
Learning to Identify High Betweenness Centrality Nodes from
Scratch: A Novel Graph Neural Network Approach∗

Changjun Fan1,2, Li Zeng1, Yuhui Ding3, Muhao Chen2,4, Yizhou Sun2, Zhong Liu1
1College of Systems Engineering, National University of Defense Technology

2Department of Computer Science, University of California, Los Angeles
3Department of Computer Science and Technology, Tsinghua University

4Department of Computer and Information Science, University of Pennsylvania
{cjfan2017,muhaochen,yzsun}@ucla.edu,{zlli,liuzhong}@nudt.edu.cn,dingyh15@mails.tsinghua.edu.cn

ABSTRACT
Betweenness centrality (BC) is a widely used centralitymeasures for
network analysis, which seeks to describe the importance of nodes
in a network in terms of the fraction of shortest paths that pass
through them. It is key to many valuable applications, including
community detection and network dismantling. Computing BC
scores on large networks is computationally challenging due to
its high time complexity. Many sampling-based approximation
algorithms have been proposed to speed up the estimation of BC.
However, these methods still need considerable long running time
on large-scale networks, and their results are sensitive to even small
perturbation to the networks.

In this paper, we focus on the efficient identification of top-
k nodes with highest BC in a graph, which is an essential task
to many network applications. Different from previous heuristic
methods, we turn this task into a learning problem and design an
encoder-decoder based framework as a solution. Specifically, the
encoder leverages the network structure to represent each node
as an embedding vector, which captures the important structural
information of the node. The decoder transforms each embedding
vector into a scalar, which identifies the relative rank of a node in
terms of its BC. We use the pairwise ranking loss to train the model
to identify the orders of nodes regarding their BC. By training on
small-scale networks, the model is capable of assigning relative
BC scores to nodes for much larger networks, and thus identifying
the highly-ranked nodes. Experiments on both synthetic and real-
world networks demonstrate that, compared to existing baselines,
our model drastically speeds up the prediction without noticeable
sacrifice in accuracy, and even outperforms the state-of-the-arts in
terms of accuracy on several large real-world networks.

CCS CONCEPTS
• Mathematics of computing → Graph algorithms; • Com-
puting methodologies→ Neural networks;

∗This work was done when the first author was a visiting student at UCLA.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CIKM ’19, November 3–7, 2019, Beijing, China
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6976-3/19/11. . . $15.00
https://doi.org/10.1145/3357384.3357979

KEYWORDS
Betweenness Centrality, Learning-to-rank, Graph Neural Network
ACM Reference Format:
Changjun Fan, Li Zeng, Yuhui Ding, Muhao Chen, Yizhou Sun, Zhong Liu.
2019. Learning to Identify High Betweenness Centrality Nodes from Scratch:
A Novel Graph Neural Network Approach. In The 28th ACM International
Conference on Information and KnowledgeManagement (CIKM ’19), November
3–7, 2019, Beijing, China. ACM, New York, NY, USA, 10 pages. https://doi.
org/10.1145/3357384.3357979

1 INTRODUCTION
Betweenness centrality (BC) is a fundamental metric in the field of
network analysis. It measures the significance of nodes in terms of
their connectivity to other nodes via the shortest paths [25]. Numer-
ous applications rely on the computation of BC, including commu-
nity detection [27], network dismantling [6], etc. The best known
algorithm for computing BC exactly is the Brandes algorithm [5],
whose time complexity is O(|V | |E |) on unweighted networks and
O(|V | |E | + |V |2loд |V |) on weighted networks, respectively, where
|V | and |E | denote the numbers of nodes and edges in the net-
work. Recently, extensive efforts have been made to approximation
algorithms for BC [25, 31, 37]. However, the accuracy of these al-
gorithms decreases and the execution time increases considerably
along with the increase in the network size. Moreover, there are
many cases requiring BC to be dynamically maintained [27], where
the network topology keeps changing. In large-scale online systems
such as social networks and p2p networks, the computation of BC
may not finish before the network topology changes again.

In this paper, we focus on identifying nodes with high BC in
large networks. Since in many real-world scenarios, such as net-
work dismantling [19], it is the relative importance of nodes (as
measured by BC), and moreover, the top-N% nodes, that serve as
the key to solving the problem, rather than the exact BC values
[21, 22, 26]. A straightforward way to obtain the top-N% highest
BC nodes is to compute the BC values of all nodes using exact or
approximation algorithms, and then identify top-N% among them.
However, the time complexity of these solutions is unaffordable for
large networks with millions of nodes.

To address this issue, we propose to transform the problem of
identifying high BC nodes into a learning problem. The goal is to
learn an inductive BC-oriented operator that is able to directly map
any network topology into a ranking score vector, where each entry
denotes the ranking score of a node with regard to its BC. Note
that this score does not need to approximate the exact BC value.
Instead, it indicates the relative order of nodes with regard to BC.

ar
X

iv
:1

90
5.

10
41

8v
4

 [
cs

.S
I]

 2
9

A
ug

 2
01

9

https://doi.org/10.1145/3357384.3357979
https://doi.org/10.1145/3357384.3357979
https://doi.org/10.1145/3357384.3357979

We employ an encoder-decoder frameworkwhere the encoder maps
each node to an embedding vector which captures the essential
structural information related to BC computation, and the decoder
maps embedding vectors into BC ranking scores.

One major challenge here is: How can we represent the nodes and
the network? Different network embedding approaches have been
proposed to map the network structure into a low-dimensional
space where the proximity of nodes or edges are captured [17].
These embeddings have been exploited as features for various
downstream prediction tasks, such as multi-label node classifica-
tion [7, 14, 29], link prediction [13, 15] and graph edit distance
computation [2]. Since BC is a measure highly related to the net-
work structure, we propose to design a network embedding model
that can be used to predict BC ranking scores. To the best of our
knowledge, this work represents the first effort for this topic.

We proposeDrBC (Deep ranker forBC), a graph neural network-
based ranking model to identify the high BC nodes. At the encoding
stage, DrBC captures the structural information for each node in
the embedding space. At the decoding stage, it leverages the em-
beddings to compute BC ranking scores which are later used to
find high BC nodes. More specifically, the encoder part is designed
in a neighborhood-aggregation fashion, and the decoder part is
designed as a multi-layer perceptron (MLP). The model parame-
ters are trained in an end-to-end manner, where the training data
consist of different synthetic graphs labeled with ground truth BC
values of all nodes. The learned ranking model can then be applied
to any unseen networks.

We conduct extensive experiments on synthetic networks of
a wide range of sizes and five large real networks from different
domains. The results show DrBC can effectively induce the partial-
order relations of nodes regarding their BC from the embedding
space. Our method achieves at least comparable accuracy on both
synthetic and real-world networks to state-of-the-art sampling-
based baselines, and much better performance than the top-N%
dedicated baselines [4] and traditional node embedding models,
such as Node2Vec [15]. For the running time, our model is far more
efficient than sampling-based baselines, node embedding based
regressors, and is comparable to the top-N% dedicated baselines.

The main contributions of this paper are summarized as follows:

(1) We transform the problem of identifying high BC nodes into
a learning problem, where an inductive embedding model is
learned to capture the structural information of unseen net-
works to provide node-level features that help BC ranking.

(2) We propose a graph neural network based encoder-decoder
model, DrBC, to rank nodes specified by their BC values. The
model first encodes nodes into embedding vectors and then
decodes them into BC ranking scores, which are utilized to
identify the high BC nodes.

