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Abstract

Graph similarity computation is one of the core operations
in many graph-based applications, such as graph similarity
search, graph database analysis, graph clustering, etc. Since
computing the exact distance/similarity between two graphs
is typically NP-hard, a series of approximate methods have
been proposed with a trade-off between accuracy and speed.
Recently, several data-driven approaches based on neural net-
works have been proposed, most of which model the graph-
graph similarity as the inner product of their graph-level rep-
resentations, with different techniques proposed for gener-
ating one embedding per graph. However, using one fixed-
dimensional embedding per graph may fail to fully capture
graphs in varying sizes and link structures—a limitation that
is especially problematic for the task of graph similarity com-
putation, where the goal is to find the fine-grained difference
between two graphs. In this paper, we address the problem
of graph similarity computation from another perspective,
by directly matching two sets of node embeddings without
the need to use fixed-dimensional vectors to represent whole
graphs for their similarity computation. The model, GRAPH-
SIM, achieves the state-of-the-art performance on four real-
world graph datasets under six out of eight settings (here we
count a specific dataset and metric combination as one set-
ting), compared to existing popular methods for approximate
Graph Edit Distance (GED) and Maximum Common Sub-
graph (MCS) computation.

1 Introduction
Recent years we have witnessed the growing importance of
graph-based applications in the domains of chemistry, bioin-
formatics, recommender systems, social network study, static
program analysis, etc. One of the fundamental problems re-
lated to graphs is the computation of distance/similarity be-
tween two graphs. It not only is a core operation in graph sim-
ilarity search and graph database analysis (Zeng et al. 2009;
Wang et al. 2012), but also plays a significant role in a wide
range of applications. For example, in computer security,
similarity between binary functions is useful for plagiarism
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and malware detection (Xu et al. 2017); in anomaly detec-
tion, similarity between communication graphs could help
identify network intrusions from the graph-based connection
records (Noble and Cook 2003); in social network analy-
sis, similarity between different user message graphs may
reveal interesting behavioral patterns (Koutra, Vogelstein,
and Faloutsos 2013).

Among various definitions of graph similarity/distance,
Graph Edit Distance (GED) (Bunke 1983) and Maximum
Common Subgraph (MCS) (Bunke and Shearer 1998) are two
popular and domain-agnostic metrics. However, the compu-
tation of exact GED and MCS is known to be NP-hard (Zeng
et al. 2009; Bunke and Shearer 1998), incurring significant
computational burden in practice (Blumenthal and Gamper
2018). For example, a recent study shows that even the state-
of-the-art algorithms cannot reliably compute the exact GED
between graphs of more than 16 nodes within a reasonable
time (Blumenthal and Gamper 2018).

Given the great significance yet huge challenge of com-
puting the exact graph distance/similarity, various approxi-
mate algorithms have been proposed to compute the graph
distance/similarity in a fast but heuristic way, including tra-
ditional algorithmic approaches (Riesen and Bunke 2009;
Fankhauser, Riesen, and Bunke 2011; Daller et al. 2018)
as well as more recent data-driven neural network ap-
proaches (Riba et al. 2018; Ktena et al. 2017; Bai et al. 2019;
Li et al. 2019).

Compared with traditional algorithmic approaches which
typically involve knowledge and heuristics specific to a met-
ric, the neural network approaches learn graph similarity
from data: During training, the parameters are learned by
minimizing the loss between the predicted similarity scores
and the ground truth; during testing, unseen pairs of graphs
can be fed into these models for fast approximation of their
similarities.

However, a major limitation of most current neural network
models is that they rely on graph-level embeddings to model
the similarity of graphs: Each graph is first represented as
a fixed-length vector, and then the similarity of two graphs
can be modeled as a vector operation on the two embeddings,
e.g. cosine similarity. However, real-world graphs typically
come in very different sizes, which the fixed-length vector



representation may fail to fully capture. Even when the two
graphs of interest are similar in sizes, the actual difference
between them can lie in very small local substructures, which
is hard to be captured by the single vector. This is especially
problematic for the task of graph similarity computation,
where the goal is to compare the difference between all nodes
and edges of the two graphs. For simple or regular graphs, this
approach may work well, but for more complicated scenarios
in which graphs are of very different structures and/or the task
is to find the fine-grained node-node correspondence (Zanfir
and Sminchisescu 2018), this approach often produces less
effective models.

