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ABSTRACT

We aim at solving the problem of predicting people’s ideology, or
political tendency. We estimate it by using Twitter data, and formal-
ize it as a classification problem. Ideology-detection has long been
a challenging yet important problem. Certain groups, such as the
policy makers, rely on it to make wise decisions. Back in the old
days when labor-intensive survey-studies were needed to collect
public opinions, analyzing ordinary citizens’ political tendencies
was uneasy. The rise of social medias, such as Twitter, has enabled
us to gather ordinary citizen’s data easily. However, the incom-
pleteness of the labels and the features in social network datasets
is tricky, not to mention the enormous data size and the heteroge-
neousity. The data differ dramatically from many commonly-used
datasets, thus brings unique challenges. In our work, first we built
our own datasets from Twitter. Next, we proposed TIMME, a multi-
task multi-relational embedding model, that works efficiently on
sparsely-labeled heterogeneous real-world dataset. It could also
handle the incompleteness of the input features. Experimental re-
sults showed that TIMME is overall better than the state-of-the-art
models for ideology detection on Twitter. Our findings include:
links can lead to good classification outcomes without text; con-
servative voice is under-represented on Twitter; follow is the most
important relation to predict ideology; retweet and mention enhance
a higher chance of like, etc. Last but not least, TIMME could be
extended to other datasets and tasks in theory.
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1 INTRODUCTION

Studies on ideology never fails to attract people’s interests. Ideol-
ogy here refers to the political stance or tendency of people, often
reflected as left- or right-leaning. Measuring the politicians’ ideol-
ogy helps predict some important decisions’ final outcomes, but
it does not provide more insights into ordinary citizens’ views,
which are also of decisive significance. Decades ago, social scien-
tists have already started using probabilistic models to study the
voting behaviors of the politicians. But seldom did they study the
mass population’s opinions, for the survey-based study is extremely
labor-intensive and hard-to-scale [1, 27]. The booming development
of social networks in the recent years shed light on detecting ordi-
nary people’s ideology. In social networks, people are more relaxed
than in an offline interview, and behave naturally. Social networks,
in return, has shaped people’s habits, giving rise to opinion leaders,
encouraging youngsters’ political involvement [25].

Most existing approaches of ideology detection on social net-
works focus on text [5, 8, 15-17]. Most of their methodologies based
on probabilistic models, following the long-lasting tradition started
by social scientists. Some others [2, 13, 17, 29] noticed the advan-
tages of neural networks, but seldom do they focus on links. We
will show that the social-network links’ contribution to ideology
detection has been under-estimated.

An intuitive explanation of how links could be telling is illus-
trated in Figure 1. Different types of links come into being for
different reasons. We have five relation types among users on Twit-
ter today: follow, retweet, reply, mention, like, and the relations affect
each other. For instance, after Rosa retweet from Derica and mention
her, Derica reply to her; when Isabel mention some politicians in
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Figure 1: An example of different relation types on Twitter.
Derica is on liberal (left) side while Rosa is on the conserva-
tive (right) side. Isabel does not have significant tendency.

her posts, the politician’s followers might come to interact with
her. One might mention or reply to debate, but like always stands
for agreement. The relations could reflect some opinions that a
user would never tell you verbally. Words could be easily disguised,
and there is always a problem called “the silent majority”, for most
people are unwilling to express.

Yet there are some uniqueness of Twitter dataset, bringing about
many challenges. It is especially the case when existing approaches
are mostly dealing with smaller datasets with much sparser links
than ours, such as academic graphs, text-word graphs, and knowledge-
graphs. First, our Twitter dataset is large and the links are relatively
dense (Section 4). Some models such as GraphSAGE [14] will be
super slow sampling our graph. Second, labels are extremely sparse,
less than 1%. Most approaches will suffer from severe over-fitting,
and the lack of reliable evaluation. Third, features are always in-
complete, for in real-life datasets like Twitter, many accounts are
removed or blocked. Fourth, modeling the heterogeneity is nontriv-
ial. Many existing methods designed for homogeneous networks
tend to ignore the information brought by the types of links.

Existing works can not address the above challenges well. Even
though some realized the importance of links [9, 13], they failed
to provide an embedding. Most people learn an embedding by
separating the heterogeneous graph into different homogeneous
views entirely, and combine them in the very end.

We propose to solve the above-listed problems by TIMME (Twit-
ter Ideology-detection via Multi-task Multi-relational Embedding),
a model good at handling sparsely-labeled large graph, utilizing
multiple relation types, and optionally dealing with missing fea-
tures. Our code with data is released on Github at https://github.
com/PatriciaXiao/TIMME. Our major contributions are:

o We propose TIMME for ideology detection on Twitter, whose
encoder captures the interactions between different relations,
and decoder treats different relations separately while measuring
the importance of each relation to ideology detection.

o The experimental results have proved that TIMME outperforms
the state-of-the-art models. Case studies showed that conserva-
tive voice is typically under-represented on Twitter. There are
also many findings on the relations’ interactions.

o The large-scale dataset we crawled, cleaned, and labeled (Ap-
pendix A) provides a new benchmark to study heterogeneous
information networks.

In this paper, we will walk through the related work in Section
2, introduce the preliminaries and the definition of the problem we
are working on in Section 3, followed by the details of the model
we propose in Section 4, experimental results and discussions in
Section 5, and Section 6 for conclusion.

2 RELATED WORK
2.1 Ideology Detection

Ideology detection in general could be naturally divided into two di-
rections, based on the targets to predict: of the politicians [7, 24, 28],
and of the ordinary citizens [1, 2, 5, 8, 13, 15-17, 20, 23, 29]. The
work conducted on ordinary citizens could also be categorized into
two types according to the source of data being used: intentionally
collected via strategies like survey [1, 20], and directly collected
such as from news articles [2] or from social networks [13, 15, 17].
Some studies take advantages from both sides, asking self-reported
responses from a group of users selected from social networks [29],
and some researchers admitted the limitations of survey exper-
iments [23]. Emerging from social science, probabilistic models
have been widely used for such kinds of analysis since the early
1980s [2, 13, 28]. On the other hand, on social network datasets, it
is quite intuitive trying to extract information from text data to do
ideology-detection [5, 8, 15-17], only a few paid attention to links
[9, 13]. Our work differs from them all, since: (1) unlike probabilis-
tic models, we use GNN approaches to solve this problem, so that
we take advantage of the high-efficient computational resources,
and we have the embeddings for further analysis; (2) we focus on
relations among users, and proved how telling those relations are.

