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Abstract
Conventional embedding methods directly asso-
ciate each symbol with a continuous embedding
vector, which is equivalent to applying a linear
transformation based on a “one-hot” encoding of
the discrete symbols. Despite its simplicity, such
approach yields the number of parameters that
grows linearly with the vocabulary size and can
lead to overfitting. In this work, we propose a
much more compact K-way D-dimensional dis-
crete encoding scheme to replace the “one-hot"
encoding. In the proposed “KD encoding”, each
symbol is represented by a D-dimensional code
with a cardinality of K, and the final symbol em-
bedding vector is generated by composing the
code embedding vectors. To end-to-end learn se-
mantically meaningful codes, we derive a relaxed
discrete optimization approach based on stochas-
tic gradient descent, which can be generally ap-
plied to any differentiable computational graph
with an embedding layer. In our experiments
with various applications from natural language
processing to graph convolutional networks, the
total size of the embedding layer can be reduced
up to 98% while achieving similar or better per-
formance.

1. Introduction
Embedding methods, such as word embedding (Mikolov
et al., 2013; Pennington et al., 2014), have become pillars
in many applications when learning from discrete struc-
tures. The examples include language modeling (Kim
et al., 2016), machine translation (Sennrich et al., 2015),
text classification (Zhang et al., 2015b), knowledge graph
and social network modeling (Bordes et al., 2013; Chen &
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Sun, 2017), and many others (Kipf & Welling, 2016; Chen
et al., 2016). The objective of the embedding module in
neural networks is to represent a discrete symbol, such as
a word or an entity, with some continuous embedding vec-
tor v ∈ Rd. This seems to be a trivial problem, at the
first glance, in which we can directly associate each sym-
bol with a learnable embedding vector, as is done in exist-
ing work. To retrieve the embedding vector of a specific
symbol, an embedding table lookup operation can be per-
formed. This is equivalent to the following: first we encode
each symbol with an “one-hot” encoding vector b ∈ [0, 1]N

where
∑
j bj = 1 (N is the total number of symbols),

and then generate the embedding vector v by simply mul-
tiplying the “one-hot” vector b with the embedding matrix
W ∈ RN×d, i.e. v = WT b.

Despite the simplicity of this “one-hot” encoding based
embedding approach, it has several issues. The major issue
is that the number of parameters grows linearly with the
number of symbols. This becomes very challenging when
we have millions or billions of entities in the database, or
when there are lots of symbols with only a few observations
(e.g. Zipf’s law). There also exists redundancy in theO(N)
parameterization, considering that many symbols are actu-
ally similar to each other. This over-parameterization can
further lead to overfitting; and it also requires a lot of mem-
ory, which prevents the model from being deployed to mo-
bile devices. Another issue is purely from the code space
utilization perspective, where we find “one-hot” encoding
is extremely inefficient. Its code space utilization rate is
almost zero asN/2N → 0 whenN →∞, whileN dimen-
sional discrete coding system can effectively represent 2N

symbols.

To address these issues, we propose a novel and much
more compact coding scheme that replaces the “one-hot”
encoding. In the proposed approach, we use a K-way D-
dimensional code to represent each symbol, where each
code has D dimensions, and each dimension has a cardi-
nality of K. For example, a concept of cat may be encoded
as (5-1-3-7), and a concept of dog may be encoded as (5-1-
3-9). The code allocation for each symbol is based on data
and specific tasks such that the codes can capture semantics
of symbols, and similar codes should reflect similar mean-
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ings. While we mainly focus on the encoding of symbols in
this work, the learned discrete codes can have larger appli-
cations, such as information retrieval. We dub the proposed
encoding scheme as “KD encoding”.

The KD code system is much more compact than its “one-
hot” counterpart. To represent a set of symbols of size N ,
the “KD encoding” only requires KD ≥ N . Increasing
K or D by a small amount, we can easily achieve KD �
N , in which case it will still be much more compact and
keep D = O( logN

logK ). Consider K = 2, the utilization rate
of “KD encoding” is N/2D, which is 2N−D times more
compact than its “one-hot” counterpart1.

The compactness of the code can be translated into com-
pactness of the parametrization. Dropping the giant em-
bedding matrixW ∈ RN×d that stores symbol embeddings
and leveraging semantic similarities between symbols, the
symbol embedding vector is generated by composing much
fewer code embedding vectors. This can be achieved as
follows: first we embed each “KD code” into a sequence
of code embedding vectors in RD×d

′
, and then apply em-

bedding transformation function f(·) to generate the final
symbol embedding. By adopting the new approach, we can
reduce the number of embedding parameters from O(Nd)
to O( K

logK d
′ logN + C), where d′ is the code embedding

size, and C is the number of neural network parameters.