In this paper, we propose to avoid the generation of
graph-level embeddings, and instead directly perform neu-
ral operations on the two sets of node embeddings. In-
spired by two classic families of algorithms for graph simi-
larity/distance (Nikolentzos, Meladianos, and Vazirgiannis
2017; Riesen and Bunke 2009; Fankhauser, Riesen, and
Bunke 2011), our model GRAPHSIM turns the two sets of
node embeddings into a similarity matrix consisting of the
pairwise node-node similarity scores, and is trained in an
end-to-end fashion (Fig. 2). By carefully ordering the nodes
in each graph, the similarity matrix encodes the similarity
patterns specific to the graph pair, which allows the stan-
dard image processing techniques to be adapted to model
the graph-graph similarity. The new challenges in the graph
setting compared to the standard image processing using
Convolutional Neural Networks (CNN) are that:

• Permutation invariance. The same graph can be repre-
sented by different adjacency matrices by permuting the
order of nodes, and the model should not be sensitive to
such permutation.

• Spatial locality preservation. CNN architectures assume
the input data has spatial locality, i.e, close-by data
points are more similar to each other. How to make our
embedding-based similarity matrix preserve such spatial
locality is important.

• Graph size invariance. The CNN architecture requires
fixed-length input. How to handle graphs with different
sizes is another question to address.

• Multi-scale comparison. Finally, graphs naturally contain
patterns of different scales that may be unknown in ad-
vance. The algorithm should be able to capture and lever-
age structural information and features of multiple granu-
larities.

To tackle these challenges, we propose GRAPHSIM, which
addresses the graph similarity computation task in a novel
way by direct usage of node-level embeddings via pairwise
node-node similarity scores. We show that GRAPHSIM can
be combined with various node embedding approaches, im-
proving performance on four graph similarity computation
datasets under six out of eight settings. Finally, we show that
GRAPHSIM can learn interpretable similarity patterns that
exist in the input graph pairs.

2 Related Work
Graph Representation Learning Over the years, there
have been a great number of works dealing with the repre-
sentation of nodes (Hamilton, Ying, and Leskovec 2017),
and graphs (Ying et al. 2018). Among the node embed-
ding methods, neighbor aggregation based methods, e.g.
GCN (Kipf and Welling 2016), GraphSAGE (Hamilton,
Ying, and Leskovec 2017), GIN (Xu et al. 2019), etc., are
permutation-invariant, and have gained a lot of attention.

Neural network based methods have been used in a broad
range of graph applications, most of which are framed as
node-level prediction tasks (Hamilton et al. 2018) or sin-
gle graph classification (Ying et al. 2018). In this work, we
consider the task of graph similarity computation, which is
under the general problem of graph matching (Emmert-Streib,
Dehmer, and Shi 2016).

Text and Graph Matching with Neural Networks Text
matching has a long history with many successful appli-
cations (Mitra, Diaz, and Craswell 2017). Among various
methods for text matching, promising results in matching
sequences of word embeddings (He and Lin 2016) inspire
us to explore the potential of using node embeddings for the
task of graph matching directly without graph-level repre-
sentations. In contrast, neural network based graph matching
remains largely unexplored, and most existing works still rely
on first generating one embedding per graph using graph neu-
ral networks, and then modeling the graph-graph similarity
using the two graph-level representations.

We examine several existing works on similarity computa-
tion for graphs: (1) SIAMESE MPNN (SMPNN) (Riba et al.
2018) is an early work that models the similarity as a simple
summation of certain node-node similarity scores. (2) GC-
NMEAN and GCNMAX (Ktena et al. 2017) apply the GCN
architectures with graph coarsening (Defferrard, Bresson, and
Vandergheynst 2016) to generate graph-level embeddings for
the similarity. (3) SIMGNN (Bai et al. 2019) attempts to use
node-node similarity scores by taking their histogram fea-
tures, but still largely relies on the graph-level embeddings
due to the histogram function being non-differentiable. (4)
GMN (Li et al. 2019) is a recent work which manages to
introduce node-node similarity information into graph-level
embeddings via a cross-graph attention mechanism, but the
cross-graph communication only updates the node embed-
dings, and still generates one embedding per graph from the
updated node embeddings.