2.2 Graph Neural Networks (GNN)

2.2.1  Graph Convolutional Networks (GCN). Inspired by the great
success of convolutional neural networks (CNN), researchers have
been seeking for its extension onto information networks [11, 19] to
learn the entities’ embeddings. The Graph Convolutional Networks
(GCN) [19] could be regarded as an approximation of spectral-
domain convolution of the graph signals. A deeper insight [21]
shows that the key reason why GCN works so well on classifica-
tion tasks is that its operation is a form of Laplacian smoothing,
and concludes the potential over-smoothing problem, as well as
emphasizes the harm of the lack of labels.

GCN convolutional operation could also be viewed as sampling
and aggregating of the neighborhood information, such as Graph-
SAGE [14] and FastGCN [4], enabling training in batches. To im-
prove GraphSAGE’s expressiveness, GIN [40] is developed, enabling
more complex forms of aggregation. In practice, due to the sam-
pling time cost brought by our links” high density, GIN, GraphSAGE
and its extension onto heterogeneous information network such as
HetGNN [43] and GATNE [3] are not very suitable on our datasets.

The relational-GCN (r-GCN) [32] extends GCN onto heteroge-
neous information networks. A very large number of relation-types
|R| ends up in overwhelming parameters, thus they put some con-
straints on the weight matrices, referred to as weight-matrix decom-
position. GEM [22] is almost a special case of r-GCN. Unfortunately,
their code is kept confidential. According to the descriptions in their
paper, they have a component of similar use as the attention weights
a in our encoder, but it is treated as a free parameter.
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Another way of dealing with multiple link types is well-represented
by SHINE [38], who treats the heterogeneous types of links as
separated homogeneous links, and combines embeddings from all
relations in the end. SHINE did not make good use of the multiple
relations to its full potential, modeling the relations without allow-
ing complex interactions among them. GTN [42] is similar with
SHINE in splitting the graph into separate views and combining
the output at the very end. Besides, GTN uses meta-path, thus is
potentially more expressive than SHINE, but would rely heavily on
the quality and quantity of the meta-paths being used.

2.2.2  Graph Attention Networks. Graph Attention Networks (GAT)
[36] is another nontrivial direction to go under the topic of graph
neural networks. It incorporates attention into propagation by ap-
plying self-attention on the neighbors. Multi-head mechanism is
often used to ensure stability.

An extension of GAT on heterogeneous information networks is
Heterogeneous Graph Attention Network, HAN [39]. Beside inherit-
ing the node-level attention from GAT, it considers different relation
types by sampling its neighbors from different meta-paths. It first
conducts type-specific transformation and compute the importance
of neighbors of each node. After that, it aggregates the coefficients
of all neighbor nodes to update the current node’s representation.
In addition, to obtain more comprehensive information, it conducts
semantic-level attention, which takes the result of node-level atten-
tion as input and computes the importance of each meta-path. We
use HAN as an important baseline in our experiments.

2.3 Multi-Task Learning (MTL)

In multi-task learning (MTL) settings, there are multiple tasks
sharing the same inductive bias jointly trained. Ideally, the per-
formance of every task should benefit from leveraging auxiliary
knowledge from each other. As is concluded in an overview [31],
MTL could be applied with or without neural network structure.
On neural network structure, the most common approach is to do
hard parameter-sharing, where the tasks share some hidden layers.
The most common way of optimizing an MTL problem is to solve
it by joint-training fashion, with joint loss computed as a weighted
combination of losses from different tasks [18]. It has a very wide
range of applications, such as the DMT-Demographic Models [37]
where multiple aspects of Twitter data (e.g. text, images) are fed into
different tasks and trained jointly. Aron and Nirmal et al. [10] also
apply MTL on Twitter, separating the tasks by user categories. Our
multi-task design differs from theirs, and treat node classification
and link prediction on different relation types as different tasks.

3 PROBLEM DEFINITION

Our goal is to predict Twitter users’ ideologies, by learning the
ideology embedding of users in a political-centered social network.

Definition 3.1. (Heterogeneous Information Network) Fol-
lowing previous work [34], we say that an information network
G = {V, E}, where number of vertices is |'V| = N, is a heteroge-
neous information network, when there are |77| = T types of
vertices, |[R| = R types of edges, and max(T,R) > 1. G could be
represented as G = {{V1, Vo, ... Vr},{E1,E2, ..., ER}}

Each possible edge from the i*" node to the j*%, represented as
ejj € & has a weight value w;; > 0 associated to it, where w;; = 0
representing e;; ¢ &. In our case, G is a directed graph. In general,
we have (v;,v) # (vj,0;) and w;; Z wji.

Twitter data GTirrer contains T = 1 type of entities (users),
and R = 5 different types of edges (relations) among the entities,
namely follow, retweet, like, mention, reply.

Grwitter = {V.{E1,E2,E3,84,E5}}

Detailed description about Twitter data is included in Appendix
A, and we call the subgraph we selected from Twitter-network a
political-centered social network, which is defined as follows:

Definition 3.2. (Political-Centered Social Network) The political-

centered social network is a special case of directed heterogeneous
information network. With a pre-defined politicians set #, in our se-
lected heterogeneous network Grisrer, Ve = (v, 0;) € & where
r € {1,2,...,R}, there has to be either v; € P orov; € P. All
the politicians in this dataset have ground-truth labels indicating
their political stance. The political-centered social networks are
represented as Gp.

We would like to leverage the information we have to learn
the representation of the users, which could help us reveal their
ideologies. Due to the lack of Independent representatives (only two
in total), we consider the binary-set labels only: { liberal, conservative
}. Democratic on liberal side, Republican for conservative.

