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Abstract—Deck building is a crucial component in playing
Collectible Card Games (CCGs). The goal of deck building is
to choose a fixed-sized subset of cards from a large card pool, so
that they work well together in-game against specific opponents.
Existing methods either lack flexibility to adapt to different
opponents or require large computational resources, still making
them unsuitable for any real-time or large-scale application.
We propose a new deck recommendation system, named Q-
DeckRec, which learns a deck search policy during a training
phase and uses it to solve deck building problem instances.
Our experimental results demonstrate Q-DeckRec requires less
computational resources to build winning-effective decks after a
training phase compared to several baseline methods.

Index Terms—deck recommendation, Q-learning, collectible
card game

I. INTRODUCTION

Collectible Card Games (CCGs) have been popular since
the 90s, evidenced by the large player base of these kinds of
games. For instance, Magic: the Gathering has more than 20
million players globally [1], while an online free-to-play CCG
Hearthstone (Blizzard Inc.) reached a record of 40 million
registered accounts in 2016 [2].

A CCG typically has hundreds to thousands of different
cards, each of which supports specific in-game rules and
effects. When playing CCGs, before each match, every player
is asked to build a deck comprising of a subset of all available
cards. While in game, each player takes turns to draw cards
from their respective deck and place them on the game board
to fare (e.g., attack, counter-attack, cast spell, etc.) against their
opponent cards.

In general, there is no single deck which can universally
win against all other decks because CCGs often design cards
with sophisticated synergistic and oppositional relationships.
For example, in Hearthstone, there are two distinguished types
of decks that counter each other in different phases of a match.
An Aggro deck, taking an aggressive approach, is built with
cards capable of dealing damage to the opponents as quickly as

possible. In contrast, a control deck is the opposite archetype
with cards which can survive long enough to triumph in the
late game through powerful but expensive cards or complex
combos.

The goal of deck building is to identify a set of cards which
suits the player’s own play style and effectively counters either
an individual opponent or a group of opponents with specific
play styles and decks. As deck building is regarded as a crucial
part of game play, there exist many online forums and websites
for players to discuss, analyze and test deck building strategies
(e.g., [3], [4]).

A deck recommendation system for the purpose of deck
building can benefit players and game developers in several
ways. First, it can ease choices made by players in deck build-
ing. Players may also learn new strategies of deck building and
practice their skills based on recommended decks. Second,
such a system can be useful to increase player’s engagement,
by controlling match outcomes to keep players interested
[5], [6]. Deploying a deck recommendation system in certain
modes (e.g., a practice mode) could help re-engage players
who are frustrated with the difficulty of building effective
decks. Last, from a game developer’s perspective, a deck
recommendation system is also useful for debugging games.
For example, balancing the power of cards is an important
topic in CCGs [7] or similar games [8]. The game developer
can use a deck recommendation system to check whether
certain combinations of cards are powerful or weak.

As a deck is a combination of cards, deck building can be
formulated as a combinatorial optimization problem (COP),
which relates to finding an optimal solution (the most winning-
effective deck) in a finite search space of all possible decks.
Deck building has a large and complex solution space. For
example, the number of all possible decks in our experiment
setting, which selects 15 out of 312 cards, is 1.4× 1025.

Previous works for deck building are mainly search algo-
rithms, falling into two categories: heuristic searches and meta-



heuristic searches [9]. Heuristic search methods decide which
cards to include based on domain heuristics such as popularity
and in-game resource curve [10]–[12]. However, heuristic
methods require in-depth human knowledge and lack flexibil-
ity to adapt to different opponents. Another category is meta-
heuristic search, referring to high-level, problem-independent,
approximate search strategies for tackling optimization prob-
lems [9]. An example is to use a Genetic Algorithm (GA) [13]
to evolve decks towards higher winning-effectiveness through
repeated modifications and selections [14], [15]. Although
metaheuristic search algorithms do not require human knowl-
edge to guide searches, they require a large computational
cost for each deck building problem instance because: (1) the
search process requires a number of evaluations of candidate
solutions; (2) the evaluation of a candidate solution’s quality
is computationally expensive, as this requires a large number
of simulated matches with complicated in-game rules.