3 Problem Definition
Graphs are data structures with a node set V and a edge set
E , G = (V, E), where E ⊆ V × V . The number of nodes
of V is denoted as N = |V|. Each node and edge can be
associated with labels, such as atom and chemical bond type
in a molecular graph. In this study, we confine our graphs as
undirected and unweighted graphs, but it is not hard to extend
GRAPHSIM to other types of graphs, since GRAPHSIM is a
general framework for graph similarity computation.

Given two graphs G1 and G2, different distance/similarity
metrics can be defined.

Graph Edit Distance (GED) The edit distance between
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Figure 1: The GED is 3, as the transformation needs 3 edit
operations: Two edge deletions, and an edge insertion. The
MCS size is 4.

two graphs G1 and G2 is the number of edit operations in
the optimal alignments that transform G1 into G2, where an
edit operation on a graph G is an insertion or deletion of
a node/edge or relabelling of a node 1. We transform GED
into a similarity metric ranging between 0 and 1 using a
one-to-one mapping function.

Maximum Common Subgraph (MCS) A Maximum
Common Subgraph of two graphs G1 and G2 is a subgraph
common to both G1 and G2 such that there is no other sub-
graph of G1 and G2 with more nodes. The MCS definitions
have two variants (Raymond and Willett 2002): In one defini-
tion, the MCS must be a connected graph; in the other, the
MCS can be disconnected. In this paper, we adopt the former
definition. For G1 and G2, their similarity score is defined as
the number of nodes in their MCS, i.e. |MCS(G1,G2)|.

Learning-based Graph Similarity Computation
Given a graph similarity definition, our goal is to learn a
neural network based function that takes two graphs as input
and outputs the desired similarity score through training,
which can be applied to any unseen graphs for similarity
computation at the test stage.

In later sections, we will introduce how to design a neural
network architecture to serve this purpose, and why such de-
sign is reasonable by providing connections to set matching.

4 The Proposed Approach: GRAPHSIM
GRAPHSIM consists of the following sequential stages: 1)
Multi-scale neighbor aggregation layers generate vector rep-
resentations for each node in the two graphs at different
scales; 2) Similarity matrix generation layers compute the in-
ner products between the embeddings of every pair of nodes
in the two graphs, resulting in multiple similarity matrices
capturing the node-node interaction scores at different scales;
3) CNN layers convert the similarity computation problem
into a pattern recognition problem, which provides multi-
scale features to a fully connected network to obtain a final
predicted graph-graph similarity score. An overview of our
model is illustrated in Fig. 2.

Multi-Scale Neighbor Aggregation
We build upon an active line of research on graph neural
networks for generating node representations. Graph Con-
volutional Networks (GCN) (Defferrard, Bresson, and Van-
dergheynst 2016; Kipf and Welling 2016), for example, is

1Other variants of GED definitions exist (Riesen, Emmenegger,
and Bunke 2013), and we adopt this basic version for each in this
work.

a neighbor aggregation approach which generates node em-
beddings from the local substructure information of each
node, which is an inductive method and can be applied to
unseen nodes. In Fig. 2, different node types are represented
by different colors and one-hot encoded as the initial node
representation. For graphs with unlabeled nodes, we use the
same constant vector as the initial representation.

The core operation, graph convolution, operates on the
representation of a node, which is denoted as ui ∈ RD, and
is defined as follows:

conv(ui) = ReLU(
∑

j∈N (i)

1√
didj

ujW
(n) + b(n)) (1)

where N (i) is the set of the first-order neighbors of node
i plus i itself, di is the degree of node i plus 1, W (n) ∈
RD(n)×D(n+1)

is the weight matrix of the n-th GCN layer,
b(n) ∈ RD(n+1)

is the bias, D(n) denotes the dimensionality
of embedding vector at layer n, and ReLU(x) = max(0, x)
is the activation function.

