
CS145: INTRODUCTION TO DATA
MINING

Instructor: Yizhou Sun
yzsun@cs.ucla.edu

February 24, 2019

Set Data: Frequent Pattern Mining

mailto:yzsun@cs.ucla.edu

Midterm Statistics
•Highest: 104
•Mean: 90.3
•Median: 91.5
•Standard deviation: 8.45

2

Congratulations!

negatively skewedRecall:

Methods to be Learnt

3

Vector Data Set Data Sequence Data Text Data

Classification Logistic Regression;
Decision Tree; KNN;
SVM; NN

Naïve Bayes for Text

Clustering K-means; hierarchical
clustering; DBSCAN;
Mixture Models

PLSA

Prediction Linear Regression
GLM*

Frequent Pattern
Mining

Apriori; FP growth GSP; PrefixSpan

Similarity Search DTW

Mining Frequent Patterns, Association
and Correlations

• Basic Concepts

• Frequent Itemset Mining Methods

• Pattern Evaluation Methods

• Summary

4

Set Data
•A data point corresponds to a set of items

• Each data point is also called a transaction

5

Tid Items bought

10 Beer, Nuts, Diaper

20 Beer, Coffee, Diaper

30 Beer, Diaper, Eggs

40 Nuts, Eggs, Milk

50 Nuts, Coffee, Diaper, Eggs, Milk

What Is Frequent Pattern Analysis?
• Frequent pattern: a pattern (a set of items, subsequences,

substructures, etc.) that occurs frequently in a data set
• First proposed by Agrawal, Imielinski, and Swami [AIS93] in the context of

frequent itemsets and association rule mining

• Motivation: Finding inherent regularities in data

• What products were often purchased together?— Beer and

diapers?!

• What are the subsequent purchases after buying a PC?

• What kinds of DNA are sensitive to this new drug?

6

Why Is Freq. Pattern Mining Important?

• Freq. pattern: An intrinsic and important property of datasets
• Foundation for many essential data mining tasks

• Association, correlation, and causality analysis

• Sequential, structural (e.g., sub-graph) patterns

• Pattern analysis in spatiotemporal, multimedia, time-series, and
stream data

• Classification: discriminative, frequent pattern analysis

• Cluster analysis: frequent pattern-based clustering

• Broad applications

7

Basic Concepts: Frequent Patterns

• itemset: A set of one or more items
• k-itemset X = {x1, …, xk}: A set of k

items
• (absolute) support, or, support count

of X: Frequency or occurrence of an
itemset X

• (relative) support, s, is the fraction of
transactions that contains X (i.e., the
probability that a transaction
contains X)

• An itemset X is frequent if X’s
support is no less than a minsup
threshold

8

Customer
buys diaper

Customer
buys both

Customer
buys beer

Tid Items bought
10 Beer, Nuts, Diaper
20 Beer, Coffee, Diaper
30 Beer, Diaper, Eggs
40 Nuts, Eggs, Milk
50 Nuts, Coffee, Diaper, Eggs, Milk

Basic Concepts: Association Rules
• Find all the rules X Y with

minimum support and confidence
• support, s, probability that a

transaction contains X ∪ Y
• confidence, c, conditional

probability that a transaction
having X also contains Y

Let minsup = 50%, minconf = 50%
Freq. Pat.: {Beer}:3, {Nuts}:3, {Diaper}:4, {Eggs}:3,

{Beer, Diaper}:3

9

Customer
buys
diaper

Customer
buys both

Customer
buys beer

Nuts, Eggs, Milk40
Nuts, Coffee, Diaper, Eggs, Milk50

Beer, Diaper, Eggs30
Beer, Coffee, Diaper20
Beer, Nuts, Diaper10

Items boughtTid

 Strong Association rules
 {Beer} {Diaper} (60%, 100%)
 {Diaper} {Beer} (60%, 75%)

Closed Patterns and Max-Patterns
•A long pattern contains a combinatorial
number of sub-patterns
• e.g., {a1, …, a100} contains 2100 – 1 = 1.27*1030

sub-patterns!

• In general, {a1, …, an} contains 2n – 1 sub-
patterns

•
𝑛𝑛
1 + 𝑛𝑛

2 + ⋯+ 𝑛𝑛
𝑛𝑛 = 2𝑛𝑛 − 1

10

Closed Patterns and Max-Patterns
• Solution: Mine closed patterns and max-patterns instead
• An itemset X is closed if X is frequent and there exists no super-

pattern Y כ X, with the same support as X (proposed by
Pasquier, et al. @ ICDT’99)

• An itemset X is a max-pattern if X is frequent and there exists
no frequent super-pattern Y כ X (proposed by Bayardo @
SIGMOD’98)

• Closed pattern is a lossless compression of freq. patterns
• Reducing the # of patterns and rules

11

Closed Patterns and Max-Patterns
• Example. DB = {{a1, …, a100}, {a1, …, a50}}

• Min_sup = 1.

• What is the set of closed pattern(s)?
• {a1, …, a100}: 1
• {a1, …, a50}: 2

• Yes, it does have super-pattern, but not with the same
support

• What is the set of max-pattern(s)?
• {a1, …, a100}: 1

• What is the set of all patterns?
• !!

12

Computational Complexity of Frequent Itemset Mining

• How many itemsets are potentially to be
generated in the worst case?
• The number of frequent itemsets to be generated is sensitive to

the minsup threshold

• When minsup is low, there exist potentially an exponential

number of frequent itemsets

• The worst case: 𝑀𝑀1 + 𝑀𝑀
2 + ⋯+ 𝑀𝑀

𝑁𝑁
• M: # distinct items, N: max length of transactions

• 𝑀𝑀
𝑁𝑁 = 𝑀𝑀 × 𝑀𝑀 − 1 × ⋯× (𝑀𝑀 −𝑁𝑁 + 1)/𝑁𝑁!

