

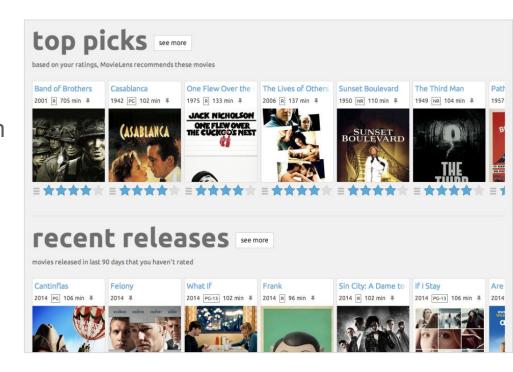
CS145 Project Introduction Movie Rating Predictions

Instructor: Yizhou Sun

TAs: Yunsheng Bai, Shengming Zhang

01/14/2019

Project Introduction

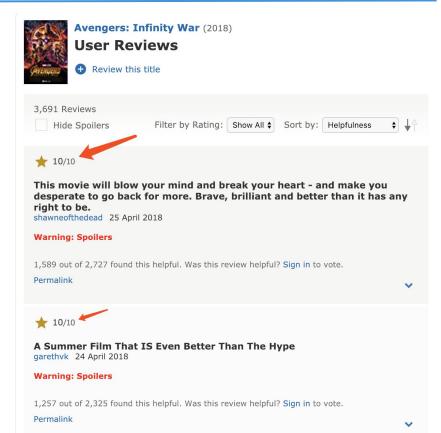


- Background & Motivation
- Project Task
- Dataset
- Evaluation
- Project Deadlines and Grading

Background

MovieLens Dataset

MovieLens helps you find movies you will like. Rate movies to build a custom taste profile, then MovieLens recommends other movies for you to watch.



Background Motivation

- Based on the movie watch history of a user(together with ratings), for an unwatched movie, can you predict the ratings that the user possibly gives?
- Recommendation System
 - Recommend potentially high-rating movies
- Multi-information
- Various types of data
- A good fit for our class

Task

Based on the information of

- Ratings: Userld, Movield, Rating,
 Timestamp
- Tags: Userld, Movield, Tag, Timestamp
 - Tags are user-generated metadata
- Movies: Movield, Title, Genres
 - Action, Adventure, Animation etc.
- Links: Movield, IMDBId, TMDBId
 - Helps you refer to additional information
- Tag Genome: Movield, Tagld, Relevance
 - Relevance indicates how strong a movie is associated with a tag.

We aim to:

Given an unseen Userld-Movield pair, predict the rating.

Task

Training part: Use training data to build your model

- Movie Genre/Tag Genome information
- User tag/rating history ~12M ratings

Validation part: Use validation data to evaluate your model

- user-movie pairs that were unseen in the training part
- ratings for the pairs ~4M ratings

Testing part: Get a score based on the tesing result

user-movie pairs that were unseen above ~4M tests

Dataset

For Our Course Project:

Based on the MovieLens Latest Datasets

The corresponding user Ids are re-hashed

Do not try to retrieve the original dataset and decode our hashing, you

will end up wasting time, trust us:)

Submit your results to Kaggle!

Try your model on the Kaggle competition: https://www.kaggle.com/c/movieratepredictions

See your score on the leaderboard

Evaluation:

RMSE: Root Mean Squared Error

More details of the Kaggle competition will be released soon

Project Grading

- Midterm Report (5% of total)
- Final Report (20% of total)
- Performance on Kaggle
 - 50% of your final report score will be influenced by the performance of your project on the leaderboard(Which is 10% of total).

Project Midterm Report

- Approximately 3 pages
- Current progress about project, including
 - Data processing and transformation
 - Designed & tested models / methods
- Discussion and future project plan
 - Some conclusions and findings
 - Analysis of current models and techniques
 - Timeline of future project plan (around 4 weeks)

Details about midterm report guidelines will be released later!

Project Final Report

No longer than 10 pages

- Must include:
 - Group member information
 - Data selection and pre-processing
 - Model and techniques
 - Evaluation and conclusion
 - *Current leaderboard rank and score
 - References and credit (papers, other's codes, maximum 1 page)
 - Related work (maximum ½ page)
 - Task distribution form and peer evaluation form
- ACM paper format
- Must NOT include:
 - Background or too much description on given original datasets
 - Any source code

Details about final report guidelines will be released later!

UCLA Task Distribution Form: Example

Task	People
Data processing	Student A
Implementation: Algorithm 1	Student B, C
Implementation: Algorithm 2	Student B, D
Implementation: Algorithm 3	Student A, D
Writing final report	Student C

Peer Evaluation Form: Example

	NAMES		
CRITERIA	John	Alice	Bob
Attendance at group meetings	4	4	3
Availability when needed	5	4	3
Highly contributed to writing and proof reading of the final report.	5	5	1
Reliability	5	5	2
Contributed ideas that were of high quality.	4	5	2
Approximately, the amount of time spent on this project was comparable to other group members.	5	5	2
Overall (Would you work with them again?)	5	5	2

Question:

Do you think some member in your group should be given a lower score than the group score? If yes, please list the name, and explain why.

Important Dates & Milestones

- **Jan. 18**: Group formation due (1% in total as participation)
- Feb. 18: Midterm project report due
- Mar. 20: Final project report due (together with all codes)

Q & A

Thank you!

Enjoy "mining" and good luck!