Definition 3.3. (Multi-task Multi-relational Network Embed-
ding) Given a network Gp = {V,{E1, E2, E3, E4, Es5}} where the
number of nodes is [V| = N, the goal of TIMME is to learn such a
representation h; € R? where d < N for Vo; € V, that captures
the categorical information of nodes, such as their ideology tenden-
cies. As a measurement, we want the representation H € RN Xd, to
success on both node-classification and link-prediction.

4 METHODOLOGY

The general architecture of our proposed model is illustrated in
Figure 2. It contains two components: encoder and decoder. The
encoder contains two multi-relational convolutional layers. The
output of the encoder is passed on to the decoder, who handles the
downstream tasks.

4.1 Multi-Relation Encoder

As mentioned before in Section 1, the challenges faced by the en-
coder part are the large data scale, the heterogeneous link types,
and the missing features.

GCN is very effective in learning the nodes’ embeddings, espe-
cially good at classification tasks. Meanwhile, it is also naturally
efficient, in terms of handling the large amount of vertices N.

Random-walk-based approaches such as node2vec [12] with
time complexity O(a?N), where a is the average degree of the
graph, suffer from the relatively-high degree in our dataset. On
the other hand, GCN-based approaches are naturally efficient here.
Like is analyzed in Cluster-GCN [6], the time complexity of the
standard GCN model is O(L||A||oF + LNF?), where L is the number
of layers, ||Allp the number of non-zeros in the adjacency matrix,
F the number of features. Note that the time complexity increases
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Figure 2: The general architecture of our model, with the
encoder shown in details. Grey blocks represent missing fea-
tures. Our model can either handle them by treating them as
learnable parameters, or use one-hot features.

linearly when N increases. A GCN model’s layer-wise propagation
could be written as:

O+ — 0( AHU)wU))

A=D: (A+ IN)D%, where D is defined as the diagonal matrix
and A the adjacency matrix. D;;, the diagonal element d;, is equal
to the sum of all the edges attached to v;; HD ¢ RNXd(l) is the
dD-dimensional representation of the N nodes at the I!" layer;
W(l) c Rd(l)xd(lﬂ)
similar with that of an ordinary MLP model !. In a certain way, A
could be viewed as A after being normalized.

We propose to model the heterogeneous types of links and their
interactions in the encoder. Otherwise, if we split the views like
many others did, the model will never be expressive enough to
capture the interactions among relations. For any given political-
centered graph Gp, let’s denote the total number of nodes |'V| = N,
the number of relations |R| = R, the set of nodes V, the set of
relations R, and &, being the set of links under relation r € R.
Representation being learned after layer I (I € {1, 2}) is represented
as HD ¢ RNXd(l), and the input features form the matrix HO) ¢
RN R where |R| = 2R+1 represents all relations in the original
direction (R), the relations in reversed direction (R), and an identical-
matrix relation (1). Our dataset has |R| = R = 5, so it should be fine
not to conduct a weight-matrix decomposition like r-GCN [32]. We

is the weight parameters at layer | which is

IMLP here refers to Multi-layer Perceptron.

model the layer-wise propagation at Layer [ + 1 as:

g+ — g( Z arArH(l)Wr(l))
reR

. .
where H) € RV*d" i5 used to denote the representation of the

lth

nodes after the I encoder layer, and the initial input feature is H(®),

L1 L1 .
Ay = D} (Ar+IN)D} is defined in similar way as A in GCN, but it is
calculated per relation. The activation function o we use is ReLU. By
default, @ == [ay, ... ar...]T € R%F* i calculated by scaled dot-

product self-attention over the outputs of Hr(lH) =AH (I)Wr(l) :
. 0K r (2R+1)xd
A = Attention(Q,K,V) = softmax(W)V eR

where Q =K =V € R2R+Dxd ¢omes from the 2R + 1 matrices
Hr(lH) € RNX4_stacking up as O € RCR¥DXNXA taking an aver-
age over the N entities. We calculate an attention to apply to the
2R + 1 outputs as:

QK 2R+1
a = softmax sum 1( ) eR
o \/E

where sumj(X) takes the sum of each column in X € Ré%dz and
ends up in a vector € R,

The last problem to solve is that the initial features H (0) s often
incomplete in real life. In most cases, people would go by one-
hot features or randomized features. But we want to enable our
model to use the real features, even if the real-features are incom-
plete. Inspired by graph representation learning strategies such
as LINE [35], we proposed to treat the unknown features as train-
able parameters. That is, for a graph G, whose vertice set is V,
(eratured N (eratureless =o@and (eratured U (eratureless =V,

for any node with valid feature Yo; € Vfeqryred, the node’s feature

(0)

vector H; % s known and fixed. For Yo € Vieatureless: the corre-

sponding row vector H ) i unknown and treated as a trainable
parameter. The generation of the features will be discussed in the
Appendix A. In brief, TIMME can handle any missing input feature.

4.2 Multi-Task Decoder

We propose TIMME as a multi-task learning model such that the
sparsity of the labels could be overcome with the help of the link
information. As is shown in Figure 3, we propose two architectures
of the multi-task decoder. When we test it on a single-task i, we
simply disable the remaining losses but a single .£;, and name our
model in single-task mode TIMME-single.

Ly is defined the same way as was proposed in [19], in our case
a binary cross-entropy loss:

Lo=- ) (ylog(y)+(1-y)log(1-y))
Y€Y¢rain

where Y;,4in contains the labels in the training set we have.

L1,... Lp are link-prediction losses, calculated by binary cross-
entropy loss between link-labels and the predicted link scores’ logits.
To keep the links asymmetric, we used Neural Tensor Network
(NTN) structure [33], with simplification inspired by DistMult [41].
We set the number of slices be k = 1 for W, € R¥¥@k omitting
the linear transformer U, and restricting the weight matrices W,
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Figure 3: The two types of decoder in our multi-task framework, referred to as TIMME and TIMME-hierarchical.

each being a diagonal matrix. For convenience, we refer to this
link-prediction cell as TIMME-NTN. Consider triplet (v;,7,0;),
and denote the encoder output of v;,0; € V as hy, h; € R4, the
score function of the link is calculated as:

s(i,r, j) = hiWrhj +V h +b

i
hj

where W, € R9%4 js a diagonal matrix for any Vr € R. W;, V € R2d
and b € R are all parameters to be learned. Group-truth label of a
positive (existing) link is 1, otherwise 0.