Due to the the discreteness of the code allocation problem,
it is very challenging to learn the meaningful discrete codes
that can exploit the similarities among symbols according
to a target task in an end-to-end fashion. A compromise
is to learn the code given a trained embedding matrix, and
then fix the code during the stage of task-specific training.
While this has been shown working relatively well in pre-
vious work (Chen et al., 2017; Shu & Nakayama, 2017), it
produces a sub-optimal solution, and requires a multi-stage
procedure that is hard to tune. In this work, we derive a
relaxed discrete optimization approach based on stochastic
gradient descent (SGD), and propose two guided methods
to assist the end-to-end code learning. To validate our idea,
we conduct experiments on three different tasks from nat-
ural language processing to graph convolutional networks
for semi-supervised node classification. We achieve 95%
of embedding model size reduction in the language model-
ing task and 98% in text classification with similar or better
performance.

2. The K-way D-dimensional Discrete
Encoding Framework

In this section, we introduce the “KD encoding” framework
in details.

1Assuming we have vocabulary size N = 10, 000 and the
dimensionality D = 100, it is 29900 times more efficient.

2.1. Problem Formulation

Symbols are represented with a vocabulary V =
{s1, s2, · · · , sN} where si corresponds to the i-th sym-
bol. Here we aim to learn a transformation function that
maps a symbol si to a continuous embedding vector vi,
i.e. T : V → Rd. In the case of conventional embedding
method, T is a linear transformation of “one-hot” code of
a symbol.

To measure the fitness of T , we consider a differentiable
computational graph G that takes discrete symbols as input
x and outputs the predictions y, such as text classification
model based on word embeddings. We also assume a task-
specific loss function L(x,y) is given. The task-oriented
learning of T is to learn T such that L(x,y) is minimized,
i.e. T = arg minT L(x,y|T ,Θ) where Θ are task-specific
parameters.

2.2. The “KD Encoding” Framework

In the proposed framework, each symbol is associated with
a K-way D-dimensional discrete code. We denote the dis-
crete code for the i-th symbol as ci = (c1

i , c
2
i , · · · , cDi ) ∈

BD, where B is the set of code bits with cardinality K.
To connect symbols with discrete codes, a code allocation
function φ(·) : V → BD is used. The learning of this map-
ping function will be introduced later, and once fixed it can
be stored as a hash table for fast lookup. Since a discrete
code ci has D dimensions, we do not directly use embed-
ding lookup to find the symbol embedding as used in “one-
hot” encoding. Instead, we want to learn an adaptive code
composition function that takes a discrete code and gener-
ates a continuous embedding vector, i.e. f : BD → Rd.
The details of f will be introduced in the next subsection.
In sum, the “KD encoding” framework we have T = f ◦φ
with a “KD code” allocation function φ and a composition
function f as illustrated in Figure 1(a) and 1(b).

In order to uniquely identify every symbol, we only need
to set KD = N , as we can assign a unique code to each
symbol in this case. When this holds, the code space is
fully utilized, and none of the symbol can change its code
without affecting other symbols. We call this type of code
system compact code. The optimization problem for com-
pact code can be very difficult, and usually requires approx-
imated combinatorial algorithms such as graph matching
(Li et al., 2016). Realizing the difficulties in optimization,
we propose to adopt the redundant code system, where
KD � N , namely, there are a lot of “empty” codes with
no symbol associated. Changing the code of one symbol
may not affect other symbols under this scheme, since the
random collision probability can be very small 2, which

2For example, we can set K = 100, D = 10 for a billion
symbols, in a random code assignment, the probability of the NO
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Figure 1. (a) The conventional symbol embedding based on “one-hot” encoding. (b) The proposed KD encoding scheme. (c) and (d) are
examples of embedding transformation functions by DNN and RNN used in the “KD encoding” when generating the symbol embedding
from its code.

makes it easier to optimize. The redundant code can be
achieved by slightly increasing the size of K or D thanks
to the exponential nature of their relations toN . Therefore,
in both compact code or redundant code, it only requires
D = O( logN

logK ).

2.3. Discrete Code Embedding

As mentioned above, given learned φ(·) and the i-th sym-
bol si, we can retrieve its code via a code lookup, i.e.
ci = φ(si). In order to generate the composite em-
bedding vector vi, we adopt an adaptive code composi-
tion function vi = f(ci). To do so, we first embed
the code ci to a sequence of code embedding vectors
(W1

c1
i
,W2

c2
i
, · · · ,WD

cD
i

), and then apply another transfor-

mation v = fe(W1
c1
i
,W2

c2
i
, · · · ,WD

cD
i

; θe) to generate v.

Here Wj ∈ RK×d
′

is the code embedding matrix for the
j-th code dimension, and fe is the embedding transforma-
tion function that maps the code embedding vectors to the
symbol embedding vector. The choice of fe is very flexible
and varies from task to task. In this work, we consider two
types of embedding transformation functions.

The first one is based on a linear transformation:

vi = H

(∑
j

Wj

cj
i

)T
,

where H ∈ Rd×d′ is a transformation matrix for matching
the dimensions. While this is simple and efficient, due to
its linear nature, the capacity of the generated symbol em-
bedding may be limited when the size of K,D or the code
embedding dimension d′ is small.