Intuitively, the graph convolution operation aggregates the
features from the first-order neighbors of the node. Since
applying the GCN layer once on a node can be regarded as
aggregating the representations of its first-order neighbors
and itself, sequentially stackingL layers would cause the final
representation of a node to include its L-th order neighbors.
In other words, the more GCN layers, the larger the scale of
the learned embeddings.

Multi-Scale GCN The potential issue of using a deep
GCN architecture is that the embeddings may lose subtle
patterns in local neighborhood after aggregating neighbors
multiple times. The issue is especially severe when the two
graphs are very similar, and the differences mainly lie in
small local substructures.

One natural way for humans to compare the difference
between two graphs is to recursively break down the whole
graph into its compositional subgraphs via a top-down ap-
proach. Each subgraph is further decomposed into addi-
tional subgraph levels, until the entire specification is re-
duced to node level, producing a hierarchy of subgraph
(de)composition. We therefore propose a multi-scale frame-
work to extract the output of each of the many GCN layers
for the construction of similarity matrices, which is shown
next.

GRAPHSIM is a general framework for similarity compu-
tation, and can work with GCN and any of its successors
such as GRAPHSAGE (Hamilton, Ying, and Leskovec 2017),
GIN (Xu et al. 2019), etc.

Similarity Matrix Generation
The use of node-node similarity scores roots in some classic
approaches to modeling graph similarity, such as the Optimal
Assignment Kernels for graph classification and the Bipar-
tite Graph Matching for GED approximation. The detailed
connection between the proposed model and these methods
is in the supplementary material. Here we present some key
properties of these methods that are needed to motivate the
usage of node-node similarity scores.
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Figure 2: Left: An overview illustration of our proposed method GRAPHSIM. No graph-level representation is generated, and
it directly uses the node-node similarity scores in the three similarity matrices corresponding to node embeddings at different
scales. Right: Illustration of three similarity matrices from the LINUX (Wang et al. 2012) dataset. For two isomorphic graphs (A
and A), a strong symmetric diagonal block pattern is observed; for two less similar graphs (A and B), the dark diagonal pattern
is less evident; for two graphs that are not similar at all (A and C), the symmetric block pattern is almost gone. For graphs of
different sizes, we devise a consistent max padding scheme. Intuitively, the block patterns can be thought of as graph-graph
similarity patterns at different scales, which are suitable for CNNs to capture.

Optimal Assignment Kernels Given two graphs with
node embeddings X ∈ RN1×D and Y ∈ RN2×D, the Earth
Mover’s Distance graph kernel (Nikolentzos, Meladianos,
and Vazirgiannis 2017) solves the following transportation
problem (Rubner, Tomasi, and Guibas 2000):

min

N1∑
i=1

N2∑
j=1

Tij ||xi − yj ||2 (2)

subject to several constraints. Intuitively, each of the two
graphs is represented as a set of node embeddings, and the
kernel finds the optimal way to transform one set of node
embeddings to the other, with the cost to transform one pair
of nodes being their Euclidean distance.

Bipartite Graph Matching The HUNGARIAN (Riesen
and Bunke 2009) and VJ (Fankhauser, Riesen, and Bunke
2011) algorithms for approximate GED computation solve
the following assignment problem form:

min

N
′∑

i=1

N
′∑

j=1

TijCij (3)

subject to several constraints with cost matrix C denoting
the insertion, deletion, and substitution costs associated with
the GED metric for every node pair in the two graphs.

Despite different goals, both the kernel method and GED
approximate algorithms work directly on node-level informa-
tion without the whole-graph representations. Specifically,
both need the pairwise node-node distance scores between the
two graphs, with different definitions of node-node distances.

Since GRAPHSIM is trained end-to-end for graph similar-
ity computation, we can calculate the inner products between
all pairs of node embeddings in the two graphs at multiple
scales, resulting in multiple similarity matrices. Treat each

matrix as an image, the task of graph similarity measurement
is viewed as an image processing problem in which the goal
is to discover the optimal node matching pattern encoded in
the image by applying CNNs. Consider this process as a sim-
ilarity operator that transforms two sets of node embeddings
into a score. Then GRAPHSIM can be regarded as:

min(hΘ(X,Y )− sij)2 (4)

where hΘ(X,Y ) denotes the similarity matrix generation
and its subsequent layers. The training is guided by the true
similarity score sij for the update of weights Θ associated
with the neighbor aggregation layers that generate node em-
beddings X and Y as well as the subsequent CNNs. In
contrast, for the optimization problems (2) and (3), in or-
der to find the optimal value as the computed graph dis-
tance, the problem must be solved explicitly (Kuhn 1955;
Jonker and Volgenant 1987).