The first decoder-architecture TIMME sums all R + 1 losses as
L= 25:0 L;. Without average, each task’s loss is directly propor-
tional to the amount of data points sampled at the current batch.
Low-resource tasks will take a smaller portion. This is the most
straightforward design of a MTL decoder.

The second, TIMME-hierarchical, has A = [A4,..., /1|'R|]T be-
ing computed via self-attention on the average embedding over the
R link-prediction task-specific embeddings. Here, £ = Zf: o Liis
the same with TIMME. TIMME-hierarchical essentially derives
the node-label information from the link relations, thus provides
some insights on each relation’s importance to ideology prediction.
TIMME, TIMME-hierarchical, TIMME-single models share ex-
actly the same encoder architecture.

5 EXPERIMENTS

In this section, we introduce the dataset we crawled, cleaned and
labeled, together with our experimental results and analysis.

5.1 Data Preparation

5.1.1 Data Crawling. The statics of the political-centered social
network datasets we have are listed in Table 1. Data prepared is
described in Appendix A, ready by April, 2019. In brief, we did:

(1) Collecting some Twitter accounts of the politicians P;
(2) For every politician Vp € P, crawl her/his most-recent s follow-
ers and s followees, putting them in a candidate set C.

PureP P50 P20~50 P+all
# User 583 5,435 12,103 20,811
# Link 122,347 1,593,721 1,976,985 6,496,107
# Labeled User 581 759 961 1,206
# Featured User 579 5,149 11,725 19,418
# Follow-Link 59,073 529,448 158,746 915,438
# Reply-Link 1,451 96,757 121,133 530,598
# Retweet-Link 19,760 311,359 595,030 1,684,023
# Like-Link 14,381 302,571 562,496 1,794,111
# Mention-Link 27,682 353,586 539,580 1,571,937

Table 1: Descriptive statistics of the three selected subsets of
our dataset.

(3) For every candidate ¢ € C, we also crawl their most-recent s
followers to make the follow relation more complete.

(4) For every user u € PUC, crawl their tweets as much as possible,
until we hit the limit (~ 3, 200) set by Twitter APL

(5) From the followers & followees we collect follow relation, from
the tweets we extract: retweet, mention, reply, like.

(6) Select different groups of users from C, based on how many
connections they have with members in #, and making those
groups into the 4 subsets, as is shown in Table 1.

(7) We filter the relations within any selected group so that if a
relation e = (v;,0;) € Gp, there must be v; € Gp and v; € Gp.

Our four datasets represent different user groups. PureP contains
only the politicians. P50 contains politicians and users keen on
political affairs. P20~50 is politicians with the group of users who
are of moderate interests on politics. P+all is a union set of the
three, plus some randomly-selected outliers of politics. P+all is the
most challenging subset to all models. More details on the dataset,
including how we generated features and how we tried to get more
labels, are all described in details in Appendix A.



Model PureP P50 P20~50 P+all

GCN 1.0000/1.0000 0.9600/0.9600 0.9895/0.9895 0.9076/0.9083
r-GCN 1.0000/1.0000 0.9733/0.9733 0.9895/0.9895 0.9327/0.9333
HAN 0.9825/0.9824 0.9466/0.9467 0.9789/0.9789 0.9238/0.9250
TIMME-single 1.0000/1.0000 0.9733/0.9733 0.9895/0.9895 0.9333/0.9324
TIMME 0.9825/0.9824 0.9867/0.9867 1.0000/1.0000 0.9495/0.9500
TIMME-hierarchical 1.0000/1.0000 0.9733/0.9780 0.9895/0.9895 0.9580/0.9583

Table 2: Node classification measured by F1-score/accuracy.

Model PureP P50 P20~50 P+all

Follow Relation

GCN+ 0.8696/0.6167 0.9593/0.8308 0.9870/0.9576 0.9855/0.9329
r-GCN 0.8596/0.6091 0.9488/0.8023 0.9872/0.9537 0.9685/0.9201
HAN+ 0.8891/0.7267 0.9598/0.8642 0.9620/0.8850 0.9723/0.9256

TIMME-single 0.8809/0.6325
TIMME 0.8763/0.6324
TIMME-hierarchical ~ 0.8812/0.6409

0.9717/0.8792
0.9811/0.9154
0.9809/0.9145

0.9920/0.9709 0.9936/0.9696
0.9945/0.9799 0.9943/0.9736
0.9984/0.9813 0.9944/0.9739

Reply Relation
GCN+ 0.8602/0.7306 0.9625/0.9022 0.9381/0.8665 0.9705/0.9154
r-GCN 0.7962/0.6279 0.9421/0.8714 0.8868/0.7815 0.9640/0.9085
HAN+ 0.8445/0.6359 0.9598/0.8616 0.9495/0.8664 0.9757/0.9210

0.9695/0.9307 0.9593/0.9070
0.9781/0.9417 0.9747/0.9347
0.9766/0.9409 0.9737/0.9341

0.9775/0.9508
0.9849/0.9612
0.9854/0.9629

TIMME-single 0.8685/0.7018
TIMME 0.9077/0.8004
TIMME-hierarchical ~ 0.9224/0.8152

Retweet Relation

GCN+ 0.8955/0.7145 0.9574/0.8493 0.9351/0.8408 0.9724/0.9303
r-GCN 0.8865/0.6895 0.9411/0.8084 0.9063/0.7728 0.9735/0.9326
HAN+ 0.7646/0.6139 0.9658/0.9213 0.9478/0.8962 0.9750/0.9424

TIMME-single 0.9015/ 0.7202 0.9754/0.9127
TIMME 0.9094/0.7285 0.9779/0.9181
TIMME-hierarchical ~ 0.9105/0.7344  0.9780/0.9190