Another type of embedding transformation functions are
nonlinear, and here we introduce one that is based on a re-
current neural network, LSTM (Hochreiter & Schmidhu-
ber, 1997), in particular. That is, we have (h1, · · · , hj) =

LSTM(W1
c1 , · · · ,Wj

cj ) (see supplementary for details).

collision at all is 99.5%.

The final symbol embedding can be computed by sum-
ming over LSTM outputs at all code dimensions (and us-
ing a linear layer to match dimension if d 6= d′), i.e.
v = H(

∑
j hj)

T . Figure 1(c) and 1(d) illustrate the above
two embedding transformation functions.

2.4. Analysis of the Proposed “KD Encoding”

To measure the parameter and model size reduction, we
first introduce two definitions as follows.

Definition 1. (Embedding parameters) The embedding pa-
rameters are the parameters θ that are used in code compo-
sition function f . Specifically, it includes code embedding
matrices {W}, as well as other parameters θe used in the
embedding transformation function fe.

It is worth noting that we do not explicitly include the code
as embedding parameters. This is due to the fact that we
do not count “one-hot” codes as parameters. Also in some
cases the codes are not adaptively learned, such as hashed
from symbols (Svenstrup et al., 2017). However, when we
export the model to embedded devices, the storage of dis-
crete codes does occupy space. Hence, we introduce an-
other concept below to take it into consideration as well.

Definition 2. (Embedding layer’s size) The embedding
layer’s size is the number of bits used to store both em-
bedding parameters as well as the discrete codes.

Lemma 1. The number of embedding parameters used in
KD encoding isO( K

logK d
′ logN+C), whereC is the num-

ber of parameters of neural nets.

The proof is given in the supplementary material.

For the analysis of the embedding layer’s size under “KD
encoding”, we assume that 32-bits floating point number
is used. The total bits used by the “KD encoding” is
ND log2K + 32(KDd′ + C) consisting both code size
as well as the size of embedding parameters. Comparing to
the total model size by conventional full embedding, which
is 32N(1 + d), it can still be a huge saving of model space,
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especially when N, d are large.

Here we provide a theoretical connection between the pro-
posed “KD encoding” and the SVD or low-rank factoriza-
tion of the embedding matrix. We consider the scenario
where the composition function f is a linear function with
no hidden layer, that is vi = (

∑
jW

j

cj
i

)T .

Proposition 1. A linear composition function f with no
hidden layer is equivalent to a sparse binary low-rank fac-
torization of the embedding matrix.

The proof is also provided in the supplementary material.
But the overall idea is that the “KD code” mimics an 1-
out-of-K selection within each of the D groups.

The computation overhead brought by linear composition
is very small compared to the downstream neural network
computation (without hidden layer in linear composition
function, we only need to sum up D vectors). However,
the expressiveness of the linear factorization is limited by
the number of bases or rank of the factorization, which is
determined by K and D. And the use of non-linear com-
position function can largely increase the expressiveness of
the composite embedding matrix and may be an appealing
alternative, this is shown by the proposition 2 in supple-
mentary.

3. End-to-End Learning of the Discrete Code
In this section, we propose methods for learning task-
specific “KD codes”.

3.1. Continuous Relaxation for Discrete Code Learning

As mentioned before, we want to learn the symbol-to-
embedding-vector mapping function, T , to minimize the
target task loss, i.e. T = arg minT L(x,y|T ,Θ). This
includes optimizing both code allocation function φ(·) and
code composition function f(·). While f(·) is differen-
tiable w.r.t. its parameters θ, φ(·) is very challenging to
learn due to the discreteness and non-differentiability of the
codes.

Specifically, we are interested in solving the following op-
timization problem,

min
{c},θ,Θ

∑
i

L
(
xi,yi|fe

(
W1

c1
i
,W2

c2
i
, · · · ,WD

cD
i

)
,Θ

)
(1)

where fe is the embedding transformation function map-
ping code embedding to the symbol embedding, θ =
{W, θe} contains code embeddings and the composition
parameters, and Θ denotes other task-specific parameters.

We assume the above loss function is differentiable w.r.t.
to the continuous parameters including embedding param-
eters θ and other task-specific parameters Θ, so they can
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Figure 2. The effects of temperature τ on output probability of
Softmax and its entropy (when K = 2). As τ decreases, the
probabilistic output approximates step function whenK = 2, and
generally “one-hot” vector when K > 2.

be optimized by following standard stochastic gradient de-
scent and its variants (Kingma & Ba, 2014). However, each
ci is a discrete code, it cannot be directly optimized via
SGD as other parameters. In order to adopt gradient based
approach to simplify the learning of discrete codes in an
end-to-end fashion, we derive a continuous relaxation of
the discrete code to approximate the gradient effectively.

