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Abstract

Heterogeneous information network (HIN) is a
general representation of many real world data.
The difference between HIN and traditional
homogeneous network is that the nodes and edges
in HIN are with types. In many applications, we
need to consider the types to make the decision
more semantically meaningful. For annotation-
expensive applications, a natural way is to consider
semi-supervised learning over HIN. In this paper,
we present a semi-supervised learning algorithm
constrained by the types of HINs. We first
decompose the original HIN schema into several
semantically meaningful meta-graphs consisting
of entity and relation types. Then random walk
is performed to propagate the labels from labeled
data to unlabeled data guided by the meta-graphs.
After receiving labels from the results of random
walk guided by meta-graphs, we carefully compare
different ensemble algorithms to generate the final
label with respect to all the clues from each meta-
graphs. Experimental results on two knowledge
based text classification datasets show that our
algorithm outperforms traditional semi-supervised
learning algorithms for HINs.

1 Introduction
Semi-supervised learning, a machine learning paradigm that
learns from partially labeled data, has been well studied in
machine learning community [Chapelle et al., 2006]. One
of the mainstream semi-supervised learning approaches is
the so-called graph based semi-supervised learning [Zhu et
al., 2003; Zhou et al., 2003]. Graph based semi-supervised
learning views the data as a graph, e.g., manually constructed
k-nearest-neighbor graph built on data similarities. Then it
performs label propagation over the graph, which is regarded
as a random walk with the labeled data being viewed as
the “absorbing boundary” [Zhu et al., 2003]. Zhou et al.
(2003) further relaxed the random walk framework to be
constrained learning by graph regularization. This framework
corresponds to a generalized lazy random walk over the la-
beled graph [Zhou and Schölkopf, 2004], where the random

walk considers an additional probability to stay at the current
position.

In the real world, however, there are many kinds of data
that can be naturally represented as heterogeneous informa-
tion networks (HINs) [Sun and Han, 2012] rather than the
homogeneous graph used by graph based semi-supervised
learning. The difference between heterogeneous information
networks and homogeneous networks is that the nodes and
edges can be classified into different types. For example,
social networks with users, tags, URLs, locations, etc., can
be considered as an HIN [Kong et al., 2013]. The scholar
network, containing papers, authors, venues, keywords, is an
HIN [Sun et al., 2011]. The patient network, incorporated
with gene network, drug network, and disease network, is
also an HIN [Denny, 2012]. Moreover, the knowledge graphs,
such as Freebase [Bollacker et al., 2008] and Google Knowl-
edge Vault [Dong et al., 2014], are naturally HINs since all
the entities and relations are typed with categories. When
there are not enough annotations for certain types of nodes,
semi-supervised learning can be considered. For example, we
want to predict the users’ genders in social network, classify
the papers in scholar network into topics, group patients with
potential diseases, and classify new entities based on the
existing knowledge on knowledge graphs. Different classi-
fication problems still need a lot of labeling efforts. Thus,
developing a semi-supervised learning algorithm over HINs
can benefit a lot of real problems.

Semi-supervised learning over heterogeneous information
network has a significant difference from original graph based
semi-supervised learning, since the nodes and edges are with
types. The labels propagating through different paths may
have different effects. For example, if we consider a knowl-
edge graph network with entity types actor, director, movie,
musician, singer, and song, when we want to classify a
specific entity, e.g., Leonardo DiCaprio, the labels that are
propagated from other actors through actors and directors are
more useful than the actor labels propagated through singers
and songs. Thus, if we can have a strategy to guide the
random walk over the heterogeneous information network,
we can more effectively propagate the limited labels.