An alternative view of solving the deck building problem
is to treat it as a sequential decision making problem [16].
Intuitively, a deck can be built by starting in some initial
card configuration (i.e., state) and applying deck modification
operators (such as adding, removing, or replacing an existing
card) to move to new states. The goal is to end at a final
state where the deck yields a high winning chance of winning
against the opponent’s deck. The key challenge is to decide
which operator to apply in each state. If a search policy
(i.e., the mapping between states and operator choices) can
be learned beforehand and simply followed while solving
future problem instances, less computational resources will
be needed compared to other methods requiring evaluating
candidate solutions such as metaheuristic search. Such an idea
is rooted in the paradigm of Reinforcement Learning (RL)
algorithms concerned with learning a policy to maximize long-
term rewards. In fact, leveraging RL to learn search policies for
optimization problems has already been investigated in other
domains, e.g., [17]–[19] but is novel for CCG deck building.

In this paper, we propose a deck recommendation sys-
tem named Q-DeckRec whose goal is to efficiently identify
winning-effective decks against specific opponents. We first
model the deck building problem as solving a COP by
sequential decision making, then learn a search policy by
leveraging an RL algorithm on a set of “training” problem
instances. The key idea is to generalize a search policy in
order to find winning-effective decks and find them quickly
for future problem instances. Thus, Q-DeckRec is suitable to
deploy for large-scale or real-time application, e.g., an online
CCG’s backend to recommend winning-effective decks to a
population of online players, a deck analysis website to serve
hundreds of online visitors’ deck building requests, or large-
scale deck balancing tests.

The contributions of the paper are:
1) we formulate the deck build problem as a combinatorial

optimization problem (COP);
2) we propose Q-DeckRec, an algorithm which learns a

search policy for solving deck building problem in-
stances quickly;

3) we conduct experiments to demonstrate Q-DeckRec’s
suitability for large-scale or real-time application. The
results show that after a training phase Q-DeckRec is
able to build highly winning-effective decks within 9.63
seconds of CPU time, which is not achievable by other
methods.

The paper is structured as follows. Section II provides the
general overview of related work. Section III describes the
details of problem formulation and the proposed algorithm.
Section IV and Section V describe the details of our experi-
ments and the results, respectively. Section VI discusses our
limitations and future work. Section VII concludes the study.

II. RELATED WORK

A. Collectible Card Game Overview

Although in-game rules may vary to some extent, we focus
on those CCGs similar to Hearthstone because its pattern is
common and the simulator we use for our experiments is also
based on it.

Each match is one-vs-one and turn-based. Each player starts
with an amount of health and the goal is to destroy the
opponent’s health first. Each player is asked to construct a deck
of a fixed number of cards before the actual match. During
a player’s turn, he plays the cards drawn from his own deck
as per their rules and limited by his resource. Cards can be
mainly categorized as spells and minions. Spells are played,
creating an effect on the battlefield, and then are discarded.
Minions, on the other hand, stay in play, and can be used to
attack the enemy or other minions. There usually exist several
deck archetypes in a CCG and no single deck can triumph
over others universally (see the example of Aggro and Control
decks in Section I).

Although a player cannot know what cards constitute the
deck of his opponent before the match, he could make pre-
dictions of opponent decks and propose his deck in advance
to reflect his winning philosophies. In other deck building
applications, such as recommending decks in a practice mode
and deck balancing tests, opponent decks can also be assumed
to be known at the time of deck building.

B. Combinatorial Optimization

An optimization problem consists of an objective function
and a set of problem instances. Each problem instance is
defined by a set of variables and a set of constraints among
those variables. A candidate solution to a problem instance is
an assignment of values to the variables. A feasible solution
is a candidate solution that satisfies the set of constraints. An
optimal solution is a feasible solution that maximizes value of
the objective function. A combinatorial optimization problem
(COP) such as the traveling salesperson problem (TSP) is
an optimization problem whose problem instances have finite
numbers of candidate solutions. For many COPs, the number
of candidate solutions is too large to exhaust in order to
identify an optimal solution.



It is not new to approximately solve COPs through various
meta-heuristics, i.e., high-level, problem-independent, approx-
imate search strategies [9]. In Genetic Algorithms (GA) [13],
candidate solutions evolve towards better feasible solutions
iteratively with mutation and crossover operators. In each
generation, the fitness value of every candidate solution is
evaluated; the fitness value is usually the value of the objective
function in the optimization problem being solved. The more
fit candidate solutions are stochastically selected and modi-
fied to form a new generation. Another genre is called the
Cross-Entropy (CE) method [20]. The central idea is that the
probability of locating an optimal solution using naive random
search is a rare-event probability. CE can be used to obtain a
new sampling distribution so that the rare-event is more likely
to occur. Sampling from the new distribution will result in
near-optimal solutions.