We start by making the observation that each code ci
can be seen as a concatenation of D “one-hot” vectors,
i.e. ci = (o1

i ,o
2
i , · · · ,oDi ), where ∀j,oji ∈ [0, 1]K and∑

k o
jk
i = 1, where ojki is the k-th component of oji . To

make it differentiable, we relax the oi from a “one-hot”
vector to a continuous relaxed vector ôi by applying tem-
pering Softmax:

ojki ≈ ô
jk
i =

exp(πjki /τ)∑
k′ exp(πjk

′

i /τ)

Where τ is a temperature term, as τ → 0, this approxima-
tion becomes exact (except for the case of ties). We show
this approximation effects for K = 2 with y = 1/(1 +
exp(−x/τ)) in Figure 2a. Similar techniques have been in-
troduced in Gumbel-Softmax trick (Jang et al., 2016; Mad-
dison et al., 2016).

Since ôi is continuous (given τ is not approaching 0), in-
stead of learning the discrete code assignment directly, we
learn ôi as an approximation to oi. To do so, we can ad-
just the code logits πi using SGD and gradually decrease
the temperature τ during the training. Since the indexing
operator for retrieval of code embedding vectors, i.e. Wj

cj
i

,
is non-differentiable, to generate the embedding vector for
j-th code dimension, we instead use an affine transforma-
tion operator, i.e. (Wj)T ôji , which enables the gradient to
flow backwards normally.

It is easy to see that control of temperature τ can be impor-
tant. When τ is too large, the output ôi is close to uniform,
which is too far away from the desired “one-hot” vector
oi. When τ is too small, the slight differences between dif-
ferent logits πji and πj

′

i will be largely magnified. Also,
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the gradient vanishes when the Softmax output approaches
“one-hot” vector, i.e. when it is too confident. A “right”
schedule of temperature can thus be crucial. While we can
handcraft a good schedule of temperature, we also observe
that the temperature τ is closely related to the entropy of the
output probabilistic vector, as shown in Figure 2b, where a
same set of random logits can produce probabilities of dif-
ferent entropies when τ varies. This motivates us to implic-
itly control the temperature via regularizing the entropy of
the model. To do so, we add the following entropy regu-
larization term: H = −

∑
i,j,k ô

jk
i log ôjk. A large penalty

for this regularization term encourages a small entropy for
the relaxed codes, i.e. a more spiky distribution.

Up to this point, we still use the continuous relaxation ôi
to approximate oi during the training. In inference, we will
only use discrete codes. The discrepancy of the continuous
and discrete codes used in training and inference is undesir-
able. To close the gap, we take inspiration from Straight-
Through Estimator (Bengio et al., 2013). In the forward
pass, instead of using the relaxed tempering Softmax out-
put ôi, which is likely a smooth continuous vector, we take
its arg max and turn it into a “one-hot” vector as follows,
which recovers a discrete code.

oji = one_hot
(

arg max
k

ôjki

)
≈ Softmax

(
πji
τ

)
, τ → 0

We interpret the use of straight-through estimator as us-
ing different temperatures during the forward and back-
ward pass. In forward pass, τ → 0 is used, for which
we simply apply the arg max operator. In the backward
pass (to compute the gradient), it pretends that a larger
τ was used. Compared to using the same temperature in
both passes, this always outputs “one-hot” discrete code
oji , which closes the previous gap between training and in-
ference.

The training procedure is summarized in Algorithm 1, in
which the stop_gradient operator will prevent the gra-
dient from back-propagating through it.

3.2. Code Learning with Guidances

It is not surprising the optimization problem is more chal-
lenging for learning discrete codes than learning conven-
tional continuous embedding vectors, due to the discrete-
ness of the problem (which can be NP-hard). This could
lead to a suboptimal solution where discrete codes are not
as competitive. Therefore, we propose to use guidances
from the continuous embedding vectors to mitigate the
problem. The basic idea is that instead of adjusting codes
according to noisy gradients from the end task as shown
above, we also require the composite embedding vectors
from codes to mimic continuous embedding vectors, which
can be either jointly trained (online distillation guidance),

Algorithm 1 An epoch of code learning via Straight-
through Estimator with Tempering Softmax.

Parameters: code logits {πi}, code embedding matrices
{Wj}, transformation parameters θe, and other task specific
parameters Θ.
for i← 1 to N do

for j ← 1 to D do
ôji = Softmax(πj

i /τ)

oji = one_hot(arg maxk ô
jk
i )

oji = stop_gradient(oji − ô
j
i ) + ôji

end for
A step of SGD on πi, {Wj}, θe,Θ to reduce

L
(
xi,yi,fe

(
(o1i )TW1, · · · , (oDi )TWD; θe

)
,Θ

)
end for

or pre-trained (pre-train distillation guidance). The contin-
uous embedding can provide better signals for both code
learning as well as the rest parts of the neural network, im-
prove the training subsequently.

Online Distillation Guidance (ODG). A good learning
progress in code allocation function φ(·) can be important
for the rest of the neural network to learn. For example,
it is hard to imagine we can train a good model based on
“KD codes” if we have φ(“table”) = φ(“cat”). However,
the learning of the φ(·) also depends on the rest of network
to provide good signals.