In this paper, we propose a meta-graph guided lazy ran-
dom walk algorithm to guide the label propagation path with
certain entity types. The meta-graph is an entity type net-
work that characterizes the relationships between types, e.g.,



actor actIn−−−→movie, director direct−−−→movie, and singer
sing−−→song,

etc. When we constrain entity types of random walk, the
random walk path follows two graphs: meta-graph and the
original entity graph. We can enumerate a lot of meta-graphs
based on the existing types of an HIN. Then after performing
random walk guided by different meta-graphs, we ensem-
ble the classification results using a supervised classifier, a
maximum likelihood estimation of true labels given a lot of
noisy labels [Dawid and Skene, 1979; Sheng et al., 2008],
as well as a co-training mechanism to jointly optimize the
labels and the ensemble weights [Wan et al., 2015]. We
use knowledge graph (Freebase) enriched documents in 20-
newsgroups and RCV1 datasets to demonstrate the effective-
ness of semi-supervised learning over HIN, although other
kinds of HINs should also be applicable. Extensive experi-
ments show that by using HIN representation of documents,
we can improve semi-supervised learning in a significant way.
The code has been released at https://github.com/
HKUST-KnowComp/semihin.

2 Related Work
In this section, we introduce the related work on semi-
supervised learning on graphs or networks.

As we have described in the introduction, graph based
semi-supervised learning has been well studied [Zhu et al.,
2003; Zhou et al., 2003; Chapelle et al., 2006]. In the context
of graph link analysis in computer science community, the
history of the research can be traced back to Pagerank [Page
et al., 1999] and HITS [Kleinberg, 1998] algorithms. When
there are some annotation or preference on the nodes, person-
alized Pagerank can be used [Jeh and Widom, 2003; Haveli-
wala, 2003]. The formulation of personalized Pagerank is the
same as Zhou’s semi-supervised learning [Zhu et al., 2003]
although the meanings of the label/preference vectors are
different. All the above algorithms assume that the graph
has homogeneous type of nodes. The first work introduced
heterogeneous information in random walk is used for recom-
mendation problem [Brand, 2005], where the random walk is
performed over a user-item bipartite graph.

For the recent development of HIN, there have been some
attempts that use semi-supervised or side information to get
better results for different tasks on HIN. For example, the
entity similarities can be guided with partially labeled pair-
wise constraints [Sun et al., 2012]. When documents can
be represented as HINs using external knowledge graphs,
pairwise constraints can also be used to guide document
clustering [Wang et al., 2015a]. Moreover, for a scholar
network, transductive classification of entities on HIN has
been developed [Ji et al., 2010]. This algorithm discards
the higher oder relationships but only uses the pairwise typed
relations in the HIN. Recent study further extends this work
by improving the weights on the network [Bangcharoensap
et al., 2016]. To avoid the single relation paths, topology
shrinking sub-network algorithm [Wan et al., 2015; Li et
al., 2016] is proposed to use meta-paths to first compute the
similarities between the same type of nodes using a sym-
metric meta-path, and then it uses a linear combination of
graph Laplacians computed from each similarity matrix as

a whole to perform semi-supervised learning. Before per-
forming semi-supervised learning, these methods need to
compute the commuting matrices based on each meta-path,
which is more costly than our approach. Moreover, there
has been no existing work that attempts to use random walk
over the original HIN for semi-supervised learning. The
previously developed random walk process guided by meta-
path [Lao and Cohen, 2010], however, can be a non-stationary
process for some mata-paths for semi-supervised learning to
converge.

Another line of research, which may not be called “semi-
supervised learning over graph” but may be related is called
collective classification [London and Getoor, 2014]. Col-
lective classification uses the labeled nodes in the graph to
predict unlabeled nodes. Different from pure random walk,
collective classification assumes that the nodes can have fea-
tures, e.g., the attributes of nodes, profiles of social users,
etc. In the context of HIN, there has been some existing
work using meta-paths to generate features for collective
classification [Kong et al., 2013].

3 Ensemble of Meta-graph Guided Random
Walk Framework

In this section, we introduce the detailed algorithm of semi-
supervised learning over HIN based on meta-graph guided
random walk. We first analyze of lazy random walk over
graph, and then show the key problems with meta-path and
meta-graph guided random walk. Then we introduce different
ensemble algorithms for multiple random walks.