BFS Ordering Different from pixels of images or words
of sentences, nodes of a graph typically lack ordering. A
different node ordering would lead to a different similar-
ity matrix. To completely solve the graph node permutation
problem, we need to find one canonical ordering for each
graph in a collection of graphs, which is NP-hard as shown
in an early work on CNN for graphs (Niepert, Ahmed, and
Kutzkov 2016). Moreover, the CNNs require spatial local-
ity preservation. To alleviate these two issues, we utilize the
breadth-first-search (BFS) node-ordering scheme proposed in
GraphRNN (You et al. 2018) to sort and reorder the node em-
beddings. Since BFS is performed on the graph, nearby nodes
are ordered close to each other. It is worth noting that the BFS
ordering scheme achieves a reasonable trade-off between ef-
ficiency and uniqueness of ordering, as it requires quadratic
operations in the worst case (i.e. complete graphs) (You et al.
2018).



Besides the issues related to node permutation and spa-
tial locality, one must address the challenge posed by graph
size variance and the fact that CNN architecture requires
fix-length input. To preserve the information of graph size
variance while fix the size of similarity matrix, we propose
the solutions as follows:

Max Padding One can fix the number of nodes in each
graph by adding fake nodes to a pre-defined number, and
therefore lead to a fix-size similarity matrix. However, such
matrix will completely ignore the graph size information,
which is pivotal as seen in the definitions of both GED and
MCS. For example, the similarity matrix between two small
but isomorphic graphs may be padded with a lot of zeros, po-
tentially misleading the CNNs to predict they are dissimilar.

To reflect the difference in graph sizes in the similarity
matrix, we devise max padding. Suppose G1 and G2 contain
N1 and N2 nodes respectively, we pad |N1 − N2| rows of
zeros to the node embedding matrix of the smaller of the two
graphs, so that both graphs contain max(N1, N2) nodes.

Matrix Resizing To apply CNNs to the similarity matri-
ces, We resize the simlarity matrices through image resam-
pling (Thévenaz, Blu, and Unser 2000). For implementation,
we choose the bilinear interpolation, and leave the exploration
of more advanced techniques for future work. The resulting
similarity matrix S has fixed shape M ×M , where M is a
hyperparameter controlling the degree of information loss
caused by resampling.

The following equation summarizes the similarity matrix
generation process:

S = RESM (H̃1H̃
T
2 ) (5)

where H̃i ∈ Rmax(N1,N2)×D, i ∈ {1, 2} is the padded
node embedding matrix Hi ∈ RNi×D, i ∈ {1, 2}
with zero or |N1 − N2| nodes padded, and RES(·) :
Rmax(N1,N2)×max(N1,N2) 7→ RM×M is the resizing func-
tion, where M is a hyperparameter controlling the degree of
information loss caused by resampling.

CNN Based Similarity Score Computation
We feed these matrices through multiple CNNs in parallel. As
shown in Fig. 2, three CNN “channels” are used, each with
its own CNN filters. At the end, the results are concatenated
and fed into multiple fully connected layers, so that a final
similarity score ŝij is generated for the graph pair Gi and
Gj . The mean square error loss function is used to train our
model: L = 1

|D|
∑

(i,j)∈D(ŝij − sij)
2 where D is the set

of training graph pairs, and sij is the true similarity score
coming from any graph similarity metric. For GED, we apply
a one-to-one mapping function to transform the true distance
score into the true similarity score; for MCS, the normalized
MCS size is treated as the true similarity score.

5 Experiments
We evaluate our model, GRAPHSIM, against a number of
state-of-the-art approaches to GED and MCS computation,
with the major goals of addressing the following questions:

Q1 How accurate (effective) and fast (efficient) is GRAPH-
SIM compared to the state-of-the-art approaches for graph
similarity computation, including both approximate simi-
larity computation algorithms and neural network based
models?