13

Mining Frequent Patterns, Association
and Correlations

• Basic Concepts

• Frequent Itemset Mining Methods

• Pattern Evaluation Methods

• Summary

15

Scalable Frequent Itemset Mining Methods
• Apriori: A Candidate Generation-and-Test Approach

• Improving the Efficiency of Apriori

• FPGrowth: A Frequent Pattern-Growth Approach

• *ECLAT: Frequent Pattern Mining with Vertical Data

Format

• Generating Association Rules

16

The Apriori Property and Scalable
Mining Methods

• The Apriori property of frequent patterns
• Any nonempty subsets of a frequent itemset must be

frequent
• E.g., If {beer, diaper, nuts} is frequent, so is {beer, diaper}

• i.e., every transaction having {beer, diaper, nuts} also contains
{beer, diaper}

• Scalable mining methods: Three major approaches
• Apriori (Agrawal & Srikant@VLDB’94)
• Freq. pattern growth (FPgrowth—Han, Pei & Yin

@SIGMOD’00)
• *Vertical data format approach (Eclat)

17

Apriori: A Candidate Generation & Test Approach

• Apriori pruning principle: If there is any itemset which is
infrequent, its superset should not be generated/tested! (Agrawal
& Srikant @VLDB’94, Mannila, et al. @ KDD’ 94)

• Method:

• Initially, scan DB once to get frequent 1-itemset

• Generate length k candidate itemsets from length k-1 frequent

itemsets

• Test the candidates against DB

• Terminate when no frequent or candidate set can be generated

18

From Frequent k-1 Itemset
To Frequent k-Itemset

Ck: Candidate itemsets of size k
Lk : frequent itemsets of size k

•From 𝐿𝐿𝑘𝑘−1 to 𝐶𝐶𝑘𝑘 (Candidates Generation)
• The join step
• The prune step

•From 𝐶𝐶𝑘𝑘 to 𝐿𝐿𝑘𝑘
• Test candidates by scanning database

19

Candidates Generation

• How to generate candidates Ck?
• Step 1: self-joining Lk-1

• Two length k-1 itemsets 𝑙𝑙1 and 𝑙𝑙2 can join, only if the first k-2
items are the same, and for the last term, 𝑙𝑙1 𝑘𝑘 − 1 < 𝑙𝑙2 𝑘𝑘 − 1
(why?)

• The joined length-k itemset is: 𝑙𝑙1 ∪ 𝑙𝑙2 = {𝑙𝑙1 1 , 𝑙𝑙1 2 , … , 𝑙𝑙1[𝑘𝑘

20

Assume a pre-specified order for items, e.g., alphabetical order

Candidate-Generation Example
•Example of Candidate-generation from L3

to C4
• L3={abc, abd, acd, ace, bcd}

• Self-joining: L3*L3

• abcd from abc and abd
• acde from acd and ace

• Pruning:
• acde is removed because ade is not in L3

• C4 = {abcd}

21

The Apriori Algorithm—Example

22

Database TDB

1st scan

C1
L1

L2

C2 C2
2nd scan

C3 L33rd scan

Tid Items
10 A, C, D
20 B, C, E
30 A, B, C, E
40 B, E

Itemset sup
{A} 2
{B} 3
{C} 3
{D} 1
{E} 3

Itemset sup
{A} 2
{B} 3
{C} 3
{E} 3

Itemset
{A, B}
{A, C}
{A, E}
{B, C}
{B, E}
{C, E}

Itemset sup
{A, B} 1
{A, C} 2
{A, E} 1
{B, C} 2
{B, E} 3
{C, E} 2

Itemset sup
{A, C} 2
{B, C} 2
{B, E} 3
{C, E} 2

Itemset
{B, C, E}

Itemset sup
{B, C, E} 2

Supmin = 2

The Apriori Algorithm (Pseudo-Code)

Ck: Candidate itemsets of size k
Lk : frequent itemsets of size k

L1 = {frequent items};
for (k = 2; Lk-1 !=∅; k++) do begin

Ck = candidates generated from Lk-1;
for each transaction t in database do

increment the count of all candidates in Ck that are
contained in t

Lk = candidates in Ck with min_support
end
return ∪k Lk;

23

Questions
•How many scans on DB are needed for
Apriori algorithm?

•When (k = ?) does Apriori algorithm
generate the biggest number of candidate
itemsets?

• Is support counting for candidates
expensive?

24

Further Improvement of the Apriori
Method

•Major computational challenges
• Multiple scans of transaction database

• Huge number of candidates

• Tedious workload of support counting for candidates

• Improving Apriori: general ideas
• Reduce passes of transaction database scans

• Shrink number of candidates

• Facilitate support counting of candidates

25

*Partition: Scan Database Only Twice
• Any itemset that is potentially frequent in DB
must be frequent in at least one of the partitions
of DB
• Scan 1: partition database and find local frequent patterns

• Scan 2: consolidate global frequent patterns

• A. Savasere, E. Omiecinski and S. Navathe,
VLDB’95

DB1 DB2 DBk+ = DB++
sup1(i) < σDB1 sup2(i) < σDB2 supk(i) < σDBk sup(i) < σDB

*Hash-based Technique: Reduce the Number
of Candidates

• A k-itemset whose corresponding hashing bucket count is below the
threshold cannot be frequent

• Candidates: a, b, c, d, e

• Hash entries

• {ab, ad, ae}

• {bd, be, de}

• …

• Frequent 1-itemset: a, b, d, e

• ab is not a candidate 2-itemset if the sum of count of {ab, ad, ae} is

below support threshold

• J. Park, M. Chen, and P. Yu. An effective hash-based algorithm for
mining association rules. SIGMOD’95 27

count itemsets
35 {ab, ad, ae}

{yz, qs, wt}

88

102

.