Based on the observation, we propose to associate a regular
continuous embedding vector ui with each symbol during
the training, and we want the “KD encoding” function T (·)
to mimic the continuous embedding vectors, while both of
them are simultaneously optimized for the end task. More
specifically, during the training, instead of using the em-
bedding vector generated from the code, i.e. f(ci), we use
a dropout average of them, i.e.

vi = m� ui + (1−m)� f(ci).

Here m is a Bernoulli random variable for selecting be-
tween the regular embedding vector or the KD embedding
vector. When m is turned on with a relatively high prob-
ability (e.g. 0.7), even if f(ci) is difficult to learn, ui
can still be learned to assist the improvement of the task-
specific parameters Θ, which in turn helps code learning.
During the inference, we only use f(ci) as output em-
bedding. This choice can lead to a gap between training
and generalization errors. Hence, we add a regularization
loss λ‖ui−f(ci)‖2 during the training that encourages the
match between ui and f(ci)

3.

3Here we use stop_gradient(ui) to prevent embedding vectors
u being dragged to f(ci) as it has too much freedom.
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Pre-trained Distillation Guidance (PDG). It is impor-
tant to close the gap between training and inference in
the online distillation guidance process, unfortunately this
can still be difficult. Alternatively, we can also adopt pre-
trained continuous embedding vectors as guidance. Instead
of training the continuous embedding vectors alongside the
discrete codes, we utilize a pre-trained continuous embed-
ding matrix U produced from the same model with conven-
tional continuous embedding vectors. During the end-to-
end training of the codes (as well as other parameters), we
ask the composite embedding vector vi generated by “KD
encoding” to mimic the the given embedding vector ui by
minimizing the l2 distance.

Furthermore, we can build an auto-encoder of the pre-
trained continuous embedding vectors, and use both con-
tinuous embedding vectors as well as the code logits as
guidances. In the encoding pass, a transformation function
g(·) is used to map ui to the code logits πi. In its decod-
ing pass, it utilizes the same transformation function f(·)
that is used in “KD encoding” to reconstruct ui. The loss
function for the auto-encoders is

Lauto−encoder =
∑
i

‖f(g(ui); τ)− ui‖2

To follow the guidance of the pre-trained embedding matrix
U , we ask the code logits πi and composite symbol embed-
ding vi = f(πi; τ) 4 to mimic the ones in the auto-encoder
as follows

Ldistillation =
∑
i

α‖f(πi; τ)− ui‖2 + β‖πi − g(ui)‖2

During the training, both Lauto−encoder and Ldistillation
will be added to the task-specific loss function to train
jointly. The method is illustrated in the Figure 3.

Here we also make a distinction between pre-trained dis-
tillation guidance (PDG) and pre-training of codes. Firstly,
PDG can learn codes end-to-end to optimize the task’s loss,
while the pre-trained codes will be fixed during the task

4Here we overload the function f(ci) by considering that code
ci can be turned into “one-hot” oi, and oi ≈ Softmax(πi/τ).

learning. Secondly, the PDG training procedure is much
easier, especially for the tuning of discrete code learning,
while pre-training of codes requires three stages and is un-
friendly for parameter tuning.

4. Experiments
In this section, we conduct experiments to validate the pro-
posed approach. Since the proposed “KD Encoding" can
be applied to various tasks and applications with embed-
ding layers involved. We choose three important tasks for
evaluation, they are (1) language modeling, (2) text clas-
sification, and (3) graph convolutional networks for semi-
supervised node classification. For the detailed descrip-
tions of these tasks and other applications of our method,
we refer readers to the supplementary material.

For the language modeling task, we test on the widely used
English Penn Treebank (Marcus et al., 1993) dataset, which
contains 1M words with vocabulary size of 10K. The train-
ing/validation/test split is provided by convention accord-
ing to (Mikolov et al., 2010). Since we only focus on the
embedding layer, we simply adopt a previous state-of-the-
art model (Zaremba et al., 2014), in which they provide
three different variants of LSTMs (Hochreiter & Schmid-
huber, 1997) of different sizes: The larger model has word
embedding size and LSTM hidden size of 1500, while the
number is 650 and 200 for the medium and small mod-
els. By default, we use K = 32, D = 32 and pre-trained
distillation guidance for the proposed method, and linear
embedding transformation function with 1 hidden layer of
300 hidden units.

For the text classification task, we utilize five different
datasets from (Zhang et al., 2015b), namely Yahoo! news,
AG’s news, DBpedia, Yelp review polarity ratings as well
Yelp review full-scale ratings 5. We adopt network archi-
tecture used in FastText (Joulin et al., 2016b;a), where a
SoftMax is stacked on top of the averaged word embed-
ding vectors of the text. For simplicity, we only use uni-
gram word information but not sub-words or bi-grams, as
used in their work. The word embedding dimension is cho-
sen to be 300 as it yields a good balance between size and
performance. By default, we use K = 32, D = 32 for the
proposed method, and linear transformation with no hid-
den layer. That is to add code embedding vectors together
to generate symbol embedding vector, and the dimension
of code embedding is the same as word embedding.