3.1 Lazy Random Walk over Graph
Given a set of n nodes and corresponding edges, we can
construct an adjacency matrix W ∈ Rn×n. Then a lazy
random walk over this graph considers a transition probability
matrix:

P = (1− α)I + αWD−1, (1)

where D is the degree matrix with diagonal values Dii =∑
j Wij , and α ∈ (0, 1) is a parameter controlling the

probability of staying at the current position with probability
1 − α and moving to a random neighbor proportional to the
weights on edge with probability α. There is an existing
unique stationary distribution π ∈ Rn×1 satisfying

π = Pπ. (2)

We denote Ti,j = min{t ≥ 0|Vt = vj , V0 = vi, vi 6= vj}
as the first hitting time to node vj starting from vi, and denote
Ti,i = min{t > 0|Vt = vi, V0 = vi} as the first returning
time to vj starting from vi. The expectation of Ti,j is the
commonly used hitting time, which we denote as Hij . Then
the commuting time between vi and vj is defined as Cij =
Hij + Hji. Let G = (D − αW)† be the pseudo-inverse of
D− αW, then we have [Ham et al., 2004]:

Cij ∝ Gii + Gjj −Gij −Gji if vi 6= vj
Cii = 1/πi

. (3)

This relation is similar to the inner product similarity (G) and
norm distance (C) in Euclidean space [Zhou and Schölkopf,
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2004]. The longer the distance between vi and vj (larger Cij

commuting time), the smaller the similarity between vi and
vj .

When there are labeled nodes in the graph, we perform
random walk starting from the labeled data. To formulate
the process, we denote a label vector for each class k as
lk ∈ Rn×1, where the labeled nodes are denoted as 1 while
the other nodes as 0. Then the lazy random walk can be done
by iteratively computing [Zhou et al., 2003]:

f t+1
k = αWD−1f tk + (1− α)lk, (4)

where f t+1
k is the learned label vector for class k at time

t + 1. Note that this equation also often refers to personal-
ized Pagerank when lk characterizes nodes’ preferences using
some real values [Jeh and Widom, 2003].

The optimal value for fk is:

fk = (I− αWD−1)†lk, (5)

which corresponds to

fk(vi) =
∑

lk(vj)=1

Ḡij , (6)

where Ḡij = Gij/
√

CiiCjj [Zhou and Schölkopf, 2004].
This means that the estimated label fk(vi) of vi is the sum
of Ḡij starting from labeled nodes. If vi and vj are more
“similar” (Ḡij is greater), then the contribution of vj as la-
beled data is greater for unlabeled data vi. Then the assigned
label by lazy random walk for unlabeled data is to choose the
maximum fk(vj) from all k = 1, . . . ,K classes for vj .

3.2 Meta-path vs. Meta-graph Guidance
In this section, we discuss the difference between meta-path
and meta-graph based random walk. Before going into the
details, we briefly introduce the core concepts of heteroge-
neous information network [Sun et al., 2011].

Definition 1 A heterogeneous information network (HIN) is
a graph G = (V, E) with an entity type mapping φ: V → A
and a relation type mapping ψ: E → R, where V denotes the
entity set and E denotes the link set,A denotes the entity type
set, andR denotes the relation type set.

We can further use network schema to give a more abstrac-
tive description of the HIN.

Definition 2 Given an HIN G = (V, E) with the entity type
mapping φ: V → A and the relation type mapping ψ:
E → R, the network schema for network G, denoted as
TG = (A,R), is a graph with nodes as entity types from A
and edges as relation types fromR.

One of the important concepts developed for HIN is the
meta-path, the path defined over the entity types on the net-
work schema [Sun et al., 2011; Lao and Cohen, 2010].
Definition 3 A meta-path P is a path defined on the graph of
network schema TG = (A,R), and is denoted in the form of

A1
R1−−→ A2

R2−−→ . . .
RL−−→ AL+1 , which defines a composite

relation R = R1 · R2 · . . . · RL between types A1 and
AL+1, where · denotes relation composition operator, and L

is the length of P . A commuting matrix MP for a meta-
path P = (A1 −A2 − . . .−AL+1 ) is defined as MP =
WA1A2

WA2A3
. . .WALAL+1

, where WAiAj
is the adja-

cency matrix between types Ai and Aj . MP(i, j) represents
the number of path instances between objects xi and yj ,
where φ(xi) = A1 and φ(yj) = AL+1, under meta-path
P .