.

.

{bd, be, de}
.
.
.

Hash Table

*Sampling for Frequent Patterns
• Select a sample of original database, mine frequent patterns

within sample using Apriori

• Scan database once to verify frequent itemsets found in
sample, only borders of closure of frequent patterns are
checked

• Example: check abcd instead of ab, ac, …, etc.

• Scan database again to find missed frequent patterns

• H. Toivonen. Sampling large databases for association rules. In
VLDB’96

28

Scalable Frequent Itemset Mining Methods
• Apriori: A Candidate Generation-and-Test Approach

• Improving the Efficiency of Apriori

• FPGrowth: A Frequent Pattern-Growth Approach

• *ECLAT: Frequent Pattern Mining with Vertical Data

Format

• Generating Association Rules

29

Pattern-Growth Approach: Mining Frequent Patterns
Without Candidate Generation

• Bottlenecks of the Apriori approach

• Breadth-first (i.e., level-wise) search

• Scan DB multiple times

• Candidate generation and test

• Often generates a huge number of candidates

• The FPGrowth Approach (J. Han, J. Pei, and Y. Yin,
SIGMOD’ 00)

• Depth-first search

• Avoid explicit candidate generation
30

Major philosophy
• Grow long patterns from short ones using local
frequent items only

• “abc” is a frequent pattern

• Get all transactions having “abc”, i.e., project

DB on abc: DB|abc

• “d” is a local frequent item in DB|abc abcd

is a frequent pattern

31

FP-Growth Algorithm Sketch
•Construct FP-tree (frequent pattern-tree)

• Compress the DB into a tree

•Recursively mine FP-tree by FP-Growth
• Construct conditional pattern base from FP-
tree

• Construct conditional FP-tree from conditional
pattern base

• Until the tree has a single path or empty

32

Construct FP-tree from a Transaction Database

33

{}

f:4 c:1

b:1

p:1

b:1c:3

a:3

b:1m:2

p:2 m:1

Header Table

Item frequency head
f 4
c 4
a 3
b 3
m 3
p 3

min_support = 3

TID Items bought (ordered) frequent items
100 {f, a, c, d, g, i, m, p} {f, c, a, m, p}
200 {a, b, c, f, l, m, o} {f, c, a, b, m}
300 {b, f, h, j, o, w} {f, b}
400 {b, c, k, s, p} {c, b, p}
500 {a, f, c, e, l, p, m, n} {f, c, a, m, p}

1. Scan DB once, find
frequent 1-itemset (single
item pattern)

2. Sort frequent items in
frequency descending
order, f-list

3. Scan DB again, construct
FP-tree F-list = f-c-a-b-m-p

Partition Patterns and Databases

•Frequent patterns can be partitioned into
subsets according to f-list
• F-list = f-c-a-b-m-p
• Patterns containing p
• Patterns having m but no p
• …
• Patterns having c but no a nor b, m, p
• Pattern f

•Completeness and non-redundency
34

Find Patterns Having P From P-conditional Database

• Starting at the frequent item header table in the FP-tree
• Traverse the FP-tree by following the link of each frequent item p
• Accumulate all of transformed prefix paths of item p to form p’s

conditional pattern base

35

Conditional pattern bases
item cond. pattern base
c f:3
a fc:3
b fca:1, f:1, c:1
m fca:2, fcab:1
p fcam:2, cb:1

{}

f:4 c:1

b:1

p:1

b:1c:3

a:3

b:1m:2

p:2 m:1

Header Table

Item frequency head
f 4

c 4
a 3
b 3
m 3
p 3

From Conditional Pattern-bases to Conditional FP-trees

•For each pattern-base
• Accumulate the count for each item in the base

• Construct the FP-tree for the frequent items of the
pattern base

36

m-conditional pattern base (DB|m):
fca:2, fcab:1

{}

f:3

c:3

a:3
m-conditional FP-tree

All frequent
patterns relate to m
m,
fm, cm, am,
fcm, fam, cam,
fcam

{}

f:4 c:1

b:1

p:1

b:1c:3

a:3

b:1m:2

p:2 m:1

Header Table
Item frequency head
f 4

c 4
a 3
b 3
m 3
p 3

Don’t forget to add back m!

Recursion: Mining Each Conditional FP-tree

37

{}

f:3

c:3

a:3
m-conditional

FP-tree

Cond. pattern base of “am”: (fc:3)

{}

f:3

c:3
am-conditional FP-tree

Cond. pattern base of “cm”: (f:3) {}

f:3
cm-conditional FP-tree

Cond. pattern base of “cam”: (f:3)
{}

f:3
cam-conditional FP-tree

Another Example: FP-Tree Construction

38

F-list = a-b-c-d-e

min_support = 2

Mining Sub-tree Ending with e
• Conditional pattern base for e: {acd:1; ad:1; bc:1}
• Conditional FP-tree for e:

• Conditional pattern base for de: {ac:1; a:1}
• Conditional FP-tree for de:
• Frequent patterns for de: {ade:2, de:2}
• Conditional pattern base for ce: {a:1}
• Conditional FP-tree for ce: empty
• Frequent patterns for ce: {ce:2}
• Conditional pattern base for ae: {∅}
• Conditional FP-tree for ae: empty
• Frequent patterns for ae: {ae:2}

• Therefore, all frequent patterns with e are: {ade:2, de:2,
ce:2, ae:2, e:3}

39

*A Special Case: Single Prefix Path in FP-tree

• Suppose a (conditional) FP-tree T has a shared single
prefix-path P

• Mining can be decomposed into two parts

• Reduction of the single prefix path into one node

• Concatenation of the mining results of the two parts

40

a2:n2

a3:n3

a1:n1

{}

b1:m1
C1:k1

C2:k2 C3:k3

b1:m1
C1:k1

C2:k2 C3:k3

r1

+
a2:n2

a3:n3

a1:n1

{}

r1 =

Benefits of the FP-tree Structure

• Completeness
• Preserve complete information for frequent pattern

mining

• Never break a long pattern of any transaction

• Compactness
• Reduce irrelevant info—infrequent items are gone

• Items in frequency descending order: the more
frequently occurring, the more likely to be shared

• Never be larger than the original database (not count
node-links and the count field)

41

*Scaling FP-growth by Database Projection
• What about if FP-tree cannot fit in memory?