For the application with graph convolutional networks, we
follow the same setting and hyper-parameters as in (Kipf
& Welling, 2016). Three datasets are used for comparison,

5YahooAnswers has 477K unique words and 131M tokens,
and Yelp has 268K unique words and 94M tokens. More details
available in (Zhang et al., 2015b).
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Table 1. Language modeling (PTB). Compared with Conven-
tional full embedding, and low-rank (denoted with Lr) with dif-
ferent compression rates.

Model Full Lr(5X) Lr(10X) Ours

Perplexity
Small 114.53 134.01 134.89 107.77
Medi. 83.38 84.84 85.53 83.11
Large 78.71 81.23 81.85 77.72

# of emb.
params.

(M)

Small 2.00 0.40 0.19 0.37
Medi. 6.50 1.30 0.65 0.50
Large 15.00 2.99 1.50 0.76

# of bits
(M)

Small 64.00 12.73 6.20 13.39
Medi. 208.00 41.58 20.79 17.75
Large 480.00 95.68 47.84 26.00

Table 2. Text classification. Lr denotes low-rank.
Model Full Lr(10X) Lr(20X) Ours

Accuracy

Yahoo! 0.698 0.695 0.691 0.695
AG N. 0.914 0.914 0.915 0.916
Yelp P. 0.932 0.924 0.923 0.931
Yelp F. 0.592 0.578 0.573 0.590
DBpedia 0.977 0.977 0.979 0.980

# of emb.
params.

(M)

Yahoo! 143.26 13.857 6.690 0.308
AG N. 20.797 2.019 0.975 0.308
Yelp P. 74.022 7.164 3.459 0.308
Yelp F. 80.524 7.793 3.762 0.308
DBpedia 183.76 17.772 8.580 0.308

# of bits
(G)

Yahoo! 4.584 0.443 0.214 0.086
AG N. 0.665 0.065 0.031 0.021
Yelp P. 2.369 0.229 0.111 0.049
Yelp F. 2.577 0.249 0.120 0.053
DBpedia 5.880 0.569 0.275 0.108

namely Cora, Citeseer, Pubmed. Since both the number
of symbols (1433, 3703, and 500 respectively) as well as
its embedding dimension (16) are small, the compressible
space is actually quite small. Nevertheless, we perform the
proposed method with K = 64, D = 8 for Cora and Cite-
seer, and K = 32, D = 4 for Pubmed. Again, a linear em-
bedding transformation function is used with one hidden
layer of size 16. We do not use guidances for text classi-
fication and graph node classification tasks since the direct
optimization is already satisfying enough.

We mainly compare the proposed “KD encoding” approach
with the conventional continuous (full) embedding counter-
part, and also compare with low-rank factorization (Sainath
et al., 2013) with different compression ratios. The results
for three tasks are shown in Table 1, 2, 3, respectively.
In these tables, three types of metrics are shown: (1) the
performance metric, perplexity for language modeling and
accuracy for the others, (2) the number of embedding pa-
rameters θ used in f , and (3) the total embedding layer’s
size includes θ as well as the codes. From these tables,
we observe that the proposed “KD encoding” with end-to-
end code learning perform similarly, or even better in many
cases, while consistently saving more than 90% of embe-

Table 3. Graph Convolutional Networks. Lr denotes low-rank.
Dataset Full Lr(2X) Lr(4X) Ours

Accuracy
Cora 0.814 0.789 0.767 0.823

Citese. 0.721 0.710 0.685 0.723
Pubm. 0.795 0.773 0.780 0.797

# of emb.
params.

(K)

Cora 22.93 10.14 5.8 8.22
Citese. 59.25 26.03 14.88 8.22
Pubm. 8.00 3.61 2.06 2.69

# of bits
(M)

Cora 0.73 0.32 0.19 0.33
Citese. 1.90 0.83 0.48 0.44
Pubm. 0.26 0.12 0.07 0.10

Table 4. Comparisons with more baselines in Language Modeling
(Medium sized model).

Methods PPL Bits saved
Char-as-codes 108.14 96%
Scalar quantization (8 bits) 84.06 75%
Scalar quantization (6 bits) 87.73 81%
Scalar quantization (4 bits) 92.86 88%
Product quantization(64x325) 84.03 88%
Product quantization(128x325) 83.71 85%
Product quantization(256x325) 83.66 81%
Ours 83.11 92%

ding parameter and model size, 98% in the text classifica-
tion case. In order to achieve similar level of compression,
we note that low-rank factorization baseline will reduce the
performance significantly.

We further compare with broader baselines on language
modeling tasks (with medium sized language model for
convenience): (1) directly using first 10 chars of a word
as its code (padding when necessary), (2) training aware
quantization (Jacob et al., 2017), and (3) product quantiza-
tion (Jegou et al., 2011; Joulin et al., 2016a). The results
are shown in Table 4. We can see that our methods signifi-
cantly outperform these baselines, in terms of both PPL as
well as model size (bits) reduction.