The difference between PathSim [Sun et al., 2011] and path
ranking algorithm (PRA) [Lao and Cohen, 2010] is PathSim
normalizes the overall commuting matrix while PRA normal-
izes separate WAiAj

’s.
Besides the meta-path, people have also found that meta-

graph (or meta-structure) is very useful when defining the
similarities between entities [Fang et al., 2016; Huang et al.,
2016].

Definition 4 A meta-graph Ts = (As,Rs) is a sub-graph of
network schema TG = (A,R), where As ⊆ A andRs ⊆ R.
We also denote the meta-graph derived subgraph of original
HIN as Gs = (Vs, Es), where Vs ⊆ V and Es ⊆ E . The
entities on the subgraph of HIN also follow the mapping φ:
Vs → As and a relation type mapping ψ: Es → Rs.

Now we show an example to illustrate why we work over
meta-graphs rather than over meta-paths. Suppose we have
an HIN with three entity types: A1, A2, and A3. For
example, we can think about actor, director, and movie with
relations marriage, actIn, actIn−1, direct and direct−1.
One meta-path generated from the HIN is shown in the left
in Figure 1(a). Suppose we have two labeled entities in type
A1. Then two typical paths of random walk starting from
the labeled entities following the meta-path are shown in the
middle in Figure 1(a). Note that a path of random walk
following a meta-path should be constrained by the types in
the meta-path [Lao and Cohen, 2010]. For example, the path
v1 → v2 → v3 → v4 → v5 should follow φ(v1) = A1,
φ(v2) = A2, φ(v3) = A3, φ(v4) = A2, and φ(v5) = A1.
Given this desired random walk, we try to formulate the
transition matrix. From the right of Figure 1(a) that for
A1 → A2 → A3 → A2, we can easily fill in the sub-
matrices based on WA1,A2 , WA2,A3 , WA3,A2 . However, for
the final random walkA2 → A1 if we fill in with WA2,A1

and
normalize the whole as probability distribution, then when we
do random walk for A2 → A3, there is also a probability to
walk to entities with type A1, which cannot strictly follow
the meta-path. Thus, in this case, we need to either augment
the meta-path to have an edge A2 → A1 in parallel to
A1 → A2, or introduce another order of Markov chain to
handle the type switching. For the former case, the meta-path
is no longer a path, but rather a graph. For the letter case,
a higher order random walk should be carefully designed
depending on different meta-paths, where the storage of the
stationary distribution should be handled carefully, e.g., by a
non-Markovian random walk [Benson et al., 2016].

To avoid the above problem with meta-path guided random
walk, we propose to use meta-graph to guide the random
walk. In the left of Figure 1(b), we show the meta-graph of
fully connected bi-directional graph with nodes A1, A2, and
A3. Then in the middle of Figure 1(b), we show two typical
random walk paths based on the constraints of meta-graph.



(a) Desired meta-path based random walk and conflict of transition matrix.

(b) Meta-graph based random walk.

Figure 1: Comparison of meta-path based and meta-graph based random walks.

Finally in the right of Figure 1(b), we show the transition
matrix of this random walk, which is consistent over time.