• DB projection

• First partition a database into a set of projected DBs
• Then construct and mine FP-tree for each projected DB
• Parallel projection vs. partition projection techniques

• Parallel projection

• Project the DB in parallel for each frequent item
• Parallel projection is space costly
• All the partitions can be processed in parallel

• Partition projection

• Partition the DB based on the ordered frequent items
• Passing the unprocessed parts to the subsequent partitions 42

FP-Growth vs. Apriori: Scalability With the Support
Threshold

43

0

10

20

30

40

50

60

70

80

90

100

0 0.5 1 1.5 2 2.5 3
Support threshold(%)

Ru
n

tim
e(

se
c.)

D1 FP-grow th runtime

D1 Apriori runtime

Data set T25I20D10K

Chart1

		3		3

		2		2

		1.5		1.5

		1		1

		0.8		0.8

		0.5		0.5

		0.3		0.3

		0.2		0.2

		0.1		0.1

D1 FP-growth runtime

D1 Apriori runtime

Support threshold(%)

Run time(sec.)

2

2

4

3

4

6

5

24

5

66

7

500

11

18

44

Sheet1

		dataset T25I10D10k item=1k

				FP-tree/FP-mine										TreeProjection								Comparison

		threshold(%)		#tree nodes		tree size(k)		#stack nodes		stack size(k)		#trans(FP)		#tree nodes		max width		#trans		matrices cost		fp/lexi tree		stack/width		lexi/fp trans

		5		23034		553		23034		553		32961		73		73		43124		95681		315.53		315.53		1.31

		4		72761		1745		72761		1745		82577		183		183		91869		73038		397.60		397.60		1.11

		3		146119		3507		146119		3507		155966		393		393		164221		48777		371.80		371.80		1.05

		2		218968		5255		218851		5252		228746		732		683		240778		730933		299.14		320.43		1.05

		1		268446		6443		256093		6146		274044		5781		1000		557415		2696630		46.44		256.09		2.03

		0.8		283776		6811		258746		6210		286271		9300		1969		704609		35351149		30.51		131.41		2.46

		0.5		358504		8604		261771		6283		345100		28647		5614		1284475		58926872		12.51		46.63		3.72

		0.3		575076		13802		267947		6431		531012		69654		13141		2007235		72816185		8.26		20.39		3.78

		0.2		1059473		25427		273505		6564		978119		127070		29516		2757934		75017811		8.34		9.27		2.82

		0.1		2680921		64342		279803		6715		2503893		339122		126759		4461514		60913697		7.91		2.21		1.78

		dataset T25I10D100k item=10k

				FP-tree/FP-mine										TreeProjection								Comparison

		threshold(%)		#tree nodes		tree size(k)		#stack nodes		stack size(k)		#trans(FP)		#tree nodes		max width		#trans		matrices cost		fp/lexi tree		stack/width		lexi/fp trans

		2		101882		2445		101870		2445		201739		143		130		331614		21641131		712.46		783.62		1.64

		1		1009635		24231		995899		23902		1105008		5256		1047		3987083		2750956301		192.09		951.19		3.61

		0.8		1370535		32893		1343868		32253		1461577		10230		1934		6202163		4034686178		133.97		694.86		4.24

		0.5		2039320		48944		1967767		47226		2116084		27067		5282		11607208		2043187182		75.34		372.54		5.49

		0.3		2520330		60488		2327481		55860		2558572		72640		12406		20576130		464774592		34.70		187.61		8.04

		0.1		3006353		72158		2594122		62259		2976364		151543		30545		27400206		1336564808		19.84		84.93		9.21

		dataset T25I10D10k item=1k														dataset T25I10D100k item=1k

		threshold(%)		FP-mem(k)		FP-cost		TP-mem(k)		TP-cost		TP/FP mem		TP/FP cost		threshold(%)		FP-mem(k)		FP-cost		TP-mem(k)		TP-cost		TP/FP mem		TP/FP cost

		5		1982		400201		1485		511211		0.75		1.28		2		15156		3507639		13619		4298614		0.90		1.23

		4		4520		785584		2824		2060796		0.62		2.62		1		66629		12779465		64469		57659747		0.97		4.51

		3		10023		1793296		6559		9244102		0.65		5.15		0.8		94296		18492627		96998		103458233		1.03		5.59

		2		17518		3310208		12342		25347263		0.70		7.66		0.5		155409		31915987		177024		237327240		1.14		7.44

		1		22462		4420460		18237		39008073		0.81		8.82		0.3		199892		42255698		275310		368738996		1.38		8.73

		0.8		23218		4618538		19747		40627669		0.85		8.80		0.1		239233		51193917		351885		481528057		1.47		9.41

		0.5		25875		5131383		25132		43660411		0.97		8.51

		0.3		33842		6287029		33896		47874099		1.00		7.61

		0.2		55016		9401382		52178		59761361		0.95		6.36

		0.1		143191		23875862		172886		142020815		1.21		5.95

		threshold(%)		D1 running mem. Req.		D2 running mem. Req.