(3) We perform extensive experiments on both synthetic and
real-world datasets in different scales and in different do-
mains. Our results demonstrate that DrBC performs on par
with or better than state-of-the-art baselines, while reducing
the execution time significantly.

The rest of the paper is organized as follows. We systematically
review related work in Section 2. After that, we introduce the ar-
chitecture of DrBC in detail in Section 3. Section 4 presents the

evaluation of our model on both synthetic networks and large real-
world networks. We discuss some observations which intuitively
explain why our model works well in section 5. Finally, we conclude
the paper in Section 6.

2 RELATEDWORK
2.1 Computing Betweenness Centrality
Since the time complexity of the exact BC algorithm, Brandes Al-
gorithm [5], is prohibitive for large real-world networks, many
approximation algorithms which trade accuracy for speed have
been developed. A general idea of approximation is to use a subset
of pair dependencies instead of the complete set required by the
exact computation. Riondato and Kornaropoulos [31] introduce
the Vapnik-Chervonenkis (VC) dimension to compute the sam-
ple size that is sufficient to obtain guaranteed approximations of
all nodes’ BC values. To make the approximations correct up to
an additive error λ with probability δ , the number of samples is
c
λ2 (⌊loд(VD − 2)⌋ + 1 + loд 1

δ), where VD denotes the maximum
number of nodes on any shortest path. Riondato and Upfal [32] use
adaptive sampling to obtain the same probabilistic guarantee as
[31] with often smaller sample sizes. Borassi and Natale [4] follow
the idea of adaptive sampling and propose a balanced bidirectional
BFS, reducing the time for each sample from Θ(|E |) to |E |

1
2+O (1).

To identify the top-N% highest BC nodes, both [31] and [32] need
another run of the original algorithm, which is costly on real-world
large networks. Kourtellis et al. [21] introduce a new metric and
show empirically that nodes with high this metric have high BC val-
ues, and then focus on computing this alternative metric efficiently.
Chung and Lee [9] utilizes the novel properties of bi-connected
components to compute BC values of a part of vertices, and employ
an idea of the upper-bounding to compute the relative partial order
of the vertices regarding their BCs. Borassi and Natale [4] propose
a variant for efficiently computing top-N% nodes, which allows
bigger confidence intervals for nodes whose BC values are well
separated. However, as we show in our experiments, these methods
still cannot achieve a satisfactory trade-off between accuracy and
efficiency, which limits their use in practice.

2.2 Network Embedding
Network embedding has recently been studied to characterize a net-
work structure to a low-dimensional space, and use these learned
low-dimensional vectors for various downstream graph mining
tasks, such as node classification and link prediction [15]. Current
embedding-based models share a similar encoder-decoder frame-
work [17], where the encoder part maps nodes to low-dimensional
vectors, and the decoder infers network structural information from
the encoded vectors. Under this framework, there are two main
categories of approaches. The first category is the direct encoding
approach, where the encoder function is just an embedding lookup
function, and the nodes are parameterized as embedding vectors to
be optimized directly. The decoder function is typically based on the
inner product of embeddings, which seeks to obtain deterministic
measures such as network proximity [34] or statistics derived from
random walks [15]. This type of models suffers from several major
limitations. First, it does not consider the node attributes, which
are quite informative in practice. Second, no parameters are shared

across nodes, and the number of parameters necessarily grows as
O(|V |), which is computationally inefficient. Third, it is not able to
handle previously unseen nodes, which prevents their application
on dynamic networks.

To address the above issues, the second category of models have
been proposed, which are known as the neighborhood aggrega-
tion models [16, 20]. For these models, the encoder function is to
iteratively aggregate embedding vectors from the neighborhood,
which are initialized as node feature vectors, and followed by a non-
linear transformation operator. When nodes are not associated with
any attributes, simple network statistics based features are often
adopted, such as node degrees and local clustering coefficients. The
decoder function can either be the same as the ones in the previous
category, or be integrated with task-specific supervisions [8]. This
type of embedding framework turns out to be more effective in
practice, due to its flexibility to incorporate node attributes and
apply deep, nonlinear transformations, and adaptability to down-
stream tasks. In this paper, we follow the neighbor aggregation
model for BC approximation.

Let h(l)v denote the embedding vector for node v at layer l , A typ-
ical neighborhood aggregation function can be defined in two steps:
(a) the aggregation step that aggregates the embedding vectors from
the neighbors ofv at layer l − 1 and (b) the transformation step that
combines the embedding of v in the last layer and the aggregated
neighbor embedding to the embedding of v of the current layer.

h
(l)
N (v) = AGGREGATE({h(l−1)u ,∀u ∈ N (v)}) (1)

h
(l)
v = σ (Wl ·COMBINE(h(l−1)v ,h

(l)
N (v))) (2)

whereN (·) denotes a set of neighboring nodes of a given node,Wl is
a trainable weight matrix of the l−th layer shared by all nodes, and
σ is an activation function, e.g. ReLU. AGGREGATE is a function
that aggregates information from local neighbors, whileCOMBINE
is a function that combines the representation of node v at layer
l − 1, i.e. h(l−1)v , with the aggregated neighborhood representation
at layer l , h(l)N (v). The AGGREGATE function and the COMBINE

function are defined specifically in different models.
Based on the above neighborhood aggregation framework, many

models focus on addressing the following four questions:
• How to define the neighborhood? Some directly use all adja-
cent nodes as neighbors [20], while others just sample some of
them as neighbors [16].

• How to choose the AGGREGATE function? Based on the
definition of neighbors, there are multiple aggregation functions,
such as sum [20], mean [16]. Hamilton et al. [16] introduce some
pooling functions, like LSTM-pooling and max-pooling. Velick-
ovic et al. [35] propose an attention-based model to learn weights
for neighbors and use the weighted summation as the aggrega-
tion.

• How to design the COMBINE function? Summation [20] and
concatenation [16] are two typical functions, and Li et al. [24]
use the Gated Recurrent Units (GRU).

• How tohandle different layers’ representations? Essentially,
deeper models get access to more information. However, in prac-
tice, more layers, even with residual connections, do not perform
better than less layers (2 layers) [20]. Xu et al. [36] point out

that this may be that real-world complex networks possess lo-
cally varying structures. They propose three layer-aggregation
mechanisms: concatenation, max-pooling and LSTM-attention,
to enable adaptive, structure-aware representations.

Nevertheless, these models cannot be directly applied to our prob-
lem. Hence, we carefully design a new embedding function such
that the embeddings can preserve the essential information related
to BC computation.

3 PROPOSED METHOD: DRBC
In this section, we introduce the proposed model, namely DrBC,
for BC ranking. We begin with the preliminaries and notations.
Then we introduce the architecture of DrBC in detail, as well as
its training procedure. Finally, we analyze the time complexity for
training and inference.

3.1 Preliminaries
Betweenness centrality (BC) indicates the importance of individual
nodes based on the fraction of shortest paths that pass through them.
Formally, the normalized BC value b(w) of a nodew is defined:

b(w) = 1
|V |(|V | − 1)

∑
u,w,v

σuv (w)
σuv

(3)

where |V | denotes the number of nodes in the network, σuv denotes
the number of shortest paths from u to v , and σuv (w) denotes the
number of shortest paths from u to v that pass throughw .