All the metaheuristic algorithms introduced so far are non-
learning search algorithms with one inherent disadvantage:
each time a new problem instance arises they require a number
of objective function evaluations until a sufficiently high-
quality feasible solution is found. Indeed, the search process
is independent between different problem instances and does
not generalize a search policy which could be simply followed
without objective function evaluations. If objective function
evaluation is computationally expensive, non-learning search
algorithms would be inefficient to solve multiple problem
instances of the same COP.

Naturally, researchers are motivated to design algorithms
to learn search policies for solving optimization problem
instances [17], [19], [21], [22]. These algorithms lie in a
broader term known as “meta-learning” [23]–[25] or “learning
to learn” [26]. The learning of search policies relies on viewing
the optimization process as conducting sequential decision
making [16] by an optimizer agent. The optimizer agent starts
in some initial state and consecutively applies operators to
move to new states. The goal is to end at a final state
where a high-quality feasible solution can be extracted. We
call the mapping between states and operator choices as the
search policy. If we additionally define a transition function
and a reward function, we can formulate the optimization
process as a Markov Decision Process (MDP) [27]. The opti-
mal policy that maximizes long-term rewards can be learned
or approximated by leveraging reinforcement learning (RL)
algorithms [28]. The key is to properly design the MDP,
especially the reward function, such that the learned policy
can guide the optimizer agent quickly towards high-quality
feasible solutions. For example, Zhang and Dietterich applied
an RL algorithm TD(λ) to obtain the search policy for solving
NASA space shuttle scheduling problem instances [17]. Their
results show that the learned search policy is more effective in
the ratio of solution quality vs. CPU time than the best known
non-learning search algorithm on test problem instances. Bello
et. al show that a search policy parameterized as a special
structure of neural network can be trained and used to solve
unseen instances of TSP [22]. In Section III, we will show
that under certain assumptions, a deck building problem can

be formulated as a COP and a search policy learned by RL
on “training” problem instances will quickly guide building
winning-effective decks on future problem instances.

Besides metaheuristic and RL algorithms, problem-
dependent heuristics can be used to search solutions when
COPs have exploitable characteristics. However, designing
heuristics is a labor intensive job. Researchers have also
attempted to use supervised learning models to learn the
mapping from problem instances to optimal solutions (e.g.,
[29]). Optimal or approximated optimal solutions need to be
calculated by some solver in advance in order to provide
training supervised signals. One difficulty is to design special
model architectures to cope with discrete nature and con-
straints of COPs. For instance, in the TSP, the outputs should
be constrained to sequences with no duplicated cities [29].

C. Deck Building

Ideas proposed for deck building mainly fall into two
categories: heuristics and metaheuristic searches. First, some
heuristic methods decide which cards to include based on
the popularity of cards from historical data [10], [11]. The
underlying intuition is that popularly favored cards are very
likely to be strong ones. Stiegler et al. propose a utility system
to search deck with more types of game-specific heuristics
besides card popularity, including mana curve, strategic pa-
rameters, cost effectiveness and card synergies [12]. However,
all heuristic methods require intensive human knowledge,
lack flexibility to adapt to different opponent decks, and are
not easy to transfer to other games intelligently. As far as
we know, Genetic Algorithm (GA) [13] has been the only
metaheuristic search algorithm for deck building [14], [15].
In their works, the fitness value is the average win rate of
a candidate deck against a group of opponent decks while
AI bots are used as a proxy for human play. However, we
note in their results that a single run of GA for a particular
deck building problem instance took hours or days to reach a
winning-effective deck [14], [15]. This is because each fitness
evaluation requires obtaining a win rate based on a number
of simulated matches. The complicated in-game rules also
make the simulation computationally expensive. Therefore,
non-learning search algorithms like GA are not practical for
any large-scale or real-time deck recommendation task.

III. METHODOLOGIES

In this section we will formally describe how the deck
building problem can be cast as a COP. We will then proceed
to presenting our proposed solution, Q-DeckRec, which solves
the deck building problem from a sequential decision making
perspective. In this paper, we focus on building winning-
effective decks against specific individual opponents. We will
leave the discussion about building decks against a group of
opponents in Section VII.