Q2 How do the proposed ordering, resizing, and multi-scale
comparison techniques help with the CNN-based GRAPH-
SIM model?

Q3 Does GRAPHSIM yield meaningful and interpretable
similarity matrices/images on the input graph pairs?

Datasets To probe the ability of GRAPHSIM to compute
graph-graph similarities from graphs in different domains,
we evaluate on four real graph datasets, AIDS, LINUX, IMDB,
and PTC, whose detailed descriptions and statistics can be
found in the supplementary material.

For each dataset, we split it into training, validation,
and testing sets by 6:2:2, and report the averaged Mean
Squared Error (mse), Spearman’s Rank Correlation Coef-
ficient (ρ) (Spearman 1904), Kendall’s Rank Correlation Co-
efficient (τ ) (Kendall 1938), and Precision at k (p@k) to test
the accuracy and ranking performance of each GED and MCS
computation method. The supplementary material contains
more details on the data preprocessing, parameter settings,
result analysis, efficiency comparison, as well as parameter
sensitivity study.

Baseline Methods We consider both the state-of-the-art
GED/MCS computation methods and baselines using neural
networks. To ensure consistency, all neural network models
use GCN for node embeddings except for GMN, and to
demonstrate the flexibility of our framework, we show the
performance improvement of GRAPHSIM by replacing GCN
with the more powerful GMN’s node embedding methods in
the supplementary material.

Effectiveness
As shown in Table 1 and 2, our model, GRAPHSIM, consis-
tently achieves the best results on all metrics across all the
datasets with both the GED and MCS metrics. Specifically,
GRAPHSIM achieves the smallest error and the best ranking
performance on the task of graph similarity computation un-
der six out of eight settings. We repeated the running of our
model 10 times on AIDS, and the standard deviation of mse is
4.56 ∗ 10−5. The AIDS dataset is relatively small in terms of
the average number of nodes per graph, potentially causing
the CNN model to overfit. In the supplementary material, we
show that as a general framework, by replacing GCN with
GMN’s node embedding method, GRAPHSIM achieves the
best performance than all methods.

Efficiency
In Fig. 3, the results are averaged across queries and in wall
time. EMBAVG is the fastest method among all, but its perfor-
mance is poor, since it simply takes the dot product between
two graph-level embeddings (average of node embeddings)
as the predicted similarity score. BEAM and HUNGARIAN
run fast on LINUX, but due to their higher time complexity,
they scale poorly on the largest dataset, IMDB. The exact



Table 1: Effectiveness results on the GED metric. On AIDS and LINUX, A* provides ground-truth results, labeled with superscript
∗. On IMDB and PTC, A* fails to compute most GEDs within a 5-minute limit (thus denoted as −). Instead, the minimum GED
returned by BEAM, HUNGARIAN, and VJ for each pair is used as the ground-truth GED. The mse is in 10−3.

Method
AIDS LINUX IMDB PTC

mse ρ p@10 mse ρ p@10 mse ρ p@10 mse ρ p@10

A* 0.000∗ 1.000∗ 1.000∗ 0.000∗ 1.000∗ 1.000∗ − − − − − −
BEAM 12.090 0.609 0.481 9.268 0.827 0.973 2.413∗ 0.905∗ 0.803∗ 0.552∗ 0.998∗ 0.982∗