		2		5252		2445

		1		6146		23902

		0.8		6210		32253

		0.5		6283		47226

		0.3		6431		55860

		0.1		6715		62259

Sheet1

		

D1 running mem. Req.

D2 running mem. Req.

Support threshold(%)

Running memory requirement (Kb)

Sheet2

		T25I10D10k 1k items

		threshold(%)		D1 #frequent itemsets		D1 #weighted length		D1 longest		D2 #frequent itemsets		D2 #weighted length		D2 longest

		3		393		1		1		19		1		1

		2		732		1.08		3		143		1.1		3

		1.5		1482		2.18		6		1136		3.2		7

		1		5781		3.79		10		5256		3.53		9

		0.8		9300		3.63		11		10230		3.89		11

		0.5		28647		4.09		12		27067		4.09		12

		0.3		69654		4.43		13		72640		4.74		14

		0.2		127070		4.38		13		99707		4.66		14

		0.1		339122		3.84		14		151543		4.64		14

Sheet2

		

D1 #frequent itemsets

D2 #frequent itemsets

Support threshold(%)

Number of frequent itemsets

Sheet3

		

D1 #weighted length

D1 longest

D2 #weighted length

D2 longest

Support threshold(%)

Length of frequent itemsets

Sheet4

		threshold(%)		D1 FP-growth runtime		D1 Apriori runtime		D2 FP-growth runtime		D2 Apriori runtime		D1 #frequent itemsets		D2 #frequent itemsets		D1 runtime/itemset		D2 runtime/itemset

		3		2		2		10		12		393		19		0.0050890585		0.5263157895

		2		4		3		11		21		732		143		0.0054644809		0.0769230769

		1.5		4		6		15		64		1482		1136		0.0026990553		0.0132042254

		1		5		24		26		225		5781		5256		0.0008649023		0.0049467275

		0.8		5		66		35				9300		10230		0.0005376344		0.0034213099

		0.5		7		500		58				28647		27067		0.0002443537		0.0021428308

		0.3		11				91				69654		72640		0.0001579235		0.0012527533

		0.2		18				107				127070		99707		0.0001416542		0.0010731443

		0.1		44				137				339122		151543		0.0001297468		0.0009040338

Sheet4

		

D1 FP-growth runtime

D1 Apriori runtime

Support threshold(%)

Run time(sec.)

Sheet5

		

D2 FP-growth runtime

D2 Apriori runtime

Support threshold(%)

Run time(sec.)

Sheet6

		

D1 runtime/itemset

D2 runtime/itemset

Support threshold(%)

Runtime/itemset(sec.)

		Size(K)		FP-growth		Apriori

		10		1		4

		20		3		11

		30		5		17

		50		7		31

		80		12		51

		100		15		64

		

FP-growth

Apriori

Number of transactions (K)

Run time (sec.)

		D1 10k

		threshold(%)		D1 FP-growth		D1 TreeProjection

		3		2		2

		2		4		4

		1.5		4		5

		1		5		7

		0.8		5		9

		0.5		7		18

		0.3		11		31

		0.2		18		46

		0.1		44		98

		D2 100k

		threshold(%)		D2 FP-growth		D2 TreeProjection

		3		10		11

		2		11		11

		1.5		15		21

		1		26		57

		0.8		35		123

		0.5		58		300

		0.3		91

		0.2		107

		0.1		137

		scalability		1.00%

		size		FP-growth		TreeProjection

		10		3		3

		20		5		9

		30		8		15

		50		13		27

		80		20		45

		100		26		57

		

D1 FP-growth

D1 TreeProjection

Support threshold (%)

Run time (sec.)

		

D2 FP-growth

D2 TreeProjection

Support threshold (%)

Runtime (sec.)

		

FP-growth

TreeProjection

Number of transactions (K)

Run time (sec.)

		Support threshold(%)		#nodes in FP-tree		#frequent item occurrences		Ratio		FP-tree Mem		DB Mem		Mem ratio

		90		363		1375748		3789.94		8712		5502992		631.6565656566

		80		1515		1778782		1174.11		36360		7115128		195.6855885589

		70		2615		1930953		738.41		62760		7723812		123.0690248566

		60		8105		2147771		264.99		194520		8591084		44.165556241

		50		13449		2219609		165.04		322776		8878436		27.5064936674

		40		37162		2310387		62.17		891888		9241548		10.3617808514

		30		123368		2425605		19.66		2960832		9702420		3.2769235134

		20		373873		2656379		7.11		8972952		10625516		1.1841717196

		10		807473		2792535		3.46		19379352		11170140		0.5763938856

		

#nodes in FP-tree

#frequent item occurrences

Advantages of the Pattern Growth Approach
• Divide-and-conquer:

• Decompose both the mining task and DB according

to the frequent patterns obtained so far

• Lead to focused search of smaller databases

• Other factors

• No candidate generation, no candidate test

• Compressed database: FP-tree structure

• No repeated scan of entire database

• Basic ops: counting local freq items and building sub

FP-tree, no pattern search and matching
44

Scalable Frequent Itemset Mining Methods
• Apriori: A Candidate Generation-and-Test Approach

• Improving the Efficiency of Apriori

• FPGrowth: A Frequent Pattern-Growth Approach

• *ECLAT: Frequent Pattern Mining with Vertical Data

Format

• Generating Association Rules

45

ECLAT: Mining by Exploring Vertical Data Format

• Vertical format: t(AB) = {T11, T25, …}

• tid-list: list of trans.-ids containing an itemset
• Deriving frequent patterns based on vertical intersections

• t(X) = t(Y): X and Y always happen together

• t(X) ⊂ t(Y): transaction having X always has Y
• Using diffset to accelerate mining