The Brandes Algorithm [5] is the asymptotically fastest algo-
rithm for computing the exact BC values of all nodes in a network.
Given three nodes u, v andw , pair dependency, denoted by δuv (w),
and source dependency, denoted by δu �(w), are defined as:

δuv (w) = σuv (w)
σuv

and δu �(w) =
∑
v,w

δuv (w) (4)

With the above notations, Eq. (3) can be equivalently written as:

b(w) = 1
|V |(|V | − 1)

∑
u,w

∑
v,w

δuv (w) = 1
|V |(|V | − 1)

∑
u,w

δu �(w)

(5)
Brandes proves that δu �(w) can be computed as follows:

δu �(w) =
∑

s :w ∈Pu (s)

σuw
σus

· (1 + δu �(s)) (6)

where Pu (s) denotes the predecessors of s in the shortest-path tree
rooted at u. Eq. (6) can be illustrated in Figure 1. The algorithm
performs a two-phase process. The first phase executes a shortest-
path algorithm from u to compute σuv and Pu (v) for all nodes v
withv , u. The second phase performs reversely from the leaves to
the root and uses Eq. (6) to compute δu �(w). The whole process runs
in O(|V | |E |) for unweighted networks and O(|V | |E | + |V |2loд |V |)
for weighted networks, respectively, where |V | and |E | denote the
number of nodes and edges in the network.

3.2 Notations
Let G = (V ,E) be a network with node features (attributes, struc-
tural features or arbitrary constant vectors) Xv ∈ Rc for v ∈ V ,
where c denotes the dimension of input feature vectors, and |V |,
|E | be the number of nodes and edges respectively. h(l)v ∈ Rp (l =

u w
2()u s

1()u s

3()u s

1s

2s

3s

()u w

Figure 1: Illustration of Eq. (6).w lies on shortest paths from
source u to s1, s2 and s3, which are the successors ofw in the
tree rooted at u. The figure is adapted from Figure 1 in [5].

1, 2, ...,L) denotes the embedding of node v at the l−th layer of
the model, where p is the dimension of hidden embeddings, which
we assume to be the same across different layers for the sake of
simplicity. We use [dv , 1, 1] as node v’s initial feature Xv , and let
h
(0)
v = Xv . The neighborhood of node v , N (v), is defined as all the
nodes that are adjacent to v , and h

(l)
N (v) denotes the aggregated

neighborhood representation output by the l−th layer of the model.

3.3 DrBC
We now introduce our model DrBC in detail, which follows an
encoder-decoder framework. Figure 2 illustrates the main archi-
tecture of DrBC. It consists of two components: 1) the encoder
that generates node embeddings, and 2) the decoder that maps the
embeddings to scalars for ranking nodes specified by BC values.

3.3.1 The Encoder. As is indicated in Eq. (6) and Figure 1, com-
puting a node’s exact BC value needs to iteratively aggregate its
neighbors information, which is similar as the neighbor aggrega-
tion schema in graph neural networks. Therefore, we explore to
choose GNNs as the encoder, and its inductive settings enable us to
train on small-scale graphs and test directly on very large networks,
which is the main reason for the efficiency of DrBC. For the specific
design, we consider the following four components:
Neighborhood Definition. According to Eq. (6), the exact compu-
tation of the BC value of a node relies on its immediate neighbors.
Therefore, we include all immediate neighbors of a node for full
exploitation. Note that our model will be trained only on small
networks, and utilizing all adjacent neighbors would not incur
expensive computational burdens.
NeighborhoodAggregation. In Eq. (6), each neighbor is weighted
by the term σuw

σus , where σi j denotes the number of shortest paths
from i to j. As the number of shortest paths between two nodes
is expensive to compute in large networks, we propose to use a
weighted sum aggregator to aggregate neighbors, which is defined
as follows :

h
(l)
N (v) =

∑
j ∈N (v)

1
√
dv + 1 ·

√
dj + 1

h
(l−1)
j (7)

where dv and dj denote the degrees of node v and node j, h(l−1)j
denotes node j’s embedding output by the (l − 1)-th layer of the
model. For the aggregator, the weight here is determined by the

Layer Aggregator: Max Pooling

()L

vh

p

vz R

E
n

c
o

d
e

r
D

e
c

o
d

e
r

GRU

(3) p

vh R

GRU

(2) p

vh R

v

v
y RBC Ranking Score

v

MLP

(3)

()

j

j N v

h

(2)

()

j

j N v

h

(3)

()N v
h

(1)

v
h

(2)

v
h

k

i

k

i

(2)

()N v
h

(2)

vh (3)

vh

Input feature of node
(0)

:
c

v v
v X h R= Input feature of node

(0)
:

c

v v
v X h R=

0w0w

(1)

v

p
h R

(1)

vh

Figure 2: The encoder-decoder framework of DrBC
.

node’s degree, which is both efficient to compute and effective to
describe its topological role in the network. Note that the attention
mechanism [35] can also be used to automatically learn neighbors
weights, which we leave as future work.
COMBINE Function. The COMBINE function deals with the
combination of the neighborhood embedding generated by the
current layer, and the embedding of the node itself generated by the
previous layer. Most existing models explore the forms of sum [20]
and concatenation [16]. Here we propose to use the GRU. Let the
neighborhood embedding h

(l)
N (v) generated by the l-th layer be

the input state, and node v’s embedding h(l−1)v generated by the
(l − 1)-th layer be the hidden state, then the embedding of nodev at
the l-th layer can be written as h(l)v = GRUCell(h

(l−1)
v ,h

(l)
N (v)). The

GRU utilizes the gating mechanism. The update gate ul helps the
model determine how much past information needs to be passed
along to the future, and the reset gate rl determines how much
past information to be forgotten. Specifically, the GRU transition
GRUCell is given as the following:

ul = siдmoid(W1h
(l)
N (v) +U1h

(l−1)
v) (8)

rl = siдmoid(W2h
(l)
N (v) +U2h

(l−1)
v) (9)

fl = tanh(W3h
(l)
N (v) +U3(rl ⊙ h

(l−1)
v)) (10)

h
(l)
v = ul ⊙ fl + (1 − ul) ⊙ h

(l−1)
v (11)

where ⊙ represents the element-wise product.With GRU, ourmodel
can learn to decide how much proportion of the features of distant
neighbors should be incorporated into the local feature of each
node. In comparison with otherCOMBINE functions, GRU offers a
more flexible way for feature selection, and gains a more accurate
BC ranking in our experiments.
Layer Aggregation. As Li et al. [23] point out that each propaga-
tion layer is simply a special form of smoothing which mixes the
features of a node and its nearby neighbors. However, repeating
the same number of iterations (layers) for all nodes would lead
to over-smoothing or under-smoothing for different nodes with
varying local structures. Some nodes with high BC values are lo-
cated in the core part or within a few hops away from the core,
and their neighbors thus can expand to nearly the entire network
within few propagation steps. However, for those with low BC val-
ues, like nodes with degree one, their neighborhoods often cover
much fewer nodes within the same steps. This implies that the
same number of iterations for all nodes may not be reasonable,
and wide-range or small-range propagation combinations based on
local structures may be more desirable. Hence, Xu et al. [36] explore
three layer-aggregation approaches: concatenation, max-pooling
and LSTM-attention respectively. In this paper, we investigate the
max-pooling aggregator, which is defined as an element-wise oper-
ationmax(h(1)v , ...,h

(L)
v) to select the most informative (usingmax

operator) layer for each feature coordinate. This mechanism is adap-
tive and easy to be implemented, and it introduces no additional
parameters to the learning process. In our experiments, we find it
more effective than the other two layer aggregators for BC ranking.
Practically, we set the maximum number of layers to be 5 when
training, and more layers lead to no improvement.