0.9673/0.9073
0.9772/0.9291
0.9766/0.9275

0.9824/0.9424
0.9858/0.9511
0.9869/0.9543

Like Relation

GCN+ 0.9007/0.7259 0.9527/0.8499 0.9349/0.8400 0.9690/0.9032
r-GCN 0.8924/0.7161 0.9343/0.7966 0.9038/0.7681 0.9510/0.8945
HAN+ 0.8606/0.6176 0.9733/0.8851 0.9611/0.9062 0.9894/0.9481
TIMME-single 0.9113/0.7654 0.9725/0.9119 0.9655/0.9069 0.9796/0.9374
TIMME 0.9249/0.7926 0.9753/0.9171 0.9759/0.9292 0.9846/0.9504
TIMME-hierarchical ~ 0.9278/0.7945 0.9752/0.9175 0.9752/0.9271 0.9851/0.9518

Mention Relation

GCN+ 0.8480/0.6233 0.9602/0.8617 0.9261/0.8170 0.9665/0.8910
r-GCN 0.8312/0.6023 0.9382/0.7963 0.8938/0.7563 0.9640/0.8902
HAN+ 0.9000/0.7206 0.9573/0.8616 0.9574/0.8891 0.9724/0.9119

TIMME-single 0.8587/0.6502
TIMME 0.8684/0.6689
TIMME-hierarchical ~ 0.8643/0.6597

0.9713/0.8981
0.9730/0.9035
0.9732/0.9046

0.9614/0.8923
0.9730/0.9185
0.9723/0.9166

0.9725/0.9096
0.9839/0.9446
0.9846/0.9463

Table 3: Link-prediction measured by ROC-AUC/PR-AUC.

5.2 Performance Evaluation

In practice, we found that we do not need any features for nodes,
and use one-hot encoding vector as initial feature.

We split the train, validation, and test set of node labels by 8:1:1,
keep it the same across all datasets and throughout all models,
measuring the labels’ prediction quality by F1-score and accuracy.
For link-prediction tasks, we split all positive links into training,
validation, and testing sets by 85:5:10, keeping same portion across
all datasets and all models, evaluating by ROC-AUC and PR-AUC. 2

5.2.1 Baseline Methods. We have explored a lot of possible baseline
models. Some methods we mentioned in section 2, HetGNN [43],
GATNE [3] and GTN [42] generally converge ~ 10 ~ 100 times
slower than our model on any task. GraphSAGE [14] is not very
suitable on our dataset. Moreover, other well-designed models such

2AUC refers to Area Under Curve, PR for precision-recall curve, ROC for receiver
operating characteristic curve.

as GIN [40] are way too different from our approach at a very
fundamental level, thus are not considered as baselines. Some other
methods such as GEM [22] and SHINE [38] should be capable of
handling the dataset at this scale, but they are not releasing their
code to the public, and we can not easily guarantee reproduction.

We decided to use the three baselines: GCN, r-GCN and HAN.
They are closely-related to our model, open-sourced, and efficient.
We understand that none of them were specifically designed for
social-networks. Early explorations without tuning them resulted
in terrible outcomes. To make the comparisons fair, we did a lot of
work in hyper-parameter optimization, so that their performances
are significantly improved. The GCN baseline treats all links as
the same type and put them into one adjacency matrix. We also
extend the baseline models to new tasks that were not mentioned
in their original papers. We refer to GCN+ and HAN+ as the GCN-
base-model or HAN-base-model with TIMME-NTN attached to
it. By comparing with GCN/GCN+, we show that reserving het-
erogeneousity is beneficial. Comparing with r-GCN, we prove that
their design is not as suitable for social networks as ours. With
HAN/HAN+ we show that, although their model is potentially more
expressive, our model still outperforms theirs in most cases, even
after we carefully improved it to its highest potential (Appendix C).
We did not have to tune the hyper-parameters of TIMME models
closely as hard, thanks to its robustness.

HAN+ has an expressive and flexible structure that helps it
achieve high in some tasks. The downsides of HAN/HAN+ are
also obvious: it easily gets over-fitting, and is extremely sensitive
to dataset statistics, with large memory consumption that typi-
cally more than 32G to run tasks on P+all, where TIMME models
takes less than 4G space with the same hidden size and embedding
dimensions as the baseline model’s settings.

5.2.2 TIMME. To stabilize training, we would have to use the
step-decay learning rate scheduler, the same with that for ResNet.
The optimizer we use is Adam, kept consistent with GCN and r-
GCN. We do not need input features for nodes, thus our encoder
utilizes one-hot embedding by default. One of the many advantages
of TIMME is how robust it is to the hyper-parameters and all
other settings, reflected by that the same default parameter settings
serve all experiments well. Like many others have done before,
to avoid information leakage, whenever we run tasks involving
link-prediction, we will remove all link-prediction test-set links
from our adjacency matrices.

It is shown in Table 2 and 3 that multi-task models TIMME and
TIMME-hierarchical are generally better than TIMME-single
on most tasks. Even TIMME-single is superior to the baseline
models most of the times. TIMME models are stable and scalable.
The classification task, despite the many labels we manually added,
easily over-estimating the models. Models trained on single node-
classification task will easily get over-fitted. If we force them to
keep training after convergence, only multi-task TIMME models
keep stable. The baselines and TIMME-single suffer from dramatic
performance-drop, especially HAN/HAN+.