A. Problem Formulation

Deck building can be formulated as a combinatorial opti-
mization problem (COP). Suppose the goal is to build decks



as a subset of size D among a total of N cards with N > D
(usually N is several times larger than D). A deck can be
represented as a binary vector of length N , x ∈ ZN2 , whose
components of 1’s correspond to the cards included in the
deck and 0’s otherwise. Since a deck has a fixed size of cards,
we have ‖x‖1 = D. We use xp and xo to differentiate the
deck of the player and his opponent. We use Ap and Ao to
capture the play styles of the player and his opponent. Ap
and Ao are play style-specific simulators that decide which
cards to issue given a game instance, henceforth referred to as
the AI proxies (artificial intelligence) of respective play styles.
The evaluation function f(·) is defined as f(xp;xo,Ap,Ao),
which returns the winning probability of the player using xp
against the opponent using xo, with their play styles following
Ap and Ao respectively. The objective function of the deck
building problem is formulated as:

argmax
xp

f(xp;xo,Ap,Ao)

subject to xp ∈ ZN2 ,xo ∈ ZN2 ,
‖xp‖1 = ‖xo‖1 = D

(1)

the solution of which is denoted as x∗p.
Note that f(·) is a black-box function. We do not have the

closed-form expression of f(·), but can approximate its value
by simulating Ap and Ao playing against each other for a
number of matches. In practice, a sufficient number of matches
need to be simulated to get stable win rate estimation. Since
the simulation needs to apply numerous rules of the game on
each move, this is a computationally demanding operation.
Each evaluation of f(·) was found to take non-negligible time
in the order of seconds on a very powerful server machine
(see Section IV). Therefore, the brute-force approach is almost
infeasible to apply, as it needs evaluate an exponential number
of xp configurations, i.e.,

(
N
D

)
= N !/D!/(N−D)! = O(ND).

For example, in our experimental setting where N = 312, D =
15, it would need to exhaust around 1.4× 1025 possibilities.

After examining potential usage scenarios, we find one as-
sumption that could be made and exploited. Although different
problem instances may use different Ap and Ao, we assume
that Ap and Ao come from a pool of AI proxies pre-trained by
a deck recommendation system. For example, each AI proxy
from the pool represents a specific play style archetype such
as “aggressive” or “conservative”. Under this assumption, each
problem instance consists of xo which may vary, and Ap and
Ao which have been available. Therefore, there might exist
deck building patterns which can be generalized. For example,
if certain Ap is good at using Card A to counter certain Ao,
then Card A tends to appear in the optimal solution of many
problem instances with the two AI proxies as the input.

In the rest of the paper, we will assume we deal with deck
building problem instances of Eqn. 1 under a specific pair of
Ap and Ao. All the methodologies will be invariant for other
pairs of AI proxies.

B. Q-DeckRec

We propose to delegate the problem of generalizing deck
building patterns as a problem of generalizing a search policy
in a Markov Decision Process (MDP) [27] environment, where
an agent naviagates in the state space to search for the most
winning-effective deck.

In the MDP, a state s ∈ S consists of a unique feasible solu-
tion xp, together with xo and a step counter t as complement
information, i.e., s = {xp,xo, t}. An action a ∈ A is defined
as a card replacement to modify the current deck xp. An action
replaces exactly one card in the deck xp with another card not
included currently. One special action is to keep the current
deck as unmodified. Given the actions we define, the transi-
tions between states T : S ×A → S are always deterministic.
One state applied by an action will transit to only one next
state, reflecting the corresponding card modification, denoted
as {x(t)

p ,xo, t}, a→ {x(t+1)
p ,xo, t+1}. The deck search starts

from a random initial state s0 = {x(0)
p ,xo, 0} and is limited

to take exact D actions in one episode. We denote the states
within one episode as s0, s1, · · · , sD. We limit the length of
the horizon to be D because at most we need to replace all
the cards in x

(0)
p to reach the optimal deck x∗p.

The problem remains as how to design the reward function
R : S × A → R. In the MDP, the optimal policy is the
one which maximizes a defined long-term reward criterion.
The key is to properly design the reward function and long-
term reward criterion, such that the optimal policy is indeed
the desired search policy which can lead to winning-effective
decks from any state.

The long-term reward criterion defines the goal of reinforce-
ment learning. It should encourage the optimal policy to search
in the direction of winning-effective decks. We propose the
following long-term reward criterion for each episode:

R =

D−1∑
t=0

rt, (2)

where rt is the reward function over each transition. Specif-
ically, we define rt as the win rate between the opponent
deck and the modified deck after step t with exponential
amplification:

rt = exp(b · f(x(t+1)
p ;xo,Ap,Ao)), (3)

where b is a positive constant to adjust the extent of
amplification. We choose this reward function over rt =

f(x
(t+1)
p ;xo,Ap,Ao) in order to amplify the difference

between strong and weak decks. Although the goal of
deck building is to land on sD = {x(D)

p ,xo, D} with
f(x

(D)
p ;xo,Ap,Ao) as high as possible, the cumulative sum

of win rates provides more reward signals along the search
than merely optimizing R = rD. This shape of reward has also
been used in previous optimization problems based on sequen-
tial decision making [30]. Since we model each episode with
finite horizons, we ignore the conventional reward discount
factor γ in the definition of R, which is a mathematical trick



to help the convergence of RL learning in MDPs with infinite
horizons.