Combining the above four components, we have the following
encoder function:

zv = ENC(A,X ;ΘENC) (12)
where A denotes the adjacency matrix, X denotes node features,
and ΘENC = {W0 ∈ Rc×p ,W1,U1,W2,U2,W3,U3 ∈ Rp×p }. The
detailed encoding process is shown in Algorithm 1.

Algorithm 1 DrBC encoder function
Input: Network G = (V , E); input features {Xv ∈ Rc , ∀v ∈ V }; depth L; weight

matricesW0,W1, U1,W2, U2,W3, U3 .
Output: Vector representations zv , ∀v ∈ V .
1: Initialize h(0)

v = Xv ;
2: h(1)

v = ReLU (W0h
(0)
v), h(1)

v = h
(1)
v /∥h(1)

v ∥2, ∀v ∈ V ;
3: for l = 2 to L do
4: for v ∈ V do
5: h(l)

N (v) =
∑
j∈N (v)

1√
dv +1·

√
dj +1

h(l−1)
j ;

6: h(l)
v = GRUCell (h(l−1)

v , h(l)
N (v));

7: end for
8: h(l)

v = h
(l)
v /∥h(l)

v ∥2, ∀v ∈ V ;
9: end for
10: zv =max (h(1)

v , h(2)
v , ..., h(L)

v), ∀v ∈ V ;

3.3.2 The Decoder. The decoder is implemented with a two-
layered MLP which maps the embedding zv to the approximate BC
ranking score yv :

yv = DEC(zv ;ΘDEC) =W5ReLU (W4zv) (13)

where ΘDEC = {W4 ∈ Rp×q ,W5 ∈ Rq }, p denotes the dimension
of zv , and q is the number of hidden neurons.

3.4 Training Algorithm
There are two sets of parameters to be learned, including ΘENC
and ΘDEC . We use the following pairwise ranking loss to update
these parameters.

Given a node pair (i, j), suppose the ground truth BC values are
bi and bj , respectively, our model predicts two corresponding BC
ranking scores yi and yj . Given bi j ≡ bi − bj , since we seek to
preserve the relative rank order specified by the ground truth, our
model learn to infer yi j ≡ yi − yj based on the following binary
cross-entropy cost function,

Ci, j = −д(bi j) ∗ loдσ (yi j) − (1 − д(bi j)) ∗ loд(1 − σ (yi j)) (14)
where д(x) = 1/(1 + e−x). As such, the training loss is defined as:

Loss =
∑
i, j ∈V

Ci, j (15)

In our experiments, we randomly sample 5|V | source nodes and 5|V |
target nodes with replacement, forming 5|V | random node pairs to
compute the loss. Algorithm 2 describes the training algorithm for
DrBC.

Algorithm 2 Training algorithm for DrBC
Input: Encoder parameters ΘENC = (W0,W1, U1,W2, U2,W3, U3), Decoder pa-

rameters ΘDEC = (W4,W5)
Output: Trained Model M
1: for each episode do
2: Draw network G from distribution D (like the power-law model)
3: Calculate each node’s exact BC value bv , ∀v ∈ V
4: Get each node’s embedding zv , ∀v ∈ V with Algorithm 1
5: Compute BC ranking score yv for each node v with Eq. (13)
6: Sample source nodes and target nodes, and form a batch of node pairs
7: Update Θ = (ΘENC , ΘDEC) with Adam by minimizing Eq. (15)
8: end for

3.5 Complexity Analysis
Training complexity. During training, the time complexity is
proportional to the training iterations, which are hard to be theo-
retically analyzed. Empirically, our model can converge (measured
by validation performance) very quickly, as is shown in Figure 3(A),
and the convergence time seems to increase linearly with the train-
ing scale (Figure 3(B)). It is generally affordable to train the DrBC.
For example, to train a model with a training scale of 4000-5000,
which we utilize in the following experiments, its convergence
time is about 4.5 hours (Figure 3(B), including the time to compute
ground truth BC values for training graphs already). Notably, the
training phase is performed only once here, and we can utilize the
trained model for any input network in the application phase.
Inference complexity. In the application phase, we apply the
trained DrBC for a given network. The time complexity of the
inference process is determined by two parts. The first is from the
encoding phase. As shown in Algorithm 1, the encoding complexity
takesO(L|V |N (·)), where L is the number of propagation steps, and
usually is a small constant (e.g., 5), V is the number of nodes, N (·)
is the average number of node neighbors. In practice, we use the
adjacencymatrix multiplication for Line 4-8 in Algorithm 1, and due

0 1 2 3 4 5 6
Training Iterations / 500

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Va
lid

at
io

n
To

p
1%

 A
cc

ur
ac

y

A

Nodes-100-200
Nodes-200-300
Nodes-300-400
Nodes-400-500
Nodes-1000-1200
Nodes-2000-3000
Nodes-4000-5000

103

Training Size (node number)

103

104

Va
lid

at
io

n
C

on
ve

rg
en

ce
 T

im
e/

s

B

Figure 3: Training analysis of DrBC. (A). DrBC convergence
measured by validation top-1% accuracy. Different lines de-
note different models trained with the corresponding scale.
(B). DrBC convergence time for different training scales. We
report all the time when training iterations reach 2500. The
training size is the same as shown in (A).

to the fact that most real-world networks are sparsely connected,
the adjacency matrix in our setting is processed as a sparse matrix.
As such, the encoding complexity in our implementations turns to
be O(|E |), where E is the number of edges. The second is from the
decoding phase. Once the nodes are encoded, we can compute their
respective BC ranking score, and return the top-k highest BC nodes.
the time complexity of this process mainly comes from the sorting
operation, which takesO(|V |). Therefore, the total time complexity
for the inference phase should be O(|E | + |V | + |V |loд |V |).

4 EXPERIMENTS
In this section, we demonstrate the effectiveness and efficiency
of DrBC on both synthetic and real-world networks. We start by
illustrating the discriminative embeddings generated by different
models. Then we explain experimental settings in detail, including
baselines and datasets. After that, we discuss the results.

4.1 Case Study: Visualization of Embeddings
We employ the 2D PCA projection to visualize the learned embed-
dings to intuitively show that our model preserves the relative BC
order between nodes in the embedding space. For comparison, we
also show the results of the other two traditional node embedding
models, i.e., Node2Vec [15] and GraphWave [10]. Although these
two models are not designed for BC approximation, they can be
used to identify the equivalent structural roles in the network, and
we believe nodes with similar BC values share similar “bridge” roles
that control the information flow on networks. As such, we com-
pare against these two models to see whether they can maintain
BC similarity as well. The example network is generated from the
powerlaw-cluster model [18] (for which we use Networkx 1.11 and
set the number of nodes n = 50 and average degreem = 4). For
Node2Vec, let p = 1, q = 2 to enable it to capture the structural
equivalence among nodes [15]. For GraphWave, we use the default
settings in [10]. As for DrBC, we use the same model tested in
the following experiments. All embedding dimensions are set to
be 128. As is shown in Figure 4, only in (D), the linear separable
portions correspond to clusters of nodes with similar BC, while
the other two both fail to make it. This indicates that DrBC could

generate more discriminative embeddings for BC prediction, which
may provide some intuitions behind its prediction accuracy shown
in the following experiments.