5.3 Case Studies

5.3.1 Selection of Input Features. To justify the reason why we do
not need any features for nodes, we show the node-classification
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Figure 4: t-SNE of matrices onto 2D space. Showing reply
(and reversed), friend (and reversed) weight matrices of the
first convolutional layer (W,(O)), and the encoder output
embeddings (H?). Red for ground-truth republican nodes,
blue for democratic.
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Figure 5: Illustration of impact of features. Random features
in blue, partly-know partly randomized (and fixed) in yel-
low, partly-known partly-trainable in green, one-hot in red.

training-curves of TIMME-single with one-hot features, random-
ized features, partly-known-partly-randomized features, and with
partly-known-partly-trainable features. The results are collected
from P50 dataset. To make it easier to compare, we have fixed train-
ing epochs 300 for node-classification, and 200 for follow-relation
link-prediction. It is shown that text feature is significantly bet-
ter than randomized feature, and treating the missing part of the
text-generated feature as trainable is better than treat it as fixed
randomized feature. However, one-hot feature always outperforms
them all, essentially means that relations are more reliable and less
noisy than text information in training our network embedding. We
have proved in Appendix B that the 2R + 1 weight matrices at the
first convolutional layer captures the nodes’ learned features when
using one-hot features. Experimental evidence is shown in Figure 4.
It shows that although worse than the encoder output, the first em-
bedding layer also captured the features of nodes. The embedding
comes from epoch 300, node-classification task on PureP.

5.3.2  Performance Measurement on News Agency. A good mea-
surement of our prediction’s quality would be on some users with
ground-truth tendency, but unlabeled in our dataset. News agents’
accounts are typically such users, as is shown in Figure 8. Among
them we select some of the agencies believed to have clear tenden-
cies. 3 The continuous scores we have for prediction come from
the softmax of the last-layer output of our node-classification task,
which is in the format of (probyes;, prob,igh;). Right in the mid-
dle represents (probjefy, probyigns) = (0.5,0.5), left-most being
(1.0,0.0), right-most (0.0, 1.0). For most cases, our model’s predic-
tions agree with people’s common belief. But CNN News is an
3We fetch most of the ground-truth labels of the news agents from the public voting

results on https://www.allsides.com/media-bias/media-bias-ratings, got them after
the prediction results are ready.

Liberal ... ... Conservative

Figure 6: Overall ideology on Twitter in each state.
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M Conservative
N/A

Figure 7: Overall ideology on Twitter, Florida (FL).

New York Times (@nytimes)
Guardian News (@guardi )

CBC News (@cbcnews)

CNN (@CNN)
Christian Science Monitor (@csmonitor)
The American Spectator (@amspectator)
Fox News Opinion (@FoxNewsOpinion)

National Review (@NRO)

—
— '
————

Figure 8: The News Agencies’ Ideologies. Text colors come
from the public’s voting online, blue for left and red for
right, black for middle (centrist). Length represents the
value from the last layer, reflecting the extent.

interesting case. It is believed to be extremely left, but predicted
as slightly-left-leaning centrist. Some others have findings sup-
porting our results: CNN is actually only a little bit left-leaning.
4 Although the public tends to believe that CNN is extremely lib-
eral, it is more reasonable to consider it as centrist biased towards
left-side. People’s opinion on news agencies’ tendencies might be
polarized. Besides, although there are significantly more famous
news agencies on the liberal side, those right-leaning ones tend to
support their side more firmly.

5.3.3 Geography Distribution. Consider results from the largest
dataset (P+all), and with predictions coming out from TIMME-
hierarchical. We predict each Twitter user’s ideology as either
liberal or conservative. Then we calculate the percentage of the
users on both sides, and depict it in Figure 6. Darkest red repre-
sents p € [0, 1] of users in that area are liberal, remaining [%, 1]
are conservative; darkest blue areas have [%, 1] users being liberal,

4https://libguides.com.edu/c.php?g=649909&p=4556556
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Figure 9: The impact of training on single-link-prediction tasks, on Pure-P (left), P50 (middle), P+all (right) dataset respectively.

[o, %] conservative. The intermediate colors represent the evenly-
divided ranges in between. The users’ locations are collected from
the public information in their account profile. From our observa-
tion, conservative people are typically under-represented. >¢ For
instance, as a well-known firmly-conservative state, Utah (UT) is
only shown as slightly right-leaning on our map.

This is intuitively reasonable, since Twitter users are also biased.
Typically biased towards youngsters and urban citizens. Although
we are able to solve the problem of silent-majority by utilizing their
link relations instead of text expressions, we know nothing about
offline ideology. We suppose that some areas are silent on Twitter,
and this guess is supported by the county-level results at Florida,
shown in Figure 7. This time the color-code represents evenly-
divided seven ranges from [0, %] to [%, 1], because of the necessity
of reserving one color for representing silent areas (denoted as
white for N/A). The silent counties, typically some rural areas, have
no user in our dataset, inferring that people living there do not
use Twitter very often. The remaining parts of the graph makes
complete sense, demonstrating a typical swing state. ’

5.3.4 Correlated Relations. When we train TIMME-single with
only one relation type, some other relations’ predictions benefit
from it, and are becoming more and more accurate. We assume
that, if by training on relation r; we achieve a good performance on
relation 7, then we say relation r; probably leads to ;. As is shown
in Figure 9, relations among politicians are relatively independent
except that all other relations might stimulate like. In more ordinary
user groups, reply is the one that significantly benefit from all other
relations. It is also interesting to observe that the highly-political
P50 shows that like leads to retweet, while from more ordinary
users’ perspective once they liked they are less likely to retweet.
The relations among the relations are asymmetric.

5.3.5 Relation’s Contributions to Ideology Detection. The impor-
tance of each relation to ideology prediction could be measured
by the value of the corresponding A, values in the decoder of
TIMME-hierarchical. All the values are close to 0.2 in practice, in

>National General Election Polls data partly available at https://www.realclearpolitics.
com/epolls/2020/president/National.html.

Compare with the visualization of previous election at https://en.wikipedia.org/wiki/
Political_party_strength_in_U.S._states.

"The ground-truth election outcome in Florida at 2016 is at https://en.wikipedia.org/
wiki/2016_United_States_presidential_election_in_Florida.

retweet mention follow reply like

PureP
P50
P20~50
P+all

Figure 10: Illustration of A value in decoder on each dataset.

[0.99,2.01], but still has some common trends, as is shown in Figure
10. Despite that reply pops out rather than follow on PureP, we
still insist that follow is the most important relation. That is because
we only crawled the most recent about 5000 followers / followees.
If a follow happened long time ago, we would not capture it. The
follow relation is especially incomplete on PureP.

