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Abstract
Knowledge graph inference has been studied
extensively due to its wide applications. It
has been addressed by two lines of research,
i.e., the more traditional logical rule reasoning
and the more recent knowledge graph embed-
ding (KGE). Several attempts have been made
to combine KGE and logical rules for bet-
ter knowledge graph inference. Unfortunately,
they either simply treat logical rules as addi-
tional constraints into KGE loss or use prob-
abilistic models to approximate the exact log-
ical inference (i.e., MAX-SAT). Even worse,
both approaches need to sample ground rules
to tackle the scalability issue, as the total num-
ber of ground rules is intractable in practice,
making them less effective in handling logical
rules. In this paper, we propose a novel frame-
work UniKER to address these challenges by
restricting logical rules to be definite Horn
rules, which can fully exploit the knowledge
in logical rules and enable the mutual enhance-
ment of logical rule-based reasoning and KGE
in an extremely efficient way. Extensive exper-
iments have demonstrated that our approach is
superior to existing state-of-the-art algorithms
in terms of both efficiency and effectiveness.

1 Introduction

Knowledge Graphs (KGs) have grown rapidly
recently which provide remarkably valuable re-
sources for many real-world applications (Auer
et al., 2007; Bollacker et al., 2008; Suchanek et al.,
2007). KG reasoning, which aims at inferring miss-
ing knowledge through the existing facts, is the key
to the success of many downstream tasks and have
received wide attention.

Knowledge Graph Embedding (KGE) methods
currently hold the state-of-the-art in KG reason-
ing (Bordes et al., 2013; Wang et al., 2014; Yang
et al., 2014; Sun et al., 2019). They aim to capture
the similarity of entities via exploring rich structure
information in KGs to predict unseen triples. De-
spite the excellent performance of KGE methods,

the ignorance of possible high-order constraints
specified by logical rules limits their application
in more complex reasoning tasks. In Fig. 1, for
example, we can infer Stilwell lives in USA based
on KGE, due to her similarity with Miller in terms
of embeddings, as both can be reached via the same
relation transformation (i.e. isMarriedTo) from the
same entity (Edison). But without the capability of
leveraging logical rules, we cannot infer Stilwell
and Miller speak English.

An alternative solution is to infer missing facts
via logical rules, which have been extensively
explored by traditional logical rule-based meth-
ods (Richardson and Domingos, 2006; De Raedt
and Kersting, 2008). As shown in Fig. 1, two
entities (e.g., Miller and English) that are not
directly connected in a KG could participate in
the same ground logical rule, (e.g., speakLan-
guage(Miller, English) ← liveIn(Miller, USA) ∧
officialLanguage(USA, English)), and a relation be-
tween them can be inferred if all predicates in the
rule body are true. Different from KGE, logical
inference treats triples as independent units and ig-
nores the correlation among them. As a result, the
performance of logical inference highly depends
on the completeness of KGs, which suffers from
severe insufficiency in reality. For example, due to
the absence of the triple liveIn(Mary Stilwell, USA),
the triple speakLanguage(Mary Stilwell, English)
can not be inferred in Fig. 1. Besides its sensitiv-
ity to the quality of KG, logical inference is also
known for its high computation complexity as it re-
quires instantiating universally quantified rules into
ground rules, which is extremely time-consuming.

Although both embedding-based methods and
logical rule-based methods have their limitations,
they are complementary for better reasoning ca-
pability. As shown in Fig. 1, on one hand, logi-
cal rules are useful to provide additional informa-
tion by exploiting the higher-order dependency of
KG relations (Fig. 1(d)). On the other hand, high-
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Figure 1: Given (a) a KG with observed facts and (b) a set of definite Horn rules, different inference results can be obtained
using (c) KGE, (d) logical inference, and (e) the proposed UniKER approach. The synergy of KGE and logical reasoning via
UniKER is more powerful than a simple union of (c) and (d).

quality embedding learned by KGE models, in turn,
will help to prepare a more complete KG for logical
rule-based reasoning (Fig. 1(c)).