4.2 Experimental Setup
4.2.1 Baseline Methods. We compare DrBC with three approx-
imation algorithms which focus on estimating exact BC values,
i.e., ABRA, RK, k-BC, one approximation which seeks to identify
top-N% highest BC nodes, i.e., KADABRA, and one traditional
node embedding model, Node2Vec. Details of these baselines are
described as follows:

• ABRA [32]. ABRA keeps sampling node pairs until the desired
level of accuracy is reached. We use the parallel implementation
by Riondato and Upfal [32] and Staudt et al. [33]. We set the
error tolerance λ to 0.01 and the probability δ to 0.1, following
the setting in [32].

• RK [31]. RK determines the required sample size based on the
diameter of the network. We adopt the implementation in the
NetworKit library [33]. We set the error tolerance λ to 0.01 and
the probability δ to 0.1.

• k-BC [30]. k-BC bounds the traversals of Brandes algorithm [5]
by k steps. For the value of k , we set it to be 20% of the diameter
of the network.

• KADABRA [4]. KADABRA follows the idea of adaptive sam-
pling and proposes balanced bidirectional BFS to sample the
shortest paths. We use its variant well designed for computing
top-N% highest BC nodes. We set the error tolerance and proba-
bility the same as ABRA and RK.

• Node2Vec [15]. Node2Vec designs a biased random walk proce-
dure to explore a node’s diverse neighbors, and learns each node’s
embedding vector that maximizes the likelihood of preserving
its neighbors. Node2Vec can efficiently learn task-independent
representations which are highly related to the network struc-
ture. In our experiments, we set p=1 and q=2 to enable Node2Vec
to capture the structural equivalence of nodes, since BC can be
viewed as a measure of “bridge“ role on networks. We train a
MLP to map Node2Vec embeddings to BC ranking scores, follow-
ing the same training procedure as Algorithm 2. At the test stage,
this baseline generates Node2Vec embeddings and then applies
the trained MLP to obtain the ranking score for each node.

4.2.2 Datasets. We evaluate the performance of DrBC on both
synthetic networks and large real-world ones. For synthetic net-
works, we generate them with the powerlaw-cluster model [18],
which generates graphs that could capture both powerlaw degree
distribution and small-world phenomenon, and most real-world
networks conform to these two properties. The basic parameters
of this model are average degree m = 4 and the probability of
adding a triangle after adding a random edge p = 0.05. We keep
them the same when generating synthetic graphs with six different
scales: 5000, 10000, 20000, 50000 and 100000. For real-world test
data, we use five large real-world networks provided by AlGhamdi
et al. [1]. Descriptions of these networks are as follows and Table 1
summarizes their statistics.
com-Youtube is a video-sharing web site that includes a social
network. Nodes are users and edges are friendships.

Figure 4: The case network with 50 nodes and 200 edges, nodes with larger BC values having darker colors and larger shapes
(A). 2D PCA projection of embeddings learned by Node2Vec (B), GraphWave (C) and DrBC (D). BC value distribution of the
case network (descending order) (E).

Table 1: Summary of real-world datasets.

Network |V| |E| Average Degree Diameter
com-Youtube 1,134,890 2,987,624 5.27 20
Amazon 2,146,057 5,743,146 5.35 28
Dblp 4,000,148 8,649,011 4.32 50

cit-Patents 3,764,117 16,511,741 8.77 26
com-lj 3,997,962 34,681,189 17.35 17

Amazon is a product network created by crawling the Amazon
online store. Nodes represent products and edges link commonly
co-purchased products.
Dblp is an authorship network extracted from the DBLP computer
science bibliography. Nodes are authors and publications. Each
edge connects an author to one of his publications.
cit-Patents is a citation network of U.S. patents. Nodes are patents
and edges represent citations. In our experiments, we regard it as
an undirected network.
com-lj is a social network where nodes are LiveJournal users and
edges are their friendships.

4.2.3 Ground Truth Computation. We exploit the graph-tool
library [28] to compute the exact BC values for synthetic networks.
For real-world networks, we use the exact BC values reported by Al-
Ghamdi et al. [1], which are computed via a parallel implementation
of Brandes algorithm using a 96,000-core supercomputer.

4.2.4 Evaluation Metrics. For all baseline methods and DrBC,
we report their effectiveness in terms of top-N% accuracy and
kendall tau distance, and their efficiency in terms of wall-clock
running time.
Top-N% accuracy is defined as the percentage of overlap between
the top-N% nodes as returned by an approximation method and the
top-N% nodes as identified by Brandes algorithm (ground truth):

Top-N% = |{returned top-N%nodes} ∩ {true top-N%nodes}|
⌈|V | × N%⌉

Table 2: Hyper-parameter configuration for DrBC.

Hyper-parameter Value Description

learning rate 0.0001 the learning rate used by Adam optimizer
embedding dimension 128 dimension of node embedding vector

mini-batch size 16 size of mini-batch training samples
average node sampling times 5 average sampling times per node for training

maximum episodes 10000 maximum episodes for the training process
layer iterations 5 number of neighborhood-aggregation iterations

where |V | is the number of nodes, and ⌈x⌉ is the ceiling function.
In our paper, we mainly compare top-1%, top-5% and top-10%.
Kendall tau distance is a metric that calculates the number of
disagreements between the rankings of the compared methods.

K(τ1,τ2) =
2(α − β)
n ∗ (n − 1)

where α is the number of concordant pairs, and β is the number of
discordant pairs. The value of kendall tall distance is in the range
[-1, 1], where 1 means that two rankings are in total agreement,
while -1 means that the two rankings are in complete disagreement.
Wall-clock running time is defined as the actual time taken from
the start of a computer program to the end, usually in seconds.

4.2.5 Other Settings. All the experiments are conducted on a
80-core server with 512GB memory, and 8 16GB Tesla V100 GPUs.
Notably, we train DrBC with the GPUs while test it with only CPUs
for a more fair time comparison with the baselines, since most
baselines do not utilize the GPU environment. We generate 10,000
synthetic networks at random for training, and 100 for validation.
We adopt early stopping to choose the best model based on valida-
tion performance. The model is implemented in Tensorflow with
the Adam optimizer, and values of hyper-parameters (Table 2) are
determined according to the performance on the validation set.
The trained model and the implementation codes are released at
https://github.com/FFrankyy/DrBC.

https://github.com/FFrankyy/DrBC

Table 3: Top-N% accuracy (×0.01) on synthetic graphs of different scales. The bold results indicate the best among all methods.
For each scale, we report the mean and standard deviation over 30 tests.

Scale Top-1% Top-5% Top-10%
ABRA RK k-BC KADABRA Node2Vec DrBC ABRA RK k-BC KADABRA Node2Vec DrBC ABRA RK k-BC KADABRA Node2Vec DrBC