3.3 Ensemble
For a network schema, we can enumerate exponential number
of meta-graphs. Thus, we should seek a better way to obtain
sufficiently informative meta-graphs for us to use. One sim-
ple way is to first enumerate all the paths with certain lengths
in the network schema. Then we automatically complete the
meta-graph based on the selected meta-paths by checking
the original network schema. Afterwards we have a set of
meta-graphs that we can use for constraining the random
walk. Here, we formally introduce the concept of meta-graph
guided rand walk over HIN.
Definition 5 A meta-graph guided random walk over HIN
first obtains a set of meta-graphs Ts1 , . . . TsG constructed
from network schema TG = (A,R). Then we construct the
corresponding adjacency matrices W(s1), . . . ,W(sG) for the
meta-graph derived subgraphs. For each W(si) and for each

class k, we run random walk for the estimated labels f
(si)
k

t+1

in iteration t:

f
(si)
k

t+1
= αW(si)D(si)

−1
f
(si)
k

t
+ (1− α)lk (7)

where D(si) is the degree matrix with diagonal values
D

(si)
ii =

∑
j W

(si)
ij , and α ∈ (0, 1) is a parameter

controlling the probability of staying at the current position
with probability 1 − α and moving to a random neighbor
proportional to the weights on edge with probability α.
By running meta-graph guided random walk, we choose la-
bels for the data by combining different estimated labels:

f
(s1)
1 (vj), . . . , f

(s1)
k (vj), . . . , f

(sG)
k (vj), . . . , f

(sG)
K (vj), (8)

where f
(si)
k (vj) is the label of vj generated by meta-graph si

indicating whether it belongs to class k.

Given we have multiple label assignments from different
random walks, we propose to use three meta-algorithms to
find the final solution:

• SVM. Simply by exploiting the output scores of the
meta-graph guided random walk, we use the labeled
data to learn the linear combination of output scores.
Given SG meta-graphs and K classes, we learn a K-
class Support Vector Machine (SVM) with SG × K
dimensional features.

• EM. We use the soft voting algorithm [Dawid and Skene,
1979] which can estimate the quality of each label vector
l̂(si) (which is done by selecting the maximum value of
l̂(si)(vj) = argmaxk f

(si)
k (vj) from all k = 1, . . . ,K

classes for vj) to vote for the final label assignment for
all the nodes we are interested in. Note that this voting
algorithm has been improved in [Sheng et al., 2008]
for crowdsourcing with noisy labels, and in [Ipeirotis et
al., 2010] it shows that it can also incorporate partially
labeled data.

• Co-training. Because each meta-graph carries different
semantic information, each meta-graph is capable for
classifying some samples and yields random results on
other samples. Thus we use a co-training-like algorithm,
to iteratively assign the soft labels for each meta-graph
and the weight of the meta-graph for voting, which can
propagate high confidence labels based on some meta-
graphs to others. Our implementation is based on [Wan
et al., 2015].

4 Experiments

In this section, we present the results to show effectiveness
and efficiency of our approach.



Table 1: Statistics of entities in different datasets: #(Doc)
is the number of all documents; similar for #(Word) (# of
words), #(FBEntity) (# of Freebase entities), and #Type (the
total # of entity types).

#(Doc) #(Word) #(FBEntity) #(Type)

20NG-SIM 3,000 8,010 11,192 219
20NG-DIF 3,000 9,182 13,297 251
GCAT-SIM 3,596 11,096 10,540 233
GCAT-DIF 2,700 13,291 13,179 261

4.1 Datasets
We use two datasets to evaluate different algorithms.
20Newsgroups (20NG): The 20newsgroups dataset [Lang,
1995] contains about 20,000 newsgroups documents evenly
distributed across 20 newsgroups.1
RCV1: The RCV1 dataset is a dataset containing manually
labeled newswire stories from Reuter Ltd [Lewis et al., 2004].
The news documents are categorized with respect to three
controlled vocabularies: industries, topics and regions. There
are 103 categories including all nodes except for root in
the topic hierarchy. We select top category GCAT (Gov-
ernment/Social) to perform classification. In total, we have
60,608 documents with 16 leaf categories.