6 CONCLUSION

The TIMME models we proposed handles multiple relations, with
amulti-relational encoder, and multi-task decoder. We step aside the
silent-majority problem by relying mostly on the relations, instead
of the text information. Optionally, we accept incomplete input
features, but we showed that links are able to do well on generating
the ideology embedding without additional text information. From
our observation, links help much more than naively-processed text
in ideology-detection problem, and follow is the most important
relation to ideology detection. We also concluded from visualizing
the state-level overall ideology map that conservative voices tend
to be under-represented on Twitter. Meanwhile we confirmed that
public opinions on news agencies’ ideology could be polarized, with
very obvious tendencies. Our model could be easily extended to
any other social network embedding problem, such as on any other
dataset like Facebook as long as the dataset is legally available, and
of course it works on predicting other tendencies like preferring
Superman or Batman. We also believe that our dataset would be
beneficial to the community.
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A DATA PREPARATION

We target at building a dataset representing the political-centered
social network (Section 3), a selected subset from the giant Twitter
network. Handling this dataset would be challenging. For example,
for GraphSAGE, neighborhood-sampling can not be easily done
both effectively and efficiently. Our dataset reaches the blind spots
of many existing models.

The tools we used to crawl politicians’ name lists from the
government website, and their potential Twitter accounts from
Google, is Scrapy. ' To legally and reliably crawl from Twitter
data, we first applied for Developer API from Twitter !!, and then
used Tweepy '2 for crawling. We set very strict rate limits for our
crawlers so as not to harm any server. Our dataset is released at
https://github.com/PatriciaXiao/TIMME. Raw data was collected
by April, 2019.

A.1 Twitter IDs Preparation

Let us take the same notation as in Section 3, describing the process
as: to construct Gp = {V,{E1, E2, E3, E4, Es}}, we first select the
users to be included V, then we include the links among vertices
in V under each relation r € R = {1,2,3,4,5} into &, accordingly.

A.1.1  Politicians Twitter IDs. As is described briefly in Section 5.1,
we need to start from a set of politicians $, which we treat as seeds
for further crawling.

To start with, we first get the name list of the recently-active
politicians, consists of:

o The union-set of 115t and 116" US congress members, where
we observe a lot of overlap between the two groups; 13

o Recent-years’ presidents and their cabinets; 14

e Additional politicians must be included: Hilary Clinton, who
was running for the president of the United States not long ago;
Michelle Obama, who was the former First Lady.

Next, with the help of Google, we crawled the most-likely Twit-
ter names and IDs of the politicians. We do so automatically, by
providing Google a politician’s name and the keyword “twitter”,
and parsing the first response. Then after manual filtering, we have
583 politicians’ Twitter accounts available, who make up our politi-
cians set . Anyone else to be included in our dataset must be in
the 1-hop neighborhood of a politician (Section 3).

A.1.2  Candidate Non-Politicians Twitter IDs. With the help of Twit-
ter Developer API, we are able to get the full followers and fol-
lowees list of any Twitter user.

However, it is not affordable to include all followers and fol-
lowees of the politicians, thus we set a limit on window size s when
crawling the candidate non-politicians list, only accepting the most-
recent s = 5,000 followers or followees of any politician. These
followers and followees we collected form a raw candidate set Crgqy.
Then we remove the politicians from this set, resulting in the final

Ohttps://scrapy.org/

https://developer.twitter.com/

2https://www.tweepy.org/

13Congress members’ name list with party information is publicly available at https:
//www.congress.gov/members .

4Obama and Trump’s cabinet is publicly available at https://obamawhitehouse.
archives.gov/administration/cabinet and https://www.whitehouse.gov/the-trump-
administration/the-cabinet/ respectively

candidates set C = Crqw — P. Yu; € C, we apply the same win-
dow size s = 5,000 and crawled their most recent s followers, s
followees. All follower-followee pairs are stored into a database for
the convenience of the following steps.

A.1.3  Selecting Subgroups from Candidates. C is still too large a
user set, and chaotic, as we don’t know anything about its com-
ponents. To conduct meaningful analysis, we need to select some
meaningful subgroups from it, such as a very-political subgroup,
and a political-outliers subgroup, etc.

The criteria we used to select the desired subgroups of users is
some thresholds. We define a political-measurement #; for each user
v; € C, who is followed by t; 1 politicians p € #, and meanwhile
following t; » politicians, thus t; is computed by t; = max(t; 1, t;2).

Then we set a threshold range t, set upon each t;, used for filter-
ing the groups of users. Considering we set ¢ as threshold range for
graph Gp, Yu; € V,if t; € t, then v; € Gp, otherwise v; ¢ Gp. By
having t = {o0}, we select a minimum subgraph containing purely
politicians, resulting in our PureP dataset. t € [50, c0) allows us
to select a small group of users who are keen on political topics,
together with the politicians, being our P50 dataset. t € [20, 50) for
less-political users, plus the politicians, being our P20~50 dataset.
t € [20, ) includes all nodes v; whose ¢; > 20. We want to have
a dataset representing more general users, containing some users
from each group. Therefore, we include another 3, 000 users ran-
domly selected from the group ¢ € [1,5). Adding these random
political-outlier users will make the dataset resembles the real net-
work even more. Putting together the politicians, ¢ € [20, o) group,
and the 3,000 random outliers from ¢ € [0,5) group, we form the
dataset P+all. Ideally, P+all has representatives of all groups of
users on Twitter. The statistics are concluded in Table 1.

A.2 Relation Preparation

Only the follow relation is directly observed and already well-
prepared at this stage (stored in a database, as we mentioned before).
Other Twitter relations: retweet, mention, like, reply, must be con-
cluded from tweets. We distinguish the different relation types from
the tweets by the tweets’ fields in responded JSON from API. For
example, there are some fields indicating if an “” mark is a mention,
a retweet, or it links to nothing. According to our observation, the
fields in the Json file responded from Twitter API might change
across time. We don’t know when will it be the next update, so
there’s no ground-truth solution for this part. We suggest whoever
want to do so test the crawler first on her/his own account, trying
all behaviors to conclude some patterns. Note: rate limit applies. 1

Due to the Twitter official API limits, the maximum amount of
tweets we could crawl for each user along the timeline is around
3,200. Therefore, all relations are incomplete. All links we have
only reflect some recent interactions among the users.