5000 97.8±1.597.8±1.597.8±1.5 96.8±1.7 94.1±0.8 76.2±12.5 19.1±4.8 96.5±1.8 96.9±0.796.9±0.796.9±0.7 95.6±0.9 89.3±3.9 68.7±13.4 23.3±3.6 95.9±0.9 96.1±0.796.1±0.796.1±0.7 94.3±0.9 86.7±4.5 67.2±12.5 25.4±3.4 94.8±0.7
10000 97.2±1.297.2±1.297.2±1.2 96.4±1.3 93.3±3.1 74.6±16.5 21.2±4.3 96.7±1.2 95.6±0.895.6±0.895.6±0.8 94.1±0.8 88.4±5.1 70.7±13.8 20.5±2.7 95.0±0.8 94.1±0.694.1±0.694.1±0.6 92.2±0.9 86.0±5.9 67.8±13.0 25.4±3.4 94.0±0.9
20000 96.5±1.096.5±1.096.5±1.0 95.5±1.1 91.6±4.0 74.6±16.7 16.1±3.9 95.6±0.9 93.9±0.893.9±0.893.9±0.8 92.2±0.9 86.9±6.2 69.1±13.5 16.9±2.0 93.0±1.1 92.1±0.892.1±0.892.1±0.8 90.6±0.9 84.5±6.8 66.1±12.4 19.9±1.9 91.9±0.9
50000 94.6±0.794.6±0.794.6±0.7 93.3±0.9 90.1±4.7 73.8±14.9 9.6±1.3 92.5±1.2 90.1±0.890.1±0.890.1±0.8 88.0±0.8 84.4±7.2 65.8±11.7 13.8±1.0 89.2±1.1 87.4±0.9 88.2±0.588.2±0.588.2±0.5 82.1±8.0 61.3±10.4 18.0±1.2 87.9±1.0
100000 92.2±0.892.2±0.892.2±0.8 91.5±0.8 88.6±4.7 67.0±12.4 9.6±1.3 90.3±0.9 85.6±1.1 87.6±0.587.6±0.587.6±0.5 82.4±7.5 57.0±9.4 12.9±1.2 86.2±0.9 81.8±1.5 87.4±0.487.4±0.487.4±0.4 80.1±8.2 52.4±8.2 17.3±1.3 85.0±0.9

Table 4: Kendall tau distance (×0.01) on synthetic graphs.
(Since KADABRA only outputs the top-N% nodes, we can-
not obtain the kendall tau distance for the overall ranking
list.)

Scale
Kendal Method

ABRA RK k-BC KADABRA Node2Vec DrBC

5000 86.6±1.0 78.6±0.6 66.2±11.4 NA 11.3±3.0 88.4±0.388.4±0.388.4±0.3
10000 81.6±1.2 72.3±0.6 67.2±13.5 NA 8.5±2.3 86.8±0.486.8±0.486.8±0.4
20000 76.9±1.5 65.5±1.2 67.1±14.3 NA 7.5±2.2 84.0±0.584.0±0.584.0±0.5
50000 68.2±1.3 53.3±1.4 66.2±14.1 NA 7.1±1.8 80.1±0.580.1±0.580.1±0.5
100000 60.3±1.9 44.2±0.2 64.9±13.5 NA 7.1±1.9 77.8±0.477.8±0.477.8±0.4

Table 5: Running time comparison on synthetic networks.

Scale
Time/s Method

ABRA RK k-BC KADABRA Node2Vec DrBC

5000 18.5±3.6 17.1±3.0 12.2±6.3 0.6±0.1 32.4±3.8 0.3±0.00.3±0.00.3±0.0
10000 29.2±4.8 21.0±3.6 47.2±27.3 1.0±0.2 73.1±7.0 0.6±0.00.6±0.00.6±0.0
20000 52.7±8.1 43.0±3.2 176.4±105.1 1.6±0.3 129.3±17.6 1.4±0.01.4±0.01.4±0.0
50000 168.3±23.8 131.4±2.0 935.1±505.9 3.9±1.0 263.2±46.6 3.9±0.23.9±0.23.9±0.2
100000 380.3±63.7 363.4±36.3 3069.2±1378.5 7.2±1.87.2±1.87.2±1.8 416.2±37.0 8.2±0.3

Table 6: DrBC’s generalization results on different scales
(Top-1% accuracy, ×0.01).

Train

Accuracy Test
5000 10000 20000 50000 100000

100_200 90.5±2.9 88.3±2.1 85.5±1.9 83.9±1.1 82.2±0.9
200_300 92.5±2.7 90.0±2.2 87.0±2.1 84.8±1.1 82.9±0.9
1000_1200 94.3±2.2 90.6±1.7 87.8±1.9 85.1±1.1 83.1±0.9
2000_3000 95.7±1.8 93.5±1.7 90.7±1.6 87.8±1.1 85.9±0.7
4000_5000 96.5±1.896.5±1.896.5±1.8 96.7±1.296.7±1.296.7±1.2 95.6±0.995.6±0.995.6±0.9 92.5±1.292.5±1.292.5±1.2 90.3±0.990.3±0.990.3±0.9

4.3 Results on Synthetic Networks
We report the top-N% (1,5,10) accuracy, kendall tau distance and
running time of baselines and DrBC on synthetic networks with
different scales, as shown in Table 3, 4 and 5. For each scale, we
generate 30 networks at random for testing and report the mean
and standard deviation. For ABRA, RK and KADABRA, we indepen-
dantly run 5 times each on all the test graphs. The DrBC model is
trained on powerlaw-cluster graphs with node sizes in 4000-5000.

We can see from Table 3, 4 and 5 that, DrBC achieves competitive
top-N% accuracy compared with the best approximation results,
and outperforms all baselines in terms of the kendall tau distance.
Running time comparison shows the obvious efficiency advantage.
Take graphs with size 100000 as an example, although DrBC sacri-
fices about 2% loss in top-1% accuracy compared with the best result

Table 7: DrBC’s generalization results on different scales
(kendall tau distance, ×0.01).

Train

Kendal Test
5000 10000 20000 50000 100000

100_200 43.6±1.0 40.1±0.6 37.5±0.5 35.2±0.3 33.9±0.2
200_300 42.7±0.8 39.5±0.5 37.1±0.5 35.0±0.3 33.9±0.2
1000_1200 56.4±0.6 42.7±0.4 36.0±0.4 31.7±0.3 29.8±0.2
2000_3000 86.1±0.3 78.1±0.5 69.9±0.6 62.3±0.5 59.1±0.3
4000_5000 88.4±0.388.4±0.388.4±0.3 86.8±0.486.8±0.486.8±0.4 84.0±0.584.0±0.584.0±0.5 80.1±0.580.1±0.580.1±0.5 77.8±0.477.8±0.477.8±0.4

(ABRA), it is over 46 times faster. It is noteworthy that we do not
consider the training time here. Since none of the approximation
algorithms requires training, it may cause some unfair comparison.
However, considering that DrBC only needs to be trained once
offline and can then generalize to any unseen network, it is reason-
able not to consider the training time in comparison. As analyzed
in section 3.5, DrBC can converge rapidly, resulting in acceptable
training time, e.g., it takes about 4.5 hours to train and select the
model used in this paper.

Overall, ABRA achieves the highest top-N% accuracy, and RK
is very close to ABRA in accuracy and time, while k-BC is far
worse in terms of both effectiveness and efficiency. KADABRA
is designed to identify the top-N% highest BC nodes, so it only
outputs the top-N% nodes, making it impossible to calculate the
kendall tau distance for the whole ranking list. We can see from
Table 5 that KADABRA is very efficient, which is close to DrBC,
however, its high efficiency sacrifices too much accuracy, over
20% lower than DrBC on average. We also observe that Node2Vec
performs very poor in this task, which may due to that Node2Vec
learns task-independent representations which only capture nodes’
local structural information, while BC is a measure highly related
to the global. In our model, we train it in an end-to-end manner,
enabling the ground truth BC relative order to shape the learned
representations. Experiments demonstrate that learning in this
way can capture better informative features related to BC. For the
kendall tau distance metric which measures the quality of the whole
ranking list, DrBC performs significantly better than the other
baselines. This is because DrBC learns to maintain the relative order
between nodes specified by true BC values, while other baselines
either focus on approximating exact BC values or seek to identify
the top-N% highest BC nodes.