For both datasets, we obtained the semantic parsing results
based on [Wang et al., 2015a] which are now publicly
available2. We follow [Wang et al., 2016] to use four
subsets of these to datasets to test our algorithms, which
are 20NG-SIM (comp.graphics, comp.sys.mac.hardware,
and comp.os.ms-windows.misc), 20NG-DIF (rec.autos,
comp.os.mswindows.misc, and sci.space), GCAT-
SIM (GWEA (Weather), GDIS (Disasters), and GENV
(Environment and Natural World)), and GCAT-DIF (GENT
(Arts, Culture, and Entertainment), GODD (Human Interest),
and GDEF (Defense)). The statistics of the four dataset are
summarized in Table 1. After meta-path selection [Wang et
al., 2015b] and further pruning low-frequency entities, we
use nine augmented meta-graphs for 20NG datasets and eight
meta-graphs for GCAT datasets based on the meta-paths.

4.2 Baseline Methods
We test the performance of our semi-supervised classification
algorithm with different groups of baseline methods.

First, we test different types of features for text classifica-
tion. Our algorithm is general for HINs. However, here we
use knowledge augmented graph as HIN for text classifica-
tion. Thus, a natural baseline for us is to see whether the
knowledge we add in should be represented as HIN instead
of other features. Here we compare two types of features for
traditional machine learning algorithms:

BOW: Traditional bag-of-words model with term
frequency weighting mechanism.

BOW+Entity: BOW augmented with additional features
from entities in grounded knowledge from Freebase. This
setting incorporates knowledge as flat features.

1http://qwone.com/˜jason/20Newsgroups/
2https://github.com/cgraywang/TextHINData

Second, we test different graph based semi-supervised
learning mechanisms:

LP: We use LP to denote the traditional graph based label
propagation algorithm operated based on similarity graph
constructed by data dependent features [Zhou et al., 2003].
We empirically select 10-nearest-neighbors for all the exper-
iments.

LP-Meta-path: We implemented a simplified version of
the state-of-the-art meta-path based semi-supervised learning
algorithm [Wan et al., 2015]. It uses meta-paths to first
compute PathSims [Sun et al., 2011] and the corresponding
Laplacians. Then it jointly learns the propagated labels and
the weights for different meta-paths to propagate the labels.

LP-KnowSim: We also implemented a simplified version
of KnowSim [Wang et al., 2015b], an unsupervised meta-path
weighting based similarity, for the meta-paths we used to gen-
erate the similarities between documents and then construct
the 10-nearest-neighbor based graph for label propagation.

SemiHIN-DWD: This is the simple bipartite graph version
of our algorithm, which only considers the document-word
relationships. In this case, our algorithm reduces to semi-
supervised learning on bipartite graphs.

SemiHIN-Full-Graph: We also compare our algorithm
with random walk over the full parsed graph. In our ensem-
ble, we also incorporate this full graph.

SemiHIN-Ensemble: As shown in Section 3.3, we pro-
posed three ways of ensemble of different predictions. Here,
to simplify notations, we denote them as Ensemble-SVM,
Ensemble-EM, and Ensemble-Co-train.

All the semi-supervised learning is performed with the
same fixed controlling parameter α = 0.98 shown in Eq. (4).
To make sure having the best performance, before perform-
ing random walk, we also performed unsupervised feature
selection [He et al., 2006] for SemiHIN-Full-Graph, and
applied the selection weights to each feature when computing
ensemble of random walks.

4.3 Comparison
We first show the comparison results for all the configurations
in Table 2. All the experiments are trained with five labeled
data for each class. We evaluate algorithms in a transductive
setting, which means we check whether an algorithm can use
the five labels for each class to classify all the remaining
examples correctly. Thus, all the results are averaged num-
bers of classification accuracy with 50 random trials. For
supervised learning algorithms such as naive Bayes (NB) and
support vector machine (SVM), they can only see the labeled
data. For all semi-supervised learning algorithms, they can
see the whole data including both labeled and unlabeled data.

From Table 2 we can see that, supervised learning with
BOW+entity is comparable and often better than BOW,
since we add more features about entities. LP based
semi-supervised learning on 20NG datasets is better than
supervised learning with the same amount of labeled data,
since it leverages the unlabeled data. However, for GCAT
datasets, LP based semi-supervised learning is slightly worse
than supervised learning. This may be because for GCAT
data, there are some words very class-indicative so that when

http://qwone.com/~jason/20Newsgroups/
https://github.com/cgraywang/TextHINData


Table 2: Performance of different classification algorithms on 20NG-SIM, 20NG-DIF, GCAT-SIM, and GCAT-DIF datasets.
We show our results of five labeled training data for each class. All the numbers are averaged accuracy (in percentage %) over
50 random trials.