• Only keep track of differences of tids

• t(X) = {T1, T2, T3}, t(XY) = {T1, T3}

• Diffset (XY, X) = {T2}
• Eclat (Zaki et al. @KDD’97)

46

Similar idea for inverted index in storing text

Scalable Frequent Itemset Mining Methods
• Apriori: A Candidate Generation-and-Test Approach

• Improving the Efficiency of Apriori

• FPGrowth: A Frequent Pattern-Growth Approach

• *ECLAT: Frequent Pattern Mining with Vertical Data

Format

• Generating Association Rules

47

Generating Association Rules
• Strong association rules

• Satisfying minimum support and minimum
confidence

• Recall: 𝐶𝐶𝐶𝐶𝑛𝑛𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛𝐶𝐶𝐶𝐶 𝐴𝐴 ⇒ 𝐵𝐵 = 𝑃𝑃 𝐵𝐵 𝐴𝐴 =
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐴𝐴∪𝐵𝐵)
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐴𝐴)

• Steps of generating association rules from
frequent pattern 𝑙𝑙:
• Step 1: generate all nonempty subsets of 𝑙𝑙
• Step 2: for every nonempty subset 𝑠𝑠, calculate the
confidence for rule 𝑠𝑠 ⇒ (𝑙𝑙 − 𝑠𝑠)

48

Example
• 𝑋𝑋 = 𝐼𝐼𝐼, 𝐼𝐼𝐼, 𝐼𝐼𝐼 :2

• Nonempty subsets of X are:
𝐼𝐼𝐼, 𝐼𝐼𝐼 : 4, 𝐼𝐼𝐼, 𝐼𝐼𝐼 : 2, 𝐼𝐼𝐼, 𝐼𝐼𝐼 : 2, 𝐼𝐼𝐼 : 6, 𝐼𝐼𝐼 : 7,𝑎𝑎𝑛𝑛𝐶𝐶 𝐼𝐼𝐼 : 2

• Association rules are:

49

Mining Frequent Patterns, Association
and Correlations

• Basic Concepts

• Frequent Itemset Mining Methods

• Pattern Evaluation Methods

• Summary

50

Misleading Strong Association Rules
• Not all strong association rules are interesting

• Shall we target people who play basketball for cereal
ads?

• Hint: What is the overall probability of people who eat
cereal?
• 3750/5000 = 75% > 66.7%!

• Confidence measure of a rule could be misleading

51

Basketball Not basketball Sum (row)
Cereal 2000 1750 3750

Not cereal 1000 250 1250

Sum(col.) 3000 2000 5000

play basketball ⇒ eat cereal [40%, 66.7%]

Other Measures
•From association to correlation

• Lift

•𝜒𝜒2

• All_confidence

• Max_confidence

• Kulczynski

• Cosine

52

Interestingness Measure: Correlations
(Lift)

53

• play basketball ⇒ eat cereal [40%, 66.7%] is misleading

• The overall % of people eating cereal is 75% > 66.7%.

• play basketball ⇒ not eat cereal [20%, 33.3%] is more accurate, although
with lower support and confidence

• Measure of dependent/correlated events: lift

33.1
5000/1250*5000/3000

5000/1000),(==¬CBlift

89.0
5000/3750*5000/3000

5000/2000),(==CBlift

Basketball Not basketball Sum (row)
Cereal 2000 1750 3750

Not cereal 1000 250 1250

Sum(col.) 3000 2000 5000

1: independent
>1: positively correlated
<1: negatively correlated

𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍 =
𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒍𝒍(𝑨𝑨 ∪ 𝑩𝑩)

𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒍𝒍 𝑨𝑨 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒍𝒍(𝑩𝑩)

Correlation Analysis (Nominal Data)
• 𝜒𝜒2 (chi-square) test

• Independency test between two attributes
• The larger the 𝜒𝜒2 value, the more likely the variables are related

• The cells that contribute the most to the 𝜒𝜒2 value are those
whose actual count is very different from the expected count
under independence assumption

• Correlation does not imply causality
• # of hospitals and # of car-theft in a city are correlated

• Both are causally linked to the third variable: population

54

∑ −
=

Expected
ExpectedObserved 2

2)(χ

When Do We Need Chi-Square Test?
•Considering two attributes A and B

• A: a nominal attribute with c distinct values,
𝑎𝑎1, … , 𝑎𝑎𝑐𝑐
• E.g., Grades of Math

• B: a nominal attribute with r distinct values,
𝑏𝑏1, … , 𝑏𝑏𝑠𝑠
• E.g., Grades of Science

•Question: Are A and B related?

55

How Can We Run Chi-Square Test?
• Constructing contingency table

• Observed frequency 𝐶𝐶𝑖𝑖𝑖𝑖: number of data objects taking
value 𝑏𝑏𝑖𝑖 for attribute B and taking value 𝑎𝑎𝑖𝑖 for attribute A

• Calculate expected frequency 𝐶𝐶𝑖𝑖𝑖𝑖 = 𝑐𝑐𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠 𝐵𝐵=𝑏𝑏𝑖𝑖 ×𝑐𝑐𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠(𝐴𝐴=𝑎𝑎𝑗𝑗)
𝑛𝑛

• Null hypothesis: A and B are independent

56

𝒂𝒂𝟏𝟏 𝒂𝒂𝟐𝟐 … 𝒂𝒂𝒄𝒄

𝒃𝒃𝟏𝟏 𝐶𝐶11 𝐶𝐶12 … 𝐶𝐶1𝑐𝑐

𝒃𝒃𝟐𝟐 𝐶𝐶21 𝐶𝐶22 … 𝐶𝐶2𝑐𝑐

… … … … …

𝒃𝒃𝒔𝒔 𝐶𝐶𝑠𝑠1 𝐶𝐶𝑠𝑠2 … 𝐶𝐶𝑠𝑠𝑐𝑐

• The Pearson 𝜒𝜒2 statistic is computed as:

• Χ2 = ∑𝑖𝑖=1𝑠𝑠 ∑𝑖𝑖=1𝑐𝑐 𝑠𝑠𝑖𝑖𝑗𝑗−𝑒𝑒𝑖𝑖𝑗𝑗
2

𝑒𝑒𝑖𝑖𝑗𝑗

• Follows Chi-squared distribution with degree of
freedom as 𝑟𝑟 − 1 × (𝐶𝐶 − 1)

57

Chi-Square Calculation: An Example

• 𝜒𝜒2 (chi-square) calculation (numbers in parenthesis are expected
counts calculated based on the data distribution in the two
categories)

• It shows that like_science_fiction and play_chess are correlated in
the group
• Degree of freedom = (2-1)(2-1) = 1
• P-value = P(Χ2>507.93) = 0.0

• Reject the null hypothesis => A and B are dependent

58

Play chess Not play chess Sum (row)
Like science fiction 250(90) 200(360) 450

Not like science fiction 50(210) 1000(840) 1050

Sum(col.) 300 1200 1500

93.507
840

)8401000(
360

)360200(
210

)21050(
90

)90250(2222
2 =

−
+

−
+

−
+

−
=χ

Are lift and χ2 Good Measures of
Correlation?

• Lift and χ2 are affected by null-transaction
• E.g., number of transactions that do not contain milk

nor coffee
• All_confidence

• all_conf(A,B)=min{P(A|B),P(B|A)}
• Max_confidence

• max_𝐶𝐶𝐶𝐶𝑛𝑛𝐶𝐶(𝐴𝐴,𝐵𝐵)=max{P(A|B),P(B|A)}
• Kulczynski

• 𝐾𝐾𝐾𝐾𝑙𝑙𝐶𝐶 𝐴𝐴,𝐵𝐵 = 1
2

(𝑃𝑃 𝐴𝐴 𝐵𝐵 + 𝑃𝑃(𝐵𝐵|𝐴𝐴))
• Cosine

• 𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶𝑛𝑛𝐶𝐶 𝐴𝐴,𝐵𝐵 = 𝑃𝑃 𝐴𝐴 𝐵𝐵 × 𝑃𝑃(𝐵𝐵|𝐴𝐴)
59

Comparison of Interestingness Measures

• Null-(transaction) invariance is crucial for correlation analysis
• Lift and χ2 are not null-invariant
• 5 null-invariant measures

60February 24, 2019 Data Mining: Concepts and Techniques

Milk No Milk Sum (row)

Coffee m, c ~m, c c

No Coffee m, ~c ~m, ~c ~c

Sum(col.) m ~m Σ

Null-transactions
w.r.t. m and c Null-invariant

Subtle: They disagree

Kulczynski
measure (1927)

*Analysis of DBLP Coauthor Relationships

• Tianyi Wu, Yuguo Chen and Jiawei Han, “Association Mining in Large Databases:
A Re-Examination of Its Measures”, Proc. 2007 Int. Conf. Principles and Practice
of Knowledge Discovery in Databases (PKDD'07), Sept. 2007

61

Advisor-advisee relation: Kulc: high,
coherence: low, cosine: middle

Recent DB conferences, removing balanced associations, low sup, etc.

http://www.cs.uiuc.edu/%7Ehanj/pdf/pkdd07_twu.pdf

*Which Null-Invariant Measure Is Better?

• IR (Imbalance Ratio): measure the imbalance of two itemsets A
and B in rule implications

• Kulczynski and Imbalance Ratio (IR) together present a clear
picture for all the three datasets D4 through D6

• D4 is balanced & neutral
• D5 is imbalanced & neutral
• D6 is very imbalanced & neutral

Mining Frequent Patterns, Association
and Correlations

• Basic Concepts

• Frequent Itemset Mining Methods

• Pattern Evaluation Methods

• Summary

63

Summary

• Basic concepts
• Frequent pattern, association rules, support-

confident framework, closed and max-patterns

• Scalable frequent pattern mining methods
• Apriori

• FPgrowth

• *Vertical format approach (ECLAT)

• Which patterns are interesting?
• Pattern evaluation methods

64

Ref: Basic Concepts of Frequent Pattern Mining

• (Association Rules) R. Agrawal, T. Imielinski, and A. Swami. Mining
association rules between sets of items in large databases. SIGMOD'93.

• (Max-pattern) R. J. Bayardo. Efficiently mining long patterns from databases.
SIGMOD'98.

• (Closed-pattern) N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering
frequent closed itemsets for association rules. ICDT'99.

• (Sequential pattern) R. Agrawal and R. Srikant. Mining sequential patterns.
ICDE'95

65

Ref: Apriori and Its Improvements

• R. Agrawal and R. Srikant. Fast algorithms for mining association rules. VLDB'94.
• H. Mannila, H. Toivonen, and A. I. Verkamo. Efficient algorithms for discovering

association rules. KDD'94.
• A. Savasere, E. Omiecinski, and S. Navathe. An efficient algorithm for mining

association rules in large databases. VLDB'95.
• J. S. Park, M. S. Chen, and P. S. Yu. An effective hash-based algorithm for mining

association rules. SIGMOD'95.
• H. Toivonen. Sampling large databases for association rules. VLDB'96.
• S. Brin, R. Motwani, J. D. Ullman, and S. Tsur. Dynamic itemset counting and

implication rules for market basket analysis. SIGMOD'97.
• S. Sarawagi, S. Thomas, and R. Agrawal. Integrating association rule mining with

relational database systems: Alternatives and implications. SIGMOD'98.