The inductive setting of DrBC enables us to train and test our
model on networks of different scales, since the model’s parameters
are independent of the network scale. Table 3 and 4 have already

Table 8: Top-N% accuracy (×0.01) and running time on large real-world networks. *result is adopted from [1], since RK can not
finish within the acceptable time. The bold results indicate the best performance of the network under the current metric.

Network Top-1% Top-5% Top-10% Time/s
ABRA RK KADABRA Node2Vec DrBC ABRA RK KADABRA Node2Vec DrBC ABRA RK KADABRA Node2Vec DrBC ABRA RK KADABRA Node2Vec DrBC

com-youtube 95.795.795.7 76.0 57.5 12.3 73.6 91.291.291.2 75.8 47.3 18.9 66.7 89.5 100.0100.0100.0 44.6 23.6 69.5 72898.7 125651.2 116.1116.1116.1 4729.8 402.9
amazon 69.2 86.0 47.6 16.7 86.286.286.2 58.0 59.4 56.0 23.2 79.779.779.7 60.3 100.0100.0100.0 56.7 26.6 76.9 5402.3 149680.6 244.7244.7244.7 10679.0 449.8
Dblp 49.7 NA 35.2 11.5 78.978.978.9 45.5 NA 42.6 20.2 72.072.072.0 100.0100.0100.0 NA 50.4 27.7 72.5 11591.5 NA 398.1398.1398.1 17446.9 566.7

cit-Patents 37.0 74.474.474.4 23.4 0.04 48.3 42.4 68.268.268.2 25.1 0.29 57.5 50.9 53.5 21.6 0.99 64.164.164.1 10704.6 252028.5 568.0568.0568.0 11729.1 744.1
com-lj 60.0 54.2* 31.9 3.9 67.267.267.2 56.9 NA 39.5 10.35 72.672.672.6 63.6 NA 47.6 15.4 74.874.874.8 34309.6 NA 612.9612.9612.9 18253.6 2274.2

Table 9: Kendall tau distance (×0.01) on real-world networks.
(Since KADABRA only outputs top-N% nodes, we cannot ob-
tain the kendall tau distance for the overall ranking list.
RK did not finish on Dblp and com-lj within the acceptable
time.)

Network

kendall tau Method
ABRA RK KADABRA Node2Vec DrBC

com-youtube 56.2 13.9 NA 46.2 57.357.357.3
amazon 16.3 9.7 NA 44.7 69.369.369.3
Dblp 14.3 NA NA 49.5 71.971.971.9

cit-Patents 17.3 15.3 NA 4.0 72.672.672.6
com-lj 22.8 NA NA 35.1 71.371.371.3

verified that our model can generalize to larger graphs than what
they are trained on. Here we show the model’s full generalizability
by training on different scales and compare the generalizability for
each scale. As is shown in Table 6 and 7 which illustrate results of
top-1% accuracy and kendall tau distance, the model can general-
ize well on larger graphs for each scale, and it seems that model
trained on larger scales can achieve better generalization results.
The intuition behind is that larger scale graphs represent more
difficult samples, making the learned model more generalizable.
This observation may inspire us to train on larger scales to improve
the performance on very large real-world networks. In this paper,
we just use the model trained with node sizes in 4000-5000 and test
on the following five large real-world networks.

4.4 Results on Real-world Networks
In section 4.3, we test DrBC on synthetic graphs generated from
the same model as it is trained on, and we have observed it can gen-
eralize well on those larger than the training scale. In this section,
we test DrBC on different large-scale real-world networks to see
whether it is still generalizable in practice.

We compare top-N% accuracy, kendall tau distance and running
time in Table 8 and 9. Since k-BC cannot obtain results within the
acceptable time on these networks, we do not compare against it
here. RK cannot finish within 3 days for Dblp and com-lj, so we just
use its top-1% accuracy on com-lj reported in [1]. Due to the time
limits, for ABRA and RK, we only run once on each network. For
KADABRA and DrBC, we independently run five times for each
network and report the averaged accuracy and time.

We can see in Table 8 that different methods perform with a
large variance on different networks. Take ABRA as an example,
it can achieve 95.7% top 1% accuracy on com-youtube, while only

Table 10: Effect of different training graph types on syn-
thetic graphs (%). For each type, node sizes of the training
graphs and test graphs both lie between 100-200. We report
the mean and standard deviations over 100 tests.

Train

Top-1% Test
ER BA PL-cluster

ER 87.0±33.687.0±33.687.0±33.6 82.0±38.4 84.0±36.7
BA 62.5±48.2 93.0±25.5 93.0±25.5

PL-cluster 73.5±43.9 96.0±19.696.0±19.696.0±19.6 96.0±19.696.0±19.696.0±19.6

Table 11: Effect of different training graph types on real net-
works (%).

Train

Top-1% Test
com-youtube amazon Dblp cit-Patents com-lj

ER 66.58 73.88 64.82 38.51 54.26
BA 72.92 70.89 73.87 35.56 55.08

PL-cluster 73.6073.6073.60 86.1586.1586.15 78.9278.9278.92 48.3148.3148.31 67.1767.1767.17

37.0% on cit-Patents. It seems that no method can achieve consistent
overwhelming accuracy than others. However, if we consider the
trade-off between accuracy and efficiency, our model performs the
best, especially for the latter, which is several orders of magnitude
faster than ABRA and RK. Besides efficiency, DrBC actually per-
forms on par with or better than these approximation algorithms
in terms of accuracy. Specifically, DrBC achieves the best top-1%
and top-5% accuracy in three out of the five networks. KADABRA
is the most efficient one, while accompanied by too much accuracy
loss. Node2Vec performs the worst, with the worst accuracy and
relatively longer running time. In terms of the kendall tau distance,
DrBC consistently performs the best among all methods (Table 9).

5 DISCUSSION
In this section, we discuss the potential reasons behind DrBC’s
success. Since it’s hard to prove GNN’s theoretical approximation
bound, we explain by giving the following observations:

(1) The exact BC computation method, i.e. Brandes algorithm,
inherently follows a similar neighbor aggregation schema (Eq. (6))
as our encoder, despite that their neighbors are on the shortest
paths. We believe this common trait enables our model to capture
characteristics that are essential to BC computation;

(2) Our model limits graph exploration to a neighborhood of L-
hops around each node, where L denotes iterations of neighbor ag-
gregation. The idea of using the L-hop sub-structure to approximate

exact BC values is the basis of many existing BC approximation
algorithms, such as EGO [12] and κ-path [21].

(3) We train the model in an end-to-end manner with exact BC
values as the ground truth. Like other successful deep learning
applications on images or texts, if given enough training samples
with ground truth, the model is expected to be able to learn well.

(4) The model is trained on synthetic graphs from the powerlaw-
cluster (PL-cluster) model, which possesses the characteristics of
power-law degree distribution and small-world phenomenon (large
clustering coefficient), both of which appear in most real-world
networks. In Table 10, we train DrBC on Erdős-Rényi (ER) [11],
Barabási-Albert (BA) [3] and PL-cluster [18] graphs, and test each
on different types. The results show that DrBC always performs
the best when the training type is the same as the testing type,
and the PL-cluster training type enables better generalizations for
DrBC over the other two types. Table 11 further confirms this
conclusion on real-world networks.