NB SVM LP SemiHIN Ensemble

Settings BOW BOW+ BOW BOW+ BOW+ Meta- Know- DWD Full- SVM EM Co-
trainDatasets Entity Entity Entity path Sim Graph Graph

20NG-SIM 39.02 48.46 37.34 49.67 54.53 57.75 56.87 48.94 58.46 52.04 54.44 60.99
20NG-DIF 43.74 57.24 39.57 55.71 72.40 76.13 77.14 61.31 77.69 71.36 73.08 80.08
GCAT-SIM 71.24 71.24 73.92 74.64 70.97 71.05 60.59 79.14 81.02 68.79 69.96 80.97
GCAT-DIF 56.60 56.66 63.52 63.91 61.95 61.37 51.64 64.32 65.05 57.48 58.19 66.95
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Figure 2: Classification results on 20NG-DIF dataset with different numbers of labeled documents per class.

converting i.i.d. features to similarities (which are used in
LP), it introduces more ambiguity.

For HIN based algorithms, we found LP-Meta-path is bet-
ter than LP based on BOW+Entity features. This makes sense
since LP-Meta-path also incorporates DWD path, which is
based on BOW. Co-training seems effective to mutually boost
different meta-paths. LP-Meta-path is also comparable or
better than KnowSim, since KnowSim is only unsupervised
ensemble of meta-path based similarities while LP-Meta-path
co-trains the weights of different meta-paths.

SemiHIN-Full-Graph is better than LP-BOW+Entity. This
means the structural information among entities indeed helps
improving semi-supervised learning. For the ensemble re-
sults, in general SVM is the worst, EM is better, and Co-train
performs best. Ensemble-Co-train is better than SemiHIN-
Full-Graph on 20NG data and GCAT-DIF. This may be be-
cause there are some other meta-graphs (or meta-paths) pro-
ducing better results than the full graph. Then co-training
can bootstrap the final labeling accuracy. Ensemble can
help us automatically find a good solution without trying
different meta-graphs based on the limited partially labeled
data. Comparing Ensemble-Co-train and LP-Meta-path, it
is shown that Ensemble-Co-train is better. An additional
benefit of not working with PathSim is that we do not need to
compute PathSim which could be more computational costly
in practice.

Besides the overall results, we show results on 20NG-DIF
dataset with different numbers of labeled data for each class
in Figure 2. From the figure we can see that, with more labels,
all the algorithms’ classification results can be improved. In
general, all the results are consistent with Table 2.

4.4 Computational Time
The computation of random walk with the sparse transition
matrix is at worstO(N3). As we observed that the undirected

graph Laplacian is semi-positive definite, we can replace the
inversion with a conjugate gradient descent (CGD) algorithm.
For sparse matrix, the CGD method can achieve O(m

√
r)

time, where m is the number of links, and r represents the
condition number of the sparse matrix. We report the time
based on a retail laptop with an Intel i7-4750HQ CPU and 16
Gigabytes RAM. For 20NG-SIM data, SemiHIN with matrix
multiplication and inversion costed 52, 410 seconds while it
only costed 1.8 seconds with CGD. Both NB and SVM costed
less than 1 second. The original LP costed 2.2 seconds.

5 Conclusion
In this paper, we present a meta-graph guided random
walk ensemble algorithm over heterogeneous information
networks for semi-supervised learning. We first propose the
undirected meta-graph structure and apply a graph-based
semi-supervised learning algorithm. Then we combined
predictions from different meta-graphs using three different
ensemble algorithms. We demonstrated that our approach
outperforms other state-of-the-art traditional and HIN based
semi-supervised learning algorithms. We believe meta-graph
is a general representation of many graphs. We would also
study different graphs using meta-graph in the future.
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