Despite several attempts made to combine KGE
and logical rules for KG reasoning, they either sim-
ply treat logical rules as additional constraints into
KGE loss (Guo et al., 2016; Rocktäschel et al.,
2015; Demeester et al., 2016) or use probabilistic
model to approximate the exact logical inference
(i.e., MAX-SAT) (Qu and Tang, 2019; Zhang et al.,
2019; Harsha Vardhan et al., 2020). Moreover,
these methods rely on ground rules, the total num-
ber of which is intractable in practice. To tackle
the scalability issue, only a small portion of ground
predicates/ground rules are sampled to approxi-
mate the inference process, which causes further
information loss from the logic side.

To overcome the above issues, we pro-
pose a novel Unified framework for combining
Knowledge graph Embedding with logical Rules
(UniKER) for better KG reasoning, to handle a spe-
cial type of first-order logic, i.e., the definite Horn
rules. First, we combine logical rule reasoning
and KG embedding in an iterative manner, to make
sure the inferred knowledge via both techniques
can benefit each other as shown in Fig. 1. Second,
we propose an iterative grounding algorithm to ex-
tend the classic forward chaining algorithm that

is designed for definite Horn rule reasoning in an
extremely efficient way. Consequently, UniKER
can fully exploit the knowledge contained in log-
ical rules and enrich KGs for better embedding.
Meanwhile, KGE enhances the forward chaining
by including more potential useful hidden facts
(See Fig. 1(c)). In this way, two procedures mutu-
ally enhance each other. The main contributions of
this paper are summarized as follows:

• We investigate the problem of combining embed-
ding and definite Horn rules, a much simpler yet
popular form of logical rules, for KG inference.

• A unified framework, UniKER, is proposed,
which provides a simple yet effective iterative
mechanism to let logical inference and KGE mu-
tually enhance each other in an efficient way.

• We theoretically and experimentally show that
UniKER is superior to existing SOTA methods
in terms of efficiency and effectiveness.

2 Preliminaries

2.1 Knowledge Graphs in the Language of
Symbolic Logic

A KG, denoted by G = {E,R,O}, consists of
a set of entities E, a set of relations R, and a
set of observed facts O. Each fact in O is rep-
resented by a triple (ei, rk, ej), where ei, ej ∈ E
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and rk ∈ R. In the language of logic, entities can
also be considered as constants and relations are
called predicates. Each predicate in KGs is a bi-
nary logical function defined over two constants,
denoted as r(·, ·). A ground predicate is a predi-
cate whose arguments are all instantiated by con-
stants. For example, given a predicate liveIn(·, ·),
by assigning constants Miller and USA to it, we
get a ground predicate liveIn(Miller, USA). A triple
(ei, rk, ej) is essentially a ground predicate, de-
noted as rk(ei, ej) in the language of logic. In the
reasoning task, a ground predicate can be regarded
as a binary random variable: rk(ei, ej) = 1 when
the triple (ei, rk, ej) holds true, and rk(ei, ej) =
0 otherwise. Given the observed facts vO =
{rk(ei, ej)|(ei, rk, ej) ∈ O}, the task of knowl-
edge graph inference is to predict the truth value
for all hidden triples (i.e., unobserved triples)
vH = {rk(ei, ej)|(ei, rk, ej) ∈ H}, where H =
{(ei, rk, ej)|(ei, rk, ej) /∈ O, ei, ej ∈ E, rk ∈ R}.

2.2 First Order Logic and Definite Horn
Rules

First-order logic (FOL) rules are constructed over
predicates using logical connectives and quantifiers,
which usually require extensive human supervision
to create and validate and thus severely limit their
applications. Instead, definite Horn rules, as a
special case of FOL rules, can be extracted auto-
matically and efficiently via modern rule mining
systems, such as WARMR (Dehaspe and Toivonen,
1999) and AMIE (Galárraga et al., 2015) with high
quality, which are widely used in practice. Definite
Horn rules are composed of a body of conjunc-
tive predicates and a single positive head predicate.
They are usually written in the form of implication
as shown below:

∀x, y r0(x, y)← r1(x, z1) ∧ r2(z1, z2) ∧ r3(z2, y) (1)

where r0(x, y) is called the head of the rule while
r1(x, z1) ∧ r2(z1, z2) ∧ r3(z2, y) is the body of
the rule. By substituting the variables x, z1, z2, y
with concrete entities ei, ep, eq, ej , we get a ground
definite clause as follows:

r0(ei, ej)← r1(ei, ep) ∧ r2(ep, eq) ∧ r3(eq, ej) (2)

2.3 Logical Reasoning
Traditional logical inference aims to find an assign-
ment of truth values to all hidden ground predicates,
leading to maximizing satisfied ground rules. Thus,
it can be mathematically modeled as a MAX-SAT
problem, which is NP-hard (Shimony, 1994).

2.4 Knowledge Graph Embedding

KGE aims to capture the similarity of entities
by embedding entities and relations into low-
dimensional vectors. Scoring functions, which
measure the plausibility of triples in KGs, are
the crux of KGE models. We denote the
score of a triple (ei, rk, ej) calculated following
scoring function as frk(ei, ej). Representative
KGE algorithms include TransE (Bordes et al.,
2013), TransH (Wang et al., 2014), TransR (Lin
et al., 2015), DistMult (Yang et al., 2014), Com-
plEx (Trouillon et al., 2016), and RotatE (Sun et al.,
2019), which differ in their scoring functions.

3 Related Work on Integrating
Embedding and Logical Rules

MAX-SAT problem is defined using boolean logic
while scoring function of KGE provides a soft truth
value to triples in KG. Probabilistic logic is widely
used to integrate both worlds into the same frame-
work, which is able to extend boolean logic to prob-
abilistic logic to enable uncertain inference. These
approaches can be divided into two categories: (1)
designing a Probablistic Soft Logic (PSL)-based
regularization to embedding models and (2) design-
ing an embedding-based variational distribution
for variational inference of Markov Logic Network
(MLN) (Richardson and Domingos, 2006), a prob-
abilistic logic that applies Markov network to FOL.

PSL-based Regularization in Embedding Loss.
The first way to combine two worlds is to treat
logical rules as additional regularization to embed-
ding models, where the satisfaction loss of ground
rules is integrated into the original embedding loss.
Probabilistic Soft Logic (PSL) (Bach et al., 2015)
is used to compute the satisfaction loss, where the
probability of each predicate is determined by the
embedding. KALE (Guo et al., 2016), RUGE (Guo
et al., 2017) and Rocktäschel et al. (Rocktäschel
et al., 2015) are some of the representative methods.
A summary of these methods can be found in Ap-
pendix E. All approaches in this category have to
instantiate universally quantified rules into ground
rules before model learning. When including all
ground rules into the calculation of satisfaction loss,
the additional regularization becomes the convex
program which reasons analogous MAX-SAT prob-
lem defined over Lukasiewicz logic (Klir and Yuan,
1996) whose solution is an approximation to MAX-
SAT problem (Bach et al., 2015). Detailed proof
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is given in Appendix C. As the total number of
ground rules is intractable in practice, only a small
portion of ground rules will be sampled to tackle
the scalability issue, which further leads to the loss
of logical information. Moreover, most methods
in this category make only a one-time injection
of logical rules to enhance embedding, ignoring
the interactive nature between embedding and logi-
cal inference (Guo et al., 2016; Rocktäschel et al.,
2015).

Embedding-based Variational Inference for
MLN. The second type extends Markov Logic
Network (MLN) (Richardson and Domingos, 2006)
instead. Several methods including pGAT (Har-
sha Vardhan et al., 2020), ExpressGNN (Zhang
et al., 2019) and pLogicNet (Qu and Tang, 2019)
are proposed to leverage graph embedding to de-
fine variational distribution for all possible hidden
triples to conduct variational inference of MLN.
A detailed introduction of these methods can be
found in Appendix F. One main drawback is that
they only approximate the exact logical inference
(i.e., MAX-SAT) due to the nature of the approx-
imate solution provided by variational inference.
Besides, inference efficiency is another challenge.
Given the fact that KGs usually contain a large
number of entities, it is impractical to optimize on
all hidden triples. Therefore, only a small portion
of hidden triples are sampled to reduce the compu-
tational complexity. This brings in the similar issue
of information loss from the logical side.