6 CONCLUSION AND FUTUREWORK
In this paper, we for the first time investigate the power of graph
neural networks in identifying high betweenness centrality nodes,
which is a traditional but significant problem essential to many
applications but often computationally prohibitive on large net-
works with millions of nodes. Our model is constituted with a
neighborhood-aggregation encoder and a multi-layer perceptron
decoder, and naturally applies to inductive settings where training
and testing are independent. Extensive experiments on both syn-
thetic graphs and large real-world networks show that our model
can achieve very competitive accuracy while possessing a huge
advantage in terms of running time. Notably, the presented results
also highlight the importance of classical network models, such
as the powerlaw-cluster model. Though extremely simple, it cap-
tures the key features, i.e., degree heterogeneity and small-world
phenomenon, of many real-world networks. This tends out to be
extremely important to train a deep learning model to solve very
challenging problems on complex real networks.

There are several future directions for this work, such as ex-
ploring theorectical guarantees, applying it to some BC-related
downstream applications (e.g. community detection and network
attack) and extending the framework to approximate other network
structural measures.

ACKNOWLEDGMENTS
This work is partially supported by the China Scholarship Council
(CSC), NSF III-1705169, NSF CAREER Award 1741634, Amazon
Research Award, and NSFC-71701205.

REFERENCES
[1] Ziyad AlGhamdi, Fuad Jamour, Spiros Skiadopoulos, and Panos Kalnis. 2017. A

benchmark for betweenness centrality approximation algorithms on large graphs.
In SSDBM. 6.

[2] Yunsheng Bai, Hao Ding, Song Bian, Yizhou Sun, and Wei Wang. 2018. Graph
Edit Distance Computation via Graph Neural Networks. arXiv preprint
arXiv:1808.05689 (2018).

[3] Albert-László Barabási and Réka Albert. 1999. Emergence of scaling in random
networks. science 286, 5439 (1999), 509–512.

[4] Michele Borassi and Emanuele Natale. 2016. KADABRA is an ADaptive Algorithm
for Betweenness via Random Approximation. In ESA.

[5] Ulrik Brandes. 2001. A faster algorithm for betweenness centrality. Journal of
mathematical sociology 25, 2 (2001), 163–177.

[6] Alfredo Braunstein, Luca DallâĂŹAsta, Guilhem Semerjian, and Lenka Zdeborová.
2016. Network dismantling. PNAS 113, 44 (2016).

[7] Haochen Chen, Xiaofei Sun, Yingtao Tian, et al. 2018. Enhanced Network Em-
beddings via Exploiting Edge Labels. In CIKM.

[8] Ting Chen and Yizhou Sun. 2017. Task-guided and path-augmented heteroge-
neous network embedding for author identification. In WSDM.

[9] Chin-Wan Chung and Min-joong Lee. 2014. Finding k-highest betweenness
centrality vertices in graphs. In 23rd International World Wide Web Conference.
International World Wide Web Conference Committee, 339–340.

[10] Claire Donnat, Marinka Zitnik, David Hallac, and Jure Leskovec. 2018. Learning
Structural Node Embeddings via Diffusion Wavelets. (2018).

[11] P Erdős and A Rényi. 1959. On random graphs I. Publ. Math. Debrecen 6 (1959).
[12] Martin Everett and Stephen P Borgatti. 2005. Ego network betweenness. Social

networks 27, 1 (2005), 31–38.
[13] Changjun Fan, Zhong Liu, Xin Lu, Baoxin Xiu, and Qing Chen. 2017. An efficient

link prediction index for complex military organization. Physica A: Statistical
Mechanics and its Applications 469 (2017), 572–587.

[14] Changjun Fan, Kaiming Xiao, Baoxin Xiu, and Guodong Lv. 2014. A fuzzy
clustering algorithm to detect criminals without prior information. In Proceedings
of the 2014 IEEE/ACM International Conference on Advances in Social Networks
Analysis and Mining. IEEE Press, 238–243.

[15] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for
networks. In KDD.

[16] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In NIPS.

[17] William L Hamilton, Rex Ying, and Jure Leskovec. 2017. Representation learning
on graphs: Methods and applications. arXiv (2017).

[18] Petter Holme and Beom Jun Kim. 2002. Growing scale-free networks with tunable
clustering. Physical review E 65, 2 (2002), 026107.

[19] Petter Holme, Beom Jun Kim, Chang No Yoon, and Seung Kee Han. 2002. Attack
vulnerability of complex networks. Physical review E 65, 5 (2002), 056109.

[20] Thomas N Kipf and MaxWelling. 2017. Semi-supervised classification with graph
convolutional networks. In ICLR.

[21] Nicolas Kourtellis, Tharaka Alahakoon, Ramanuja Simha, Adriana Iamnitchi, and
Rahul Tripathi. 2013. Identifying high betweenness centrality nodes in large
social networks. Social Network Analysis and Mining 3, 4 (2013).

[22] Alok Gautam Kumbhare, Marc Frincu, Cauligi S Raghavendra, and Viktor K
Prasanna. 2014. Efficient extraction of high centrality vertices in distributed
graphs. In HPEC. IEEE, 1–7.

[23] Qimai Li, Zhichao Han, and Xiao-Ming Wu. 2018. Deeper Insights into Graph
Convolutional Networks for Semi-Supervised Learning. arXiv (2018).

[24] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. 2016. Gated
graph sequence neural networks. In ICLR.

[25] Ahmad Mahmoody, Charalampos E Tsourakakis, and Eli Upfal. 2016. Scalable
betweenness centrality maximization via sampling. In KDD.

[26] Hamidreza Mahyar, Rouzbeh Hasheminezhad, Elahe Ghalebi, Ali Nazemian, Radu
Grosu, Ali Movaghar, and Hamid R Rabiee. 2018. Compressive sensing of high
betweenness centrality nodes in networks. Physica A: Statistical Mechanics and
its Applications 497 (2018), 166–184.

[27] Mark EJ Newman. 2006. Modularity and community structure in networks. PNAS
103, 23 (2006).

[28] Tiago P Peixoto. 2014. The graph-tool python library. figshare (2014).
[29] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning

of social representations. In KDD.
[30] Jürgen Pfeffer and Kathleen M Carley. 2012. k-centralities: Local approximations

of global measures based on shortest paths. In WWW.
[31] Matteo Riondato and Evgenios M Kornaropoulos. 2016. Fast approximation of

betweenness centrality through sampling. DMKD 30, 2 (2016).
[32] Matteo Riondato and Eli Upfal. 2018. ABRA: Approximating betweenness cen-

trality in static and dynamic graphs with rademacher averages. TKDD 12, 5
(2018).

[33] Christian L Staudt, Aleksejs Sazonovs, and Henning Meyerhenke. 2016. Net-
worKit: A tool suite for large-scale complex network analysis. Network Science 4,
4 (2016), 508–530.

[34] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.
2015. Line: Large-scale information network embedding. In WWW.

[35] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2018. Graph attention networks. In ICLR.

[36] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi
Kawarabayashi, and Stefanie Jegelka. 2018. Representation Learning on Graphs
with Jumping Knowledge Networks. In ICML.

[37] Yuichi Yoshida. 2014. Almost linear-time algorithms for adaptive betweenness
centrality using hypergraph sketches. In KDD.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Computing Betweenness Centrality
	2.2 Network Embedding

	3 Proposed Method: DrBC
	3.1 Preliminaries
	3.2 Notations
	3.3 DrBC
	3.4 Training Algorithm
	3.5 Complexity Analysis

	4 Experiments
	4.1 Case Study: Visualization of Embeddings
	4.2 Experimental Setup
	4.3 Results on Synthetic Networks
	4.4 Results on Real-world Networks

	5 Discussion
	6 Conclusion and Future Work
	Acknowledgments
	References

