1 =1147.42

Recall: | = 2?:1 2iceiy=j 1% — ik
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imitations of K-Means: Non-Spherica

10 15 -15

Original Points K-means (2 Clusters)
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Vector Data: Mixture Model

*Revisit K-means
* Mixture Model and EM algorithm [

Summary
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Hard Clustering vs. Soft Clustering

*Hard Clustering

 Every object 71s assigned to one cluster j, e.g.,
k-means

*Wij = {0,1} and Z] Wij = 1
- Soft Clustering

» Every object 71s assigned with a probability to
difterent clusters

* Wij S [0,1] and Z]WU =1
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Mixture Model-Based Clustering

* A set C of k probabilistic clusters C,, ...,C,
e probability density functions: £, ..., £,
» Cluster prior probabilities: wy, ..., w, ). jwj = 1
- Joint Probability of an object i and its cluster
C is:
p(xi,2; = C;) = w;ifj(x;)

» z;: hidden random variable ..

* Probability of j is:
- p(x;) = Zj ijj(xi)
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Maximum Likelihood Estimation

- Since objects are assumed to be generated
independently, for a data set D = {X,, ..., X,},
we have,

p(D) = Hzo(xl) = | [wa](xa
= logp(D) = z logp(x;) = z lOQZW fi(x:)

- Task: Find k probabilistic clusters s.t. p(D) Is
maximized
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The EM (Expectation Maximization)

- The (EM) algorithm: A framework to approach maximum likelihood or
maximum a posteriori estimates of parameters in statistical models.

» E~step assigns objects to clusters according to the
current soft clustering or parameters of probabilistic
clusters f] )

wi = p (2= j|6f, %) < p (xi|z: S 1. 6F ) pzi = 1)
: M—step finds the new clustering or parameters that
maximize the expected likelihood, with respect to

Wj

conditional distribution p (Zi = ]‘9 3 Xi)

-0t = argmaxy Y, Y Wt+1 logp(x;,z; = j|0)
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Gaussian Mixture Model

*Generative model

» For each object:

* Pick its cluster, i.e., a distribution component:

Z~Multinoulli(wy, ..., W)

» Sample a value from the selected distribution:

X|Z~N(uz, 0%)
«Qverall likelihood function
-L(D| 6) =[1; X; wjp(x;|uj, i)
s.t. 2wy =T1andw; =0
* QQ: What 1s 6 here?
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Apply EM a

lgorithm: 1-d

- An iterative algorithm (
- E(expectation)-step

at iteration t+1)

- Evaluate the weight w;; thn_,u(_,,_a;‘ , Wjare given
to b 1t (2 f X;)

tr1 . wiplxilp; (e

) W . p—
Lj Y WED (Xi| 1k, (a)D)

« M(maximization)-step

* Find u;, g, w; that maximize the weighted log likelihood,
where w;;’s are the weights: 3\, wi;" logw;p (x;|u;, o7)

* It is equivalent to Gaussia

n distribution parameter

estimation when each point has a weight belonging to

each distribution

o _ Siw

t+1 t+1 t+1
2)t+1:Zi 5 (k] )

°Hj

t+1 ;
lel]

. t+1
Zl Wlt]+1 Z Wl] /n
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Example: 1-D GMM

*Blue curve: ground
truth distribution

-Sample data points
from blue curve

* Red curve:
estimated
distribution

04

0.3}

0.2}

0.1}

- components
—— mixture model ||
----- estimated model

0 5 10 15
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2-d Gaussian

« Bivariate Gaussian distribution

X
- Two dimensional random variable: X = ( Xl)
2

(j((l) NG =)= = (a(x(fxz) U(X;%X2)>)

* U1 and U, are means of X;and X,
- 04 and o, are standard deviations of X;and X,

- 0(X{,X,) is the covariance between X,and X,,
i.e.,0(Xy,Xy) = E(Xq — u) (X — )

1] /ﬂﬁ““‘/\'/ﬁ\
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Apply EM algorithm: 2-d

- An iterative algorithm (at iteration t+1)
- F.(expectation)-step
 Evaluate the weight Wi when M Zj, wjare given
L w’-“p<xl|u§ z))
H % wip(xiluhE)
« M(maximization)-step

* Find i, 2;, w; that maximize the weighted likelihood, where
w;j’s are welghts Qi t+1l0gw]p(xl|u], i)

* It is equivalent to Gau55|an distribution parameter estimation
when each point has a weight belonging to each distribution

t+1 witl t+1 witl t+1
o pttl = Xw (02 Y+ = 2 Wij |x‘1 Hit || S (02)tH = ZiWij |le Hi2 ||
— t+1 i1 t+1 2 t+1
J ZI.WL] J ZI.WL] ] lel]
Tiwi i —uS i (i —uiEh
t+1_ ~i u i, 11 i27Hj2 ), t+1 t+1
¢ (J(XerZ)j) Y. wtrl ) ] X Z W

iVij
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K-Means: A Special Case of Gaussian
Mixture Model

*When each Gaussian component with
covariance matrix 21, and with the same
Size W;j

Distance!

» Soft K-means /

2
2 ‘(xi—ﬂj)
'Wl'j OCp(Xi‘,Llj,O' )W] ocexp{ o2 }W]
*When g% - 0
» Solt assignment becomes hard assignment

*w;; = 1,if x; 15 closest to u; (why?)
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Mapping Soft Clustering to Hard
Clustering

*For evaluation purpose

*j7 = argmax;wj;

‘w;j =1;,w;; =0 for all other j # j°
«Example:

K = 3;the output of GMM for objectiis

*Wij1 = 07, Wio = 0.2,Wi3 = (0.1
= mapping result: assigni to cluster 1
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Why EM Works?*

» E-Step: computing a tight lower bound L of the
original objective function / at 8,4

» M-Step: find 8,,,,, to maximize the lower bound

'Z(Qnew) = L(Hnew) = L(Holld) — l(gold)
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How to Find Tight Lower Bound?*

log ——pld, h; 8
2 P

p(d, h; 0 q(h):the key to tight lower bound
= lc-g%: q(h)p(q{hj ) we want to get

Jensen’s inequality

(dh pld, h: )
¢ lgE:f E:JM
0 q(hn, [qzo ]}\

the tight lower bound

* When “=" holds to get a tight lower bound?
- q(h) = p(h|d, 6) (why?)
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In GMM Case*

L(D;0) = 2 1082 wip(x;|1), 07)
L j

= Z Z Wi ; (lo\g ij(xi
A

l

ui,a? ) —logw
’ /)\

l)j)

! |

log L(x;,z; = j|6) Does not involve 6,

can be dropped
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Advantages and Disadvantages of GMM

- Strength

« Mixture models are more general than partitoning: different densities and

sizes of clusters

¢ Clusters can be characterized by a small number of parameters

 The results may satisty the statistical assumptions of the generative models

« Weakness

« Converge to local optimal (overcome: run multi-imes w. random
mitialization)

« Computationally expensive if the number of distributions 1s large

« Hard to estimate the number of clusters

« Can only deal with spherical clusters
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Vector Data: Mixture Model

*Revisit K-means
* Mixture Model and EM algorithm

Summary "

33



Summary

* Revisit k-means
» Limitations
* Mixture models

» Gaussian mixture model; multitnomial mixture
model; EM algorithm; Connection to k-means
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