66

Ref: Depth-First, Projection-Based FP Mining

• R. Agarwal, C. Aggarwal, and V. V. V. Prasad. A tree projection algorithm for generation of
frequent itemsets. J. Parallel and Distributed Computing:02.

• J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation.
SIGMOD’ 00.

• J. Liu, Y. Pan, K. Wang, and J. Han. Mining Frequent Item Sets by Opportunistic
Projection. KDD'02.

• J. Han, J. Wang, Y. Lu, and P. Tzvetkov. Mining Top-K Frequent Closed Patterns without
Minimum Support. ICDM'02.

• J. Wang, J. Han, and J. Pei. CLOSET+: Searching for the Best Strategies for Mining
Frequent Closed Itemsets. KDD'03.

• G. Liu, H. Lu, W. Lou, J. X. Yu. On Computing, Storing and Querying Frequent Patterns.
KDD'03.

• G. Grahne and J. Zhu, Efficiently Using Prefix-Trees in Mining Frequent Itemsets, Proc.
ICDM'03 Int. Workshop on Frequent Itemset Mining Implementations (FIMI'03),
Melbourne, FL, Nov. 2003

67

Ref: Mining Correlations and Interesting Rules

• M. Klemettinen, H. Mannila, P. Ronkainen, H. Toivonen, and A. I. Verkamo.
Finding interesting rules from large sets of discovered association rules.
CIKM'94.

• S. Brin, R. Motwani, and C. Silverstein. Beyond market basket: Generalizing
association rules to correlations. SIGMOD'97.

• C. Silverstein, S. Brin, R. Motwani, and J. Ullman. Scalable techniques for
mining causal structures. VLDB'98.

• P.-N. Tan, V. Kumar, and J. Srivastava. Selecting the Right Interestingness
Measure for Association Patterns. KDD'02.

• E. Omiecinski. Alternative Interest Measures for Mining Associations.
TKDE’03.

• T. Wu, Y. Chen and J. Han, “Association Mining in Large Databases: A Re-
Examination of Its Measures”, PKDD'07

68

Ref: Freq. Pattern Mining Applications

• Y. Huhtala, J. Kärkkäinen, P. Porkka, H. Toivonen. Efficient Discovery of
Functional and Approximate Dependencies Using Partitions. ICDE’98.

• H. V. Jagadish, J. Madar, and R. Ng. Semantic Compression and Pattern
Extraction with Fascicles. VLDB'99.

• T. Dasu, T. Johnson, S. Muthukrishnan, and V. Shkapenyuk. Mining
Database Structure; or How to Build a Data Quality Browser. SIGMOD'02.

• K. Wang, S. Zhou, J. Han. Profit Mining: From Patterns to Actions.
EDBT’02.

69

	CS145: Introduction to Data Mining
	Midterm Statistics
	Methods to be Learnt
	Mining Frequent Patterns, Association and Correlations
	Set Data
	What Is Frequent Pattern Analysis?
	Why Is Freq. Pattern Mining Important?
	Basic Concepts: Frequent Patterns
	Basic Concepts: Association Rules
	Closed Patterns and Max-Patterns
	Closed Patterns and Max-Patterns
	Closed Patterns and Max-Patterns
	Computational Complexity of Frequent Itemset Mining
	Mining Frequent Patterns, Association and Correlations
	Scalable Frequent Itemset Mining Methods
	The Apriori Property and Scalable Mining Methods
	Apriori: A Candidate Generation & Test Approach
	From Frequent k-1 Itemset�To Frequent k-Itemset
	Candidates Generation
	Candidate-Generation Example
	The Apriori Algorithm—Example
	The Apriori Algorithm (Pseudo-Code)
	Questions
	Further Improvement of the Apriori Method
	*Partition: Scan Database Only Twice
	*Hash-based Technique: Reduce the Number of Candidates
	*Sampling for Frequent Patterns
	Scalable Frequent Itemset Mining Methods
	Pattern-Growth Approach: Mining Frequent Patterns Without Candidate Generation
	Major philosophy
	FP-Growth Algorithm Sketch
	Construct FP-tree from a Transaction Database
	Partition Patterns and Databases
	Find Patterns Having P From P-conditional Database
	From Conditional Pattern-bases to Conditional FP-trees
	Recursion: Mining Each Conditional FP-tree
	Another Example: FP-Tree Construction
	Mining Sub-tree Ending with e
	*A Special Case: Single Prefix Path in FP-tree
	Benefits of the FP-tree Structure
	*Scaling FP-growth by Database Projection
	FP-Growth vs. Apriori: Scalability With the Support Threshold
	Advantages of the Pattern Growth Approach
	Scalable Frequent Itemset Mining Methods
	ECLAT: Mining by Exploring Vertical Data Format
	Scalable Frequent Itemset Mining Methods
	Generating Association Rules
	Example
	Mining Frequent Patterns, Association and Correlations
	Misleading Strong Association Rules
	Other Measures
	Interestingness Measure: Correlations (Lift)
	Correlation Analysis (Nominal Data)
	When Do We Need Chi-Square Test?
	How Can We Run Chi-Square Test?
	Slide Number 57
	Chi-Square Calculation: An Example
	Are lift and 2 Good Measures of Correlation?
	Comparison of Interestingness Measures
	*Analysis of DBLP Coauthor Relationships
	*Which Null-Invariant Measure Is Better?
	Mining Frequent Patterns, Association and Correlations
	Summary
	Ref: Basic Concepts of Frequent Pattern Mining
	Ref: Apriori and Its Improvements
	Ref: Depth-First, Projection-Based FP Mining
	Ref: Mining Correlations and Interesting Rules
	Ref: Freq. Pattern Mining Applications