4 A Unified Framework for Knowledge
Graph Inference: UniKER

Rather than follow probabilistic logic to integrate
logical rules and KGE, we show that by leverag-
ing the nice properties of definite Horn rules, there
is a much simpler way to directly derive an opti-
mal boolean solution for MAX-SAT problem. To
capture the mutual interaction between KGE and
logical inference, we proposed an iterative mecha-
nism, which ensures that UniKER is more potent
than a simple union of KGE and logical rules.

4.1 Update KG via Forward Chaining-based
Logical Reasoning

We prove that there exists a truth assignment that
satisfies all ground rules when restricting logical
rules to be definite Horn rules. Detailed proof can
be found in Appendix D. The next question is how

to conduct such an assignment efficiently. We de-
note the satisfying truth assignment as vTH

∗ (hidden
triples that are true) and vFH

∗ (hidden triples that are
false), i.e., vTH

∗
= {rk(ei, ej) = 1 | rk(ei, ej) ∈

vH} and vFH
∗

= {rk(ei, ej) = 0 | rk(ei, ej) ∈
vH}. An existing algorithm called forward chain-
ing (Salvat and Mugnier, 1996) can derive vTH

∗

and vFH
∗ efficiently. Starting from known facts

(e.g., liveIn (Mina Miller, USA), officialLanguage
(USA, English)), it triggers all ground rules whose
premises are satisfied (e.g., speakLanguage (Mina
Miller, English) ← liveIn (Mina Miller, USA) ∧
officialLanguage (USA, English)), and adds their
conclusion (e.g., speakLanguage (Mina Miller, En-
glish)) to the known facts until no facts can be
added anymore. As illustrated in Fig. 1, unlike
other logical inference algorithms, which require
all ground predicates (including both observed and
unobserved ground predicates) into calculation, for-
ward chaining adopts “lazy inference" instead. It
involves only a small subset of “active” ground
predicates/rules, and activates more if necessary as
the inference proceeds. The mechanism dramati-
cally improves inference efficiency by avoiding the
computation for massive ground predicates/rules
that are never used. Moreover, considering that def-
inite Horn rules which can be extracted efficiently
via modern rule mining systems are usually chain-
like Horn rules, which is in the form as shown in Eq.
(1). The conjunctive body of a ground chain-like
Horn rules is essentially a path in a KG, which can
be extracted efficiently using sparse matrix multi-
plication. More general implementation of forward
chaining algorithm can be found in Appendix G.

4.2 Update KG via Embedding-based
Inference

KG Embedding on the Updated KG. Since
vTH
∗ and vFH

∗ are the satisfying truth assignment
derived by forward chaining, knowledge contained
in definite Horn rules is guaranteed to be fully ex-
ploited. Thus, we can treat (1) both observed triples
O and the newly inferred triples vTH

∗ as positive
triples and (2) vFH

∗ as negative triples to form the
objective function of KGE model:

L =
∑

(ei,rk,ej)∈{O∪vT
H
∗}

L(ei, rk, ej) (3)

in which L(ei, rk, ej) is defined as:

max(0, γ − frk (ei, ej) +
∑

(e′i,r,e
′
j)∈N (ei,r,ej)

frk (e′i, e
′
j)

(4)
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Figure 2: Illustration of potential useful hidden triples by
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where (e′i, rk, e
′
j) denotes their corresponding neg-

ative samples, and γ is a margin to separate them.
The score frk(ei, ej) of a triple (ei, rk, ej) can be
calculated following any scoring functions of KGE
models. To reduce the effects of randomness, we
sample multiple negative triples for each positive
sample, which is denoted as N (ei, rk, ej). To en-
sure true but unseen triples will not be sampled, the
selection of N (ei, rk, ej) is restricted to vFH

∗.