The optimal policy can be obtained by always selecting the
action with the highest optimal state-action value at each state:

π∗(s) = argmax
a

Q∗(s, a), s = s0, · · · , sD−1, (4)

where Q∗(s, a) is defined as the best state-action value func-
tion among all possible policies:

Qπ(s, a) = E[
D∑
i=t

ri|st = s, at = a, π] (5)

Q∗(s, a) = max
π

Qπ(s, a) (6)

The intuition behind Q∗(s, a) is that it measures how promis-
ing applying the modification on the current deck would lead
to the most winning effective deck. Following π∗(s) would
generate a series of modifications that faithfully build the
optimal deck.

We propose to use a Reinforcement Learning (RL) algo-
rithm, Q-Learning [31], to learn Q∗(s, a) iteratively through
observation tuples (s, a, r, s′). The simplest implementation of
Q-Learning is a look-up table and a learning rate 0 < α ≤ 1,
with the update rule as:

Q̂(s, a) = (1− α)Q̂(s, a) + α(r +max
a′

Q̂(s′, a′)) (7)

Theory implies that if each action is tried in each state
an infinite number of times and the magnitude of α meets
certain criteria, then Q̂ converges to Q∗ [32]. However, our
problem has a huge state space hence it is not possible to
maintain a look-up table for all combinations of states and
actions. Instead, we resort to Multi-Layer Perceptron (MLP)
with parameters θ as a function approximator: Qθ(s, a) learns
to approximate the mapping of the feature representation
of the state-action pair, F(s, a), to the optimal state-action
value, Q∗(s, a). More specifically, we use an MLP architecture
with one input layer, one hidden layer and one output layer.
Without requiring any prior domain knowledge, we simply let
F(s, a) = s′. Therefore, the input layer takes as input a state
representation s′, which has 2 ·N + 1 dimensions. The output
layer outputs a real value representing the predicted Q∗(s, a).
The exact specifications can be seen in Section IV. The update
rule of θ is in a gradient descent fashion towards reducing so-
called TD-error δ:

δ := r +max
a′

Qθ(s
′, a′)−Qθ(s, a) (8)

θ ← θ + α · δ · ∇Qθ(s, a) (9)

To learn θ, we need to collect observation tuples (s, a, r, s′)
through solving ”training” problem instances. Solving a train-
ing problem instance is to let Q-DeckRec take actions D
times based on the current Qθ(s, a) function in an episode.
In order to generalize Qθ(s, a) to various states, we initialize

both xo and x
(0)
p in s0 randomly at the beginning of each

episode. An ε-greedy policy is used during the training, with
ε slowly decreasing as the learning proceeds. The policy has
ε probability to choose non-optimal actions in the hope to
escape any local optimum and discover better policies. Also,
we use prioritized experience replay [33] to improve sample
efficiency. Past experiences will be weighted according to the
absolute value of δ. High TD-error associated experiences will
be more likely to be sampled for MLP parameter learning.

The training phase of Q-DeckRec can be summarized as
follows. At the beginning of each training episode, both xo
and x

(0)
p are randomly generated. Q-DeckRec decides how to

“navigate” through states by ε-greedy policy and Qθ(s, a) in
D steps. All the D transitions are stored into the prioritized ex-
perience replay pool. Following that, m previous observation
tuples (s, a, r, s′) are sampled from the prioritized experience
replay as a learning batch for updating θ as described in
Eqn. 8 and 9. The loop continues after a new training episode
is initiated. The training will be terminated after a time limit
is reached.

After training, Qθ(s, a) will become fixed. When solving a
future problem instance, Q-DeckRec can start from s0 with a
random x

(0)
p and follows π∗ as in Eqn. 4 in D steps. No call of

f(·) will be needed during the search. As a comparison, non-
learning search algorithms such as Genetic Algorithm require
calling f(·) multiple times in order to evaluate fitness values
for each problem instance [14], [15], while calling f(·) would
take computational resources much heavier than calculating
Qθ(s, a). Therefore, Q-DeckRec has its superior suitability for
large-scale or real-time application.