In the following, we scrutinize different components of the
proposed model based on PTB language modeling. To start
with, we test various code learning methods, and demon-
strate the impact of training with guidance. The results are
shown in Table 5. First, we note that both random codes as
well as pre-trained codes are suboptimal, which is under-
standable as they are not (fully) adaptive to the target tasks.
Then, we see that end-to-end training without guidance suf-
fers serious performance loss, especially when the task spe-
cific networks increase its complexity (with larger hidden
size and use of dropout). Finally, by adopting the proposed
continuous guidances (especially distillation guidance), the
performance loss can be overcame. We further vary the
size of K or D and see how they affect the performance.
As shown in Figure 4a and 4b, small K or D may harm
the performance (even though that KD � N is satisfied),
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Table 5. Comparisons of different code learning methods.
Small Medium Large

Full embedding 114.53 83.38 78.71
Random code 115.79 104.12 98.38
Pre-trained code 107.95 84.92 80.69
Ours (no guidance) 108.50 89.03 86.41
Ours (ODG) 108.19 85.50 83.00
Ours (PDG) 107.77 83.11 77.72
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(a) Linear instantiation.

4 8 16 32 64
D

4
8

16
32

64
K

109.7 88.3 81.3 79.2 78.7

91.8 83.1 80.0 78.8 78.9

84.9 81.5 79.2 78.3 78.3

83.4 79.9 78.7 78.6 78.5

82.7 79.7 78.7 78.7 79.3 75

90

105

120

135

(b) RNN instantiation.

Figure 4. The effects of various K and D under different instanti-
ation of embedding transformation function f(·).

Table 6. Learned codes for 10K Glove embeddings (K=6, D=4).
Code Words
3-1-0-3 up when over into time back off set left open half

behind quickly starts
3-1-0-4 week tuesday wednesday monday thursday friday

sunday saturday
3-1-0-5 by were after before while past ago close soon re-

cently continued meanwhile
3-1-1-1 year month months record fall annual target cuts

which suggests that the redundant code can be easier to
learn. The size of D seems to have higher impact on the
performance compared to K. Also, when D is small, non-
linear encoder such as RNN performs much better than the
linear counterpart, which verifies our Proposition 2. To ex-
amine the learned codes, we apply our method on the pre-
trained embedding vectors from Glove (Pennington et al.,
2014), which has better coverage and quality. We force the
model to assign multiple words to the same code by setting
K = 6, D = 4 (code space is 1296) for vocabulary size
of 10K. Table 6 show a snippet of the learned codes, which
shows that semantically similar words are assigned to the
same or close-by discrete codes.

5. Related Work
The idea of using more efficient coding system traces to
information theory, such as error correction code (Ham-
ming, 1950), and Hoffman code (Huffman, 1952). How-
ever, in most embedding techniques such as word embed-
ding (Mikolov et al., 2013; Pennington et al., 2014), en-
tity embedding (Chen et al., 2016; Chen & Sun, 2017),

“one-hot” encoding is used along with a usually large em-
bedding matrix. Recent work (Kim et al., 2016; Sennrich
et al., 2015; Zhang et al., 2015b) explores character or sub-
word based embedding model instead of the word embed-
ding model and show some promising results. (Svenstrup
et al., 2017) proposes using hash functions to automatically
map texts to pre-defined bases with a smaller vocabulary
size, according to which vectors are composed. However,
in their cases, the chars, sub-words and hash functions are
fixed and given a priori dependent on language, thus may
have few semantic meanings attached and may not be avail-
able for other type of data. In contrast, we learn the code
assignment function from data and tasks, and our method
is language independent.

The compression of neural networks (Han et al., 2015a;b;
Chen et al., 2015) has become more and more important
in order to deploy large networks to small mobile devices.
Our work can be seen as a way to compress the embedding
layer in neural networks. Most existing network compres-
sion techniques focus on dense/convolutional layers that
are shared/amortized by all data instances, while one data
instance only utilizes a fraction of embedding layer weights
associated with the given symbols. To compress these types
of weights, some efforts have been made, such as prod-
uct quantization (Jegou et al., 2011; Joulin et al., 2016a;
Zhang; Zhang et al., 2015a; Babenko & Lempitsky, 2014).
Compared to their methods, our framework is more gen-
eral. Many of these methods can be seen as a special case
of “KD encoding” using a linear embedding transforma-
tion function without hidden layer. Also, under our frame-
work, both the codes and the transformation functions can
be learned jointly by minimizing task-specific losses.

Our work is also related to LightRNN (Li et al., 2016),
which can be seen as a special case of our proposed KD
code with K =

√
N and D = 2. Due to the use of a

more compact code, its code learning is harder and more
expensive. This work is an extension of our previous work-
shop paper (Chen et al., 2017) with guided end-to-end
code learning. In parallel to (Chen et al., 2017), (Shu &
Nakayama, 2017) explores similar ideas with linear com-
position functions and pre-trained codes.

6. Conclusions
In this paper, we propose a novel K-way D-dimensional
discrete encoding scheme to replace the “one-hot" encod-
ing, which significantly improves the efficiency of the pa-
rameterization of models with embedding layers. To learn
semantically meaningful codes, we derive a relaxed dis-
crete optimization technique based on SGD enabling end-
to-end code learning. We demonstrate the effectiveness of
our work with applications in language modeling, text clas-
sification and graph convolutional networks.