Update KG with KGE-based Inference. Al-
though forward chaining can find the satisfying
truth assignment for all hidden triples efficiently,
its reasoning ability is severely limited by the cov-
erage of rules, the incompleteness of KGs, and
the errors/noise contained in KGs. Considering
its strong reasoning ability and robustness, KGE
models are not only useful to (1) prepare a more
complete KG by adding useful hidden triples but
also helpful to (2) eliminate incorrect triples in both
KGs and inferred results.

(1) Including Potential Useful Hidden Triples
(∆+). Since the body of a definite Horn rule is a
conjunction of predicates, its ground rule can get
activated and contribute to logical inference only
if all the predicates in its body are completely ob-
served. Due to the sparsity of real-world KGs,
only a small portion of ground rules can partici-
pate in logical inference, which severely limits the
reasoning ability of definite Horn rules. A straight-
forward solution would be computing the score for
every hidden triple and adding the most promising
ones with the highest scores to the KG. Unfortu-
nately, the number of hidden triples is quadratic
to the number of entities (i.e. O(|R||E|2)), thus
it is too expensive to compute scores for all of
them. Instead, we adopt “lazy inference” strategy
to select only a small subset of “potentially use-
ful” triples. Take the ground rule in Eq. (2) as
an example, if r1(ei, ep) ∈ vO, r3(eq, ej) ∈ vO,
and r2(ep, eq) ∈ vH , we would not be able to in-
fer the head r0(ei, ej) as whether r2(ep, eq) is true
or not is unknown. Thus, r2(ep, eq) becomes the

crux to determine the truth value of the head, which
is called “potentially useful”. In general, given a
ground rule whose body includes only one unob-
served ground predicate, this unobserved ground
predicate can be regarded as a “potentially useful”
triple. We denote the set of all “potentially use-
ful” triples as ∆+. According to their positions,
“potentially useful" triples can be divided into two
categories: (1) triples that are the first or the last
predicate in a ground rule; and (2) triples that are
neither the first nor the last. We propose algorithms
to identify both types of “potentially useful” triples
respectively as illustrated in Fig. 2 by taking Eq. (2)
as an example. More details are summarized in Ap-
pendix A. Score frk(ei, ej) will be computed by
KGE model to predict whether a “potentially use-
ful” triple is true. If frk(ei, ej) is larger than the
given threshold Ψ, the triple is classified as true.
Otherwise, the triple is classified as false. And
we experimentally analysed the effect of Ψ in the
Appendix J.2. Note that a dynamic programming
algorithm can also be used to alleviate the com-
putational complexity for long rules. The detailed
algorithm can be found in the Appendix B.

(2) Excluding Potential Incorrect Triples
(∆−). In addition, due to the symbolic nature, log-
ical rules cannot handle noisy data as well. If the
KGs contain any error, based on incorrect observa-
tions, forward chaining will not be able to make the
correct inference. Even worse, it may contribute
to the propagation of the error by including incor-
rectly inferred triples into KGs. Therefore, a clean
KG is significant for logical inference. Since KGE
models show great power in capturing the network
structure of KGs, incorrect triples usually result
in contradictions and get lower prediction scores
in KGE models compared to correct ones. There-
fore, score frk(ei, ej) computed by KGE model
is able to measure reliability of triple (ei, rk, ej)
in O ∪ VT

H
∗. We denote bottom θ% triples with

lowest prediction scores as ∆−. It will be excluded
from O ∪VT

H
∗ to alleviate the impact of noise.