IV. EXPERIMENT SETUP

To verify our method and compare with other methods, we
test on an open-sourced CCG simulator MetaStone1, which is
based on the popular online digital CCG Hearthstone (Blizzard
Entertainment, Inc.). All experiments run on a powerful server
with Intel E5 2680 CPU’s @ 2.40 GHz (56 logical CPU
cores). Parallelization is implemented in three places: (1) linear
algebra operations used in the MLP in Q-DeckRec; (2) match
simulations evenly spread on all cores when evaluating f(·);
(3) random deck sampling from a baseline based on Monte
Carlo simulations (introduced later). Each call of f(·) returns
a win rate based on 300 simulated matches, which on average
takes 5 seconds and has around 5% standard deviation in the
win rate evaluation.

We make a few decisions in setting up our experiments.
We expect the experiment results can generalize under other
settings. First, we use the same AI proxy to represent both
Ap and Ao. The AI proxy is provided by the simulator and
is called GreedyOptimizeMove. It decides the best action by
evaluating each action’s consequence according to a heuristic.
We do not use other AI proxies based on tree search methods
because they take much longer per match. Second, we assume
both players are from a specific in-game character class called

1https://github.com/demilich1/metastone

https://github.com/demilich1/metastone


Warriors. The total number of available cards to Warriors is
312. Third, while in the real game certain cards can have at
most one copy and all other cards can have at most two copies
in the deck, we impose that every included card has two copies.
This reduces our search space size for the test purpose and
also follows the postulation that having two copies for every
card makes the deck performance more reliable [14]. As a
result, although the deck size is 30, the number of cards to be
selected is 15. In summary, we have N = 312, D = 15 when
optimizing Eqn. 1.

We set up Q-DeckRec as follows. The underlying MLP
has one hidden layer and one output layer. The hidden layer
consists of 1000 rectified linear units (ReLU). The output
layer is a single unit which outputs a weighted sum from the
activation values of the hidden layer. ε in the ε-greedy policy
starts at 1 and decreases 0.0005 per training episode until it
reaches 0.2. The size of a learning batch, m, is set at 64.
For the prioritized experience replay [33], the exponent α is
set at 0.6, the exponent β is linearly annealed from β0 = 0
to 1 with step 1e−5. The capacity of the experience pool is
100K. The constant b in the reward function is set as 10.
All the hyperparameters are chosen empirically without fine-
tuning due to large computational resources required.

We compare Q-DeckRec with a Genetic Algorithm (GA),
the method used in previous works for deck building [14],
[15]. We implement GA with an open source library DEAP2.
An individual is a candidate deck xp. The fitness value is
f(xp;xo,Ap,Ao). The mutation and crossover functions are
customized to maintain the validity of individuals, similarly to
what was adopted in [15]. Specifically, mutation is swapping
one card in the deck with one not in the deck and crossover
randomly exchanges cards not overlapped by the two decks.
The population size of each generation is 10, with the mutation
probability and the crossover probability both set as 0.2.
Individual selection is based on a commonly used selection
mechanism called tournament of size 3.

We also design an ad-hoc baseline which, like Q-DeckRec,
requires a learning phase and does not require calling f(·)
for solving future problem instances. The baseline conducts
Monte Carlo (MC) simulations using a win rate predictor f̂(·)
to locate a solution. We first train a supervised learning model
to approximate f(·). The training data are randomly generated
pairs of decks represented as binary vectors. The labels are
the evaluated win rates based on f(·). We choose to train an
MLP with the same architecture as in Q-DeckRec. Given the
same input, f̂(·) would output faster than f(·) because the
former does not need a real match simulation. When solving
a future problem instance with opponent deck xo, we run MC
simulations according to:

argmax
xp∈Xp

f̂(xp,xo;Ap,Ao), (10)

where Xp is a set of randomly generated decks. We denote the
size of Xp as X . A larger X means more thorough sampling.

2https://github.com/DEAP/deap

In the experiments, we do not include any heuristic search
method because we focus on algorithmic deck recommenda-
tion systems requiring minimal human knowledge involved.
Besides GA, we do not include other metaheuristic search
methods; similarly to GA, they all require calling the win rate
evaluation function f(·) a number of times while solving each
problem instance. We do not include supervised learning mod-
els which directly learns the mapping from problem instances
to optimal solutions because this requires designing a specific
model architecture to cope with the characteristics of the
deck recommendation problem (e.g., outputs are constrained
to contain K cards), which has not been studied before and
requires non-trivial extra works.