HUNGARIAN25.296 0.510 0.360 29.805 0.638 0.913 1.845∗ 0.932∗ 0.825∗ 112.326∗0.919∗ 0.159∗

VJ 29.157 0.517 0.310 63.863 0.581 0.287 1.831∗ 0.934∗ 0.815∗ 154.791∗0.904∗ 0.102∗

HED 28.925 0.621 0.386 19.553 0.897 0.982 19.400 0.751 0.801 978.3180.919 0.169
SMPNN 5.184 0.294 0.032 11.737 0.036 0.009 32.596 0.107 0.023 116.4730.148 0.082
EMBAVG 3.642 0.601 0.176 18.274 0.165 0.071 71.789 0.229 0.233 32.601 0.393 0.173
GCNMEAN 3.352 0.653 0.186 8.458 0.419 0.141 68.823 0.402 0.200 6.525 0.546 0.150
GCNMAX 3.602 0.628 0.195 6.403 0.633 0.437 50.878 0.449 0.425 7.501 0.506 0.152
SIMGNN 1.189 0.843 0.421 1.509 0.939 0.942 1.264 0.878 0.759 0.850 0.944 0.507
GMN 1.886 0.751 0.401 1.027 0.933 0.833 4.422 0.725 0.604 1.613 0.672 0.262
GRAPHSIM 0.787 0.874 0.534 0.058 0.981 0.992 0.743 0.926 0.828 0.749 0.956 0.529

Table 2: Effectiveness results on the MCS metric. On all the datasets, MCSPLIT provides ground-truth results, labeled with
superscript ∗. The mse is in 10−3.

Method
AIDS LINUX IMDB PTC

mse ρ p@10 mse ρ p@10 mse ρ p@10 mse ρ p@10

MCSPLIT 0.000∗ 1.000∗ 1.000∗ 0.000∗ 1.000∗ 1.000∗ 0.000∗ 1.000∗ 1.000∗ 0.000∗ 1.000∗ 1.000∗

SMPNN 4.592 0.755 0.348 3.558 0.126 0.236 11.018 0.330 0.003 11.001 0.502 0.146
EMBAVG 6.466 0.701 0.236 2.663 0.427 0.343 17.853 0.524 0.166 23.018 0.556 0.302
GCNMEAN 5.956 0.776 0.316 2.706 0.439 0.368 9.316 0.753 0.364 9.166 0.712 0.337
GCNMAX 5.525 0.782 0.328 2.466 0.543 0.440 8.234 0.796 0.435 7.905 0.752 0.385
SIMGNN 3.433 0.822 0.374 0.729 0.859 0.850 1.153 0.938 0.705 3.781 0.782 0.279
GMN 1.750 0.909 0.591 0.598 0.906 0.830 0.590 0.941 0.795 3.835 0.841 0.530
GRAPHSIM 2.402 0.858 0.505 0.164 0.962 0.951 0.307 0.976 0.817 2.268 0.854 0.504

MCS solver MCSPLIT is the state-of-the-art for MCS com-
putation, and runs faster than the exact GED solver, A* on
all datasets. However, in general, neural network based mod-
els are still much faster than these solvers, since they enjoy
lower time complexity in general and additional benefits from
parallelizability and acceleration provided by GPU.

Figure 3: Running time comparison. The y-axis uses the log
scale. The running time is averaged across queries. For neural
network models, the running time for GED and MCS compu-
tation is very close to each other, so we take the average of
the two.

Analysis of Various Proposed Techniques in
GRAPHSIM

To address Q2, we conduct several experiments by compar-
ing GRAPHSIM with three simpler variants, whose results are
shown in Table 3. Among the three proposed techniques (i.e.,
max padding plus matrix resizing, ordering, and multi-scale
comparison), max padding and matrix resizing affects the per-
formance the most: Comparing GS-PAD with GS-RESIZE on
IMDB and PTC, our proposed padding and resizing technique
greatly reduces the approximation error. Such significant im-
provements on IMDB and PTC can be attributed to the large
average graph size and graph size variance, as seen from the
dataset statistics in the supplementary material. Besides, by
comparing the GS-RESIZE and GRAPHSIM, we can see a per-
formance boost brought by the multi-scale framework. The
advantage of BFS ordering can be observed by comparison
of GS-NOORD and GRAPHSIM.

Analysis of Similarity “Images” in GRAPHSIM

We demonstrate six similarity matrices (plotted as heatmap
images) generated by GRAPHSIM on AIDS in Fig. 4. Node
ids come from BFS ordering. Since both pairs are quite simi-
lar, as mentioned in Section 4, we expect to see block patterns,
which are actually observed in the six similarity matrices.
From pair (1) (the top row), we can see that larger scale



Table 3: GS-PAD and GS-RESIZE perform node ordering and use the node embeddings only by the last GCN layer to generate
the similarity matrix. Since CNNs require fixed-length input, if the model does not use resizing, a simple way is to zero pad
each similarity matrix to Nmax by Nmax (maximum graph size in the entire dataset), denoted as GS-PAD. GS-RESIZE uses the
proposed max padding and resizing techniques. GS-NOORD uses all the proposed techniques including multi-scale comparison
except for node ordering. The results are on the GED metric. The mse is in 10−3.