A.3 Feature Preparation

We get feature from text, using a user’s tweets posted to generate
her/his feature. Although there has been some recent advances in
NLP with transformer-based structures, such as BERT and XLNet,

Shttps://developer.twitter.com/en/docs/basics/rate-limiting
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Sentence-BERT [30] found that BERT / XLNet embeddings are gen-
erally performing worse than GloVe [26] average on sentence-level
tasks. Not to mention the computational cost of transformers. We
therefore use GloVe-average of the words as features, Wikipedia
2014 + Gigaword 5 (300d) pre-trained version. When we apply the
average-GloVe embedding on tweet-level, and want to tell the ideol-
ogy behind the tweets, we could easily achieve ~ 72.84% accuracy,
using a 2-layers MLP, after only 200 epochs of training.

A.4 Label Preparation

If we are to use only the 583 labels from the politicians, the eval-
uation will always be untrustworthy. To overcome this issue, we
manually expand the labels. We first crawled the users’ profiles of
Vo; € PUC, getting their information such as location and account
description. Next, using the descriptions, searching for the words
democratic, republican, conservative, liberal, their correct spell and
variations, we have a large group of candidates. Then we do manual
filtering to get rid of the uncertain users, reading their descriptions
and recent tweets. We successfully included 2, 976 high-quality new
labels in the end. Those labels make the node-classification task
significantly more stable and reliable.

B PROOF OF WEIGHT BEING FEATURE

Starting from our layer-wise propagation formula, we have that, at
the first convolutional layer (notations in Section 4):

HOD = 0'( > a,A,H<°>W,(°))
reR

where H® € N x d(© is the input feature-matrix. When using
one-hot embedding of features, HO =Tand d© = N, thus the

right-hand-side is equivalent with 0'( DI arAy Wr(o) ) Now, W,(O)

on its own plays the role of H(®) W,(O) when H() # I. Previously,
relation r’s propagation could be viewed as aggregation of a linear
transformation (W,(O)) done on H9, from the neighborhood (4,)
of each node under relation r. Now, it could simply be viewed as the

1
c RNXd( )

propagation of Wr(o) . From another point of view, it is

equivalent as having input features being H ) = W,(O) eRN Xd(l),
and set Wr(o) e RAVxdY ~ I;0) being fixed identical matrix not to

be updated. That’s the reason why we believe that Wr(o) captures
the nodes’ learned features under relation r.

C BASELINE HYPER-PARAMETER AND
ARCHITECTURAL OPTIMIZATIONS

C.1 Applying GCN model Directly

As is discussed in Section 2, due to the uniqueness of the political-
centered social network dataset, most of the existing models won’t
work well under our problem settings. We want to examine how
well could GCN do when treating all relations as the same, ignoring
the heterogeneous types. Very interestingly, without much work
on hyper-parameter optimization, we only increased the hidden
size and added the learning rate scheduler, it works pretty well.
This phenomenon could potentially be an indirect evidence that
relations are correlated, in addition to the discussions in Section 5.

C.2 Missing-Task Completion

We compare our model’s performance on each task with the base-
lines. Ideally, we want models working on heterogeneous informa-
tion networks with both node-classification task and link-prediction
task as our baselines, so that we could compare with them directly.
However, the situation we faced was not as easy as such. For in-
stance, GCN and HAN never considered applying themselves di-
rectly on link-prediction tasks. But we all know that once we have
the embeddings of the nodes, link prediction is doable.

Therefore, we decided that whenever a baseline originally couldn’t
handle a task, we lend it our decoder’s task-specific cells. This de-
cision brings about some significant improvements on the link
prediction performances of NTN+ and GCN+, since TIMME-NTN
is powerful and efficient for link-prediction. Just in case, we also
decide that when a node-classification task is missing, we should
add a linear transformation layer with output units 2, the same as
what we did, and apply a simple cross-entropy loss. From this per-
spective, it is no longer fair to compare them with r-GCN directly.
To distinguish them from others’ standard models, we add a plus

sign “+” to the names, indicating that “we lend it our cells”.

C.3 Optimizing r-GCN

The most important contribution of r-GCN is the weight-matrix
decomposition methods. This mechanism would be very helpful in
reducing the parameters, especially when the number of relations
R is super high. However, in our case where R is small, the weight-
decomposition operation is counter-effective. The first option, basis
decomposition, the number of basis b is easily being larger than R.
In the second option, block-diagonal decomposition, reduces the pa-
rameter size too dramatically, and harms the model’s performance.
Reviewing the experiments reported in the r-GCN paper, seeing
how they chose these hyper-parameters across datasets, we found
that when R is small, they often chose basis-decomposition with
b = 0. We go by the same option, which works well in practice.

C.4 Optimizing HAN

HAN/HAN-+, in general, because of the complex structure with a lot
of parameters, gets easily over-fitting. What makes things worse,
its training curve is never stable, and our early tryouts on using
validation set to automatically stop it at an optimal point did not
work well. We had do it manually, by verifying when its best result
appears on the validation set and when over-fitting starts, finding
the right time to stop training. By default, we set learning rate 0.005,
regularization parameter 0.001, the semantic-level attention-vector
dimension 128, multi-head-attention cell’s number of heads K = 8.
We set the hyper-parameters in the TIMME-NTN component of
HAN-+ the same with ours. Optimizing HAN was a tough work to do,
for it requires re-adapting every choices we made on every dataset
for every task. Adding more meta-path would potentially boosting
its performance, but the computational cost will be overwhelming.
Another observation is that, TIMME models are significantly bet-
ter than HAN/HAN+ in handling imperfect features. When using
GloVe-average features, TIMME models typically perform about
1% worse than using one-hot features, while HAN/HAN+ experi-
ence performance-drop up to around 10%.
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