Different wall time (i.e., real elapsed time) limits are
imposed as the termination condition for both Q-DeckRec
training and one run of GA. In this way, we can compare how
long Q-DeckRec training and a GA run would take to reach
similar performances. Wall time limits are chosen empirically
based on observations in preliminary experiments and our
limited computational resources. For GA, we try wall time
limits as 10, 15, 20 and 25 minutes because performances
often plateau after 20 minutes (as evidenced in the result
section). Since we do not have the optimal solutions for test
problem instances, we reference the solutions from 25-minute
GA searches as approximated ground truths. For Q-DeckRec
training, we test one, two and three days as the wall time
limit. As will be shown in the result section, Q-DeckRec after
three-day training can already reach the same optimality level
as GA with 25 minute search. For the MC-simulation method,
we use a training data set collected in three days and test
X = 67, 670, 6.7K, 67K, 670K and 6700K. Note that 67K is
around the same number Q-DeckRec calls its learned function
approximator Qθ(s, a) for solving a test problem instance3

whereas higher values of X than 6700K would require too
large computational resources to be practical for large-scale
or real-time application.

In the rest of the paper, we will denote an algorithm as a
specific approach (GA, Q-DeckRec, or MC) plus an associ-
ated parameter. For example, GA20min and MC670K are two
algorithms. So are Q-DeckRec1day and Q-DeckRec2days.

We generate 20 test problem instances for evaluating all
algorithms. In our preliminary experiments where test problem
instances are randomly generated, we often find GA only
needs less than 100 calls of f(·) to identify decks with
100% win rate. This is because randomly generated xo barely
has any effective card synergy and can be easily beaten by
a mediocre deck. In real-world applications, we believe it
is more demanding to build winning-effective decks against
competitive decks rather than random decks. In order to
generate competitive opponent decks as test problem instances,
we adopt a sequential manner as follows. We sample a deck
x from the outputs of all algorithms for the last test problem

3As in Eqn. 4, each optimal action is decided after calculating the state-
action values of all possible actions ((N −D) ·D+ 1) and we need to take
D actions per episode. When N = 312 and D = 15, the total number of
state-action value evaluations is 66840.

https://github.com/DEAP/deap


TABLE I
RESULTS OF GENETIC ALGORITHM APPROACH

Search Time
Wall Time / CPU Time Func. Calls Win Rate

10 min / 6.2 hr 110 0.61
15 min / 9.3 hr 189 0.86
20 min / 12.8 hr 267 0.93
25 min / 15.9 hr 315 0.94

TABLE II
RESULTS OF Q-DECKREC

Training
Wall Time

Search Time
Wall / CPU Time Func. Calls Win Rate

1 day 20K 0.64
2 days 0.38 sec / 9.63 sec 41K 0.88
3 days 62K 0.93

instance, where the sampling distribution is weighted by
f(x;xo,Ap,Ao). We then use x as the input xo for the next
problem instance. The first test problem instance is obtained
after 10 preliminary runs.

For a problem instance and an algorithm, the win rate of
the returned xp vs. the input xo is considered as the result
performance. We run each algorithm on each test problem
instance 10 times. Each run is associated with a random seed,
which controls the initialization of x

(0)
p in s0 in Q-DeckRec,

and the randomness in evolution behaviors in GA. Then, we
use the median of the 10 runs as the performance for the
algorithm on the problem instance. To measure the significance
of the differences for each pair of algorithms, we also conduct
a two-tailed paired Welch’s t-tests with a confidence level 0.01
over all test instances. The null hypothesis is that the mean
difference between the paired algorithms’ win rates is zero.

In order to give a complete view of resource usage, we
record both wall time and CPU time each algorithm takes to
solve a test problem instance.

V. RESULTS AND DISCUSSION

The performances of the three kinds of methods are reported
in Table I, II and III. All the reported numbers are the
mean results over the 20 test problem instances. As stated,
the result for each test problem instance is the median of
10 runs. Also, we find that all pairwise comparisons on the
win rate are significant, except: (1) GA20min vs. GA25min

(2) Q-DeckRec3days vs. GA20min (3) Q-DeckRec3days vs.
GA25min.