Learning K-way D-dimensional Discrete Codes for Compact Embedding Representations

Acknowledgements
We would like to thank anonymous reviewers for their
constructive comments. We would also like to thank
Chong Wang, Denny Zhou, Lihong Li for some helpful
discussions. This work is partially supported by NSF III-
1705169, NSF CAREER Award 1741634, and Snapchat
gift funds.

References
Babenko, A. and Lempitsky, V. Additive quantization for

extreme vector compression. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recogni-
tion, pp. 931–938, 2014.

Bengio, Y., Léonard, N., and Courville, A. Estimat-
ing or propagating gradients through stochastic neu-
rons for conditional computation. arXiv preprint
arXiv:1308.3432, 2013.

Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., and
Yakhnenko, O. Translating embeddings for modeling
multi-relational data. In Advances in neural information
processing systems, pp. 2787–2795, 2013.

Chen, T. and Sun, Y. Task-guided and path-augmented
heterogeneous network embedding for author identifi-
cation. In Proceedings of the Tenth ACM International
Conference on Web Search and Data Mining, pp. 295–
304. ACM, 2017.

Chen, T., Tang, L.-A., Sun, Y., Chen, Z., and Zhang, K. En-
tity embedding-based anomaly detection for heteroge-
neous categorical events. In Proceedings of the Twenty-
Fifth International Joint Conference on Artificial Intelli-
gence, pp. 1396–1403. AAAI Press, 2016.

Chen, T., Min, M. R., and Sun, Y. Learning k-way d-
dimensional discrete code for compact embedding repre-
sentations. CoRR, abs/1711.03067, 2017. URL http:
//arxiv.org/abs/1711.03067.

Chen, W., Wilson, J., Tyree, S., Weinberger, K., and Chen,
Y. Compressing neural networks with the hashing trick.
In International Conference on Machine Learning, pp.
2285–2294, 2015.

Hamming, R. W. Error detecting and error correcting
codes. Bell Labs Technical Journal, 29(2):147–160,
1950.

Han, S., Mao, H., and Dally, W. J. Deep compres-
sion: Compressing deep neural networks with pruning,
trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149, 2015a.

Han, S., Pool, J., Tran, J., and Dally, W. Learning both
weights and connections for efficient neural network. In
Advances in Neural Information Processing Systems, pp.
1135–1143, 2015b.

Hochreiter, S. and Schmidhuber, J. Long short-term mem-
ory. Neural computation, 9(8):1735–1780, 1997.

Huffman, D. A. A method for the construction of
minimum-redundancy codes. Proceedings of the IRE,
40(9):1098–1101, 1952.

Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang,
M., Howard, A., Adam, H., and Kalenichenko, D.
Quantization and training of neural networks for effi-
cient integer-arithmetic-only inference. arXiv preprint
arXiv:1712.05877, 2017.

Jang, E., Gu, S., and Poole, B. Categorical repa-
rameterization with gumbel-softmax. arXiv preprint
arXiv:1611.01144, 2016.

Jegou, H., Douze, M., and Schmid, C. Product quantization
for nearest neighbor search. IEEE transactions on pat-
tern analysis and machine intelligence, 33(1):117–128,
2011.

Joulin, A., Grave, E., Bojanowski, P., Douze, M., Jégou,
H., and Mikolov, T. Fasttext. zip: Compressing text
classification models. arXiv preprint arXiv:1612.03651,
2016a.

Joulin, A., Grave, E., Bojanowski, P., and Mikolov, T. Bag
of tricks for efficient text classification. arXiv preprint
arXiv:1607.01759, 2016b.

Kim, Y., Jernite, Y., Sontag, D., and Rush, A. M. Character-
aware neural language models. In Proceedings of the
Thirtieth AAAI Conference on Artificial Intelligence, pp.
2741–2749. AAAI Press, 2016.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Kipf, T. N. and Welling, M. Semi-supervised classifica-
tion with graph convolutional networks. arXiv preprint
arXiv:1609.02907, 2016.

Li, X., Qin, T., Yang, J., Hu, X., and Liu, T. Lightrnn:
Memory and computation-efficient recurrent neural net-
works. In Advances in Neural Information Processing
Systems, pp. 4385–4393, 2016.

Maddison, C. J., Mnih, A., and Teh, Y. W. The concrete
distribution: A continuous relaxation of discrete random
variables. arXiv preprint arXiv:1611.00712, 2016.

http://arxiv.org/abs/1711.03067
http://arxiv.org/abs/1711.03067


Learning K-way D-dimensional Discrete Codes for Compact Embedding Representations

Marcus, M. P., Marcinkiewicz, M. A., and Santorini, B.
Building a large annotated corpus of english: The penn
treebank. Computational linguistics, 19(2):313–330,
1993.

Mikolov, T., Karafiát, M., Burget, L., Černockỳ, J., and
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