Method
AIDS LINUX IMDB PTC

mse ρ p@10 mse ρ p@10 mse ρ p@10 mse ρ p@10

GS-PAD 0.807 0.863 0.514 0.141 0.988 0.983 6.455 0.661 0.552 6.808 0.637 0.481
GS-RESIZE 0.811 0.866 0.499 0.103 0.991 0.986 0.896 0.914 0.810 0.791 0.948 0.513
GS-NOORD 0.803 0.867 0.478 0.071 0.983 0.976 1.105 0.902 0.744 0.838 0.945 0.515

GRAPHSIM 0.787 0.874 0.534 0.058 0.993 0.981 0.743 0.926 0.828 0.749 0.956 0.529

Graph (a)                 Graph (b)      Sim mat after the 1st GCN          Sim mat after the 2nd GCN          Sim mat after the 3rd GCN

Figure 4: Similarity “images” on two pairs of graphs from
AIDS trained with the GED metric. Different heatmap colors
differentiate “images” from different scales of comparison.
Top pair: GED=2—an edge deletion (edge between node
0 and 4 of graph (b)) and an edge addition (edge between
node 3 and 4 of graph (b)). Bottom pair: GED=1—a node
relabeling (node 7).

(the blue matrix) helps distinguish between nodes 3 and 4
of graph (b), which contributes to the GED edit sequence as
shown in the caption of Fig 4. From pair (2) (the bottom row),
we can see that the smaller scale (the red matrix) helps differ-
entiate between node 7 in graph (a) and node 7 in graph (b).
Notice that comparing at larger scales does not help tell their
difference in node types, because their structural equivalence
causes their similarities to be higher as seen in the green and
blue matrices. Thus, Fig. 4 shows the importance of using
multi-scale similarity matrices rather than a single one.

Case Studies
We demonstrate four example queries, one from each dataset
in Fig. 5. In each demo, the top row depicts the query along
with the ground-truth ranking results, labeled with their nor-
malized GEDs to the query. The bottom row shows the graphs
returned by our model, each with its rank shown at the top.
GRAPHSIM is able to retrieve graphs similar to the query. For
example, in the case of LINUX, the top 6 results are exactly
the isomorphic graphs to the query.

6 Conclusion
We introduced a CNN based method for better graph similar-
ity computation. Using GRAPHSIM in conjunction with ex-
isting methods for generating node embeddings, we improve
the performance in several datasets on two graph proximity

metrics: Graph Edit Distance (GED) and Maximum Com-
mon Subgraph (MCS). Interesting future directions include
using hierarchical graph representation learning techniques to
reduce computational time complexity involved in the node-
node similarity computation, and applying the CNN based
graph matching method to other graph matching tasks, e.g.
network alignment, as well as the explicit generation of edit
sequence for GED and node correspondence for MCS.

nGED by
A* 0.00 0.12 0.25 0.35 0.38 0.50 ... 1.11 ... 3.20

Rank by
GraphSim 1 2 3 4 5 6 ... 280 ... 560

nGED by
A* 0.00 0.00 0.00 0.00 0.00 0.00 ... 0.71 ... 1.86

Rank by
GraphSim 1 2 3 4 5 6 ... 400 ... 800

nGED by Beam-
Hungarian-VJ 0.77 0.95 0.98 1.02 1.13 1.33 ... 4.53 ... 26.4

Rank by
GraphSim 1 2 3 4 5 6 ... 600 ... 1200

nGED by Beam-
Hungarian-VJ        1.42  1.66  1.78  1.80  1.83  1.84  ...   3.09   ...  3.89

Rank by
GraphSim  1  2  3  4  5  6  ...   137   ...  275

Figure 5: Visualization of ranking results under the GED
metric. From top to bottom: AIDS, LINUX, IMDB, PTC.
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