TABLE III
PERFORMANCES OF MC SIMULATION APPROACH

X (Number of Samples) Search Time
Wall Time / CPU Time Win Rate

67 0.01 sec / 0.18 sec 0.48
670 0.03 sec / 0.91 sec 0.64
6.7K 0.05 sec / 2.16 sec 0.75
67K 0.45 sec / 8.45 sec 0.84
670K 4.90 sec / 97.60 sec 0.82
6700K 36.06 sec / 1031.81 sec 0.77

First, we observe that the performances of GA and Q-
DeckRec improve as the wall time limits increase in our test
ranges. This meets our expectation because approximate COP
solvers are supposed to get better solutions if using more
computational resources. However, longer wall time limits
than 20 minutes bring diminishing improvement in GA as we
find there is no significant difference in the average win rate
between GA20min and GA25min.

From Table I, we observe that GA calls the win rate
evaluation function an increasing number of times as the wall
time limit increases. As we stated, the win rate evaluation is
computationally expensive involving simulating 300 matches.
Therefore, all GA algorithms require high CPU time in the
order of hours.

As shown in Table II, Q-DeckRec can solve deck building
problem instances with as little computational cost as 9.63
seconds in CPU time. Meanwhile, Q-DeckRec after 3-day
training can build decks as winning-effective as GA25min

does, as evidenced by the non-significant difference between
Q-DeckRec3days vs. GA25min. Therefore, from the CPU time
perspective, Q-DeckRec is much efficient than GA (9.63 sec
� 15.9 hr) to solve a new problem instance because the
computationally heavy match simulations have been ”moved”
to the training phase. This proves the merit of Q-DeckRec
being a suitable deck recommendation system for large-scale
or real-time application.

The number of function calls is 62K during the training of
Q-DeckRec3days. This means there are 62K state transitions
generated from roughly 4K (≈ 62K/15) training episodes.
Even if each of the 62K state transitions is unique, they
still involve a tiny fraction of total states in our formulated
state space. (The number of total states is the number of
possible opponent decks times the number of possible player
decks:

(
N
D

)
×
(
N
D

)
≈ 1.97 ∗ 1050.) This shows that the MLP-

based architecture is a well-chosen function approximator for
generalizing state-action values.

For the MC-simulation method, we first report Mean
Squared Error (MSE) and R2 of the learned supervised learn-
ing model. We evaluate them using a standard 10-fold cross
validation. On training data, MSE = 0.005 and R2 = 0.86.
On testing data, MSE = 0.008 and R2 = 0.79. To our
surprise, from Table III, we find that the win rate does not
monotonously increase as X increases. The performance peaks
at 0.84, which is significantly lower than Q-DeckRec3days.
While debugging the method, we observe that the predicted
win rate (the outcome of Eqn. 10) monotonously increases
as X increases. We suspect that since the supervised learning
model cannot perfectly predict the real win rate, deck samples
inevitably contain outlier decks with spuriously high predicted
win rates. These outlier decks ”trick” the MC-simulation
method to select them unfortunately. The results show that the
approach of building winning-effective decks in a sequential
way as in Q-DeckRec is more robust.



VI. LIMITATIONS AND FUTURE WORKS

In order to help human players, Q-DeckRec relies on AI
proxies which can accurately model players’ play styles. The
current used AI proxy is only based on a greedy heuristic
rather than trained on human play traces. Training human-
like AI proxies and integrating them to Q-DeckRec will be an
important direction in our future works.

We can also improve sample efficiency in Q-DeckRec.
Currently, a training episode starts with a random s0 =

{x(0)
p ,xo, 0}. Were it generated from a card distribution

learned from real matches, Q-DeckRec can focus on exploring
in a smaller state space.

Next, as online CCGs often release patches to introduce new
cards and modify existing cards’ in-game effects, we would
like to investigate how Q-DeckRec can transfer and update its
knowledge without totally re-training the model [34].

Lastly, if the problem is extended to recommend winning-
effective decks against a group of opponent decks {xoi}ki=1,
there remains a question of how to design the feature repre-
sentation of state-action pairs. Naive feature representations
for the opponent deck group could be simply concatenating
{xoi}ki=1. However this creates a large feature space which
may not be efficient for learning. A more advanced feature
representation may represent the opponent deck group in a
continuous vector space, similar to word-embedding tech-
niques from Natural Language Processing (NLP) [35]. We
intend to investigate all of these in the future.

VII. CONCLUSIONS

In this paper, we propose a deck recommendation system
named Q-DeckRec, which is able to solve deck building
problem instances in large-scale and real-time after a period of
training and requires minimal domain knowledge. We design
experiments that demonstrate the advantages.
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