4.3 Integrating Embedding and Logical
Rules in an Iterative Manner

Since logical rules and KGE can mutually en-
hance each other, we propose a unified framework,
known as UniKER, to integrate KGE and defi-
nite Horn rules-based inference iteratively. The
pseudo-code of UniKER can be found in Algo-
rithm 1. MAX_ITER is the user specified max
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Algorithm 1: Learning Procedure of UniKER
Input: Observed facts in knowledge bases O;

threshold to eliminate noise θ%; threshold to
include useful hidden triples Ψ; a set of
definite Horn rules F

Output: KG embeddings
1 for t = 1 : MAX_ITER do
2 // Update KG via Logical Reasoning
3 Derive vTH

t∗
from O and update O ← O∪vTH

t∗

4 // Update KG via Embedding-based Inference
5 KG embedding learning based on O;
6 Compute ∆− and update O ← O −∆−;
7 Compute ∆+ and update O ← O ∪∆+;
8 end

iterations to run the algorithm, which highly de-
pends on KG datasets. According to results in
Fig. 4, MAX_ITER is usually set as 2 to 4. For
each iteration of UniKER, it is comprised of two
steps. First, we focus on logical reasoning to up-
date KG. Following forward chaining algorithm,
by triggering all rules whose premises are satis-
fied, we derive entailed triple set vTH

t∗ at t-th itera-
tion, which is a subset of vTH

∗ (vTH
∗

= ∪+∞t=1v
T
H
t∗).

Then, the newly inferred triples vTH
t∗ are added

to KG by updating O = O ∪ vTH
t∗. Second, we

focus on embedding-based inference to update KG.
KGE can be learned based on the updated KG after
the first step. With the learned embeddings, ∆−,
which is the bottom θ% triples with lowest predic-
tion scores, can be eliminated from O. Meanwhile,
∆+, which are potentially useful hidden triples, can
be added to O.

4.4 Connection to Existing Approaches

Connection to PSL-based Regularization Ap-
proaches. The general objective of PSL-based
regularization approaches can be written as:

LKGE + λLPSL (5)

where LKGE denotes the loss of the base KGE
model while LPSL corresponds to the satisfaction
loss of the sampled ground rules. When includ-
ing all ground rules into the calculation of LPSL,
LPSL becomes the convex program which rea-
sons analogous MAX-SAT problem defined over
Lukasiewicz logic, which only approximates the ex-
act logical inference. Detailed proof is given in Ap-
pendix C. Instead of guiding the embedding learn-
ing approximately, UniKER directly take the opti-
mum of MAX-SAT problem as targets to optimize
the embedding model. Thus it can better exploit the

knowledge contained in definite Horn rules. More-
over, LPSL makes only a one-time injection of
logical rules to enhance embedding, where logical
reasoning will not be further enhanced even after
the KGE gets improved. On the contrary, UniKER
is able to capture the interactive nature between
embedding and logical inference.

Connection to Embedding-based Variational
Inference to MLN. The general objective of
embedding-based variational inference for MLN
can be written as:

LELBO(Qθ, Pw) + λLKGE(Qθ) (6)

where the variational distribution Qθ is defined
using a KGE model and Pw is the true posterior de-
fined over MLN.LKGE(Qθ) denotes the loss of the
base KGE model. By optimizing LELBO(Qθ, Pw),
the KL divergence between Qθ and Pw can be min-
imized. In this way, the knowledge contained in
rules can be transferred into the embeddings. Due
to the nature of the approximate solution provided
by variational inference and the information loss
caused the sampling procedure, Qθ can only ap-
proximate the optimum of MAX-SAT problem and
no guarantees are provided on the quality of the
solutions obtained. Instead of guiding the learn-
ing of embedding model via variational inference,
we directly solve MAX-SAT problem and use the
derived knowledge vTH

∗ to train the embedding
model, which leads to superior reasoning.

Advantages of UniKER compared to SOTA
methods. We categorize all existing methods ac-
cording to two aspects: (1) whether they capture
mutual interaction between KGE and logical infer-
ence; and (2) whether they conduct exact logical
inference. The summary is given in Table 1. For
the first aspect, most PSL-based regularization ap-
proaches make only a one-time injection of logi-
cal rules to enhance embedding, while embedding-
based variational inference to MLN and UniKER
provide the interaction between embedding and
logical inference. For the second aspect, both PSL-
based regularization approaches and embedding-
based variational inference to MLN follow the
framework of probabilistic logic to combine logi-
cal rule and KGE, which can only approximate the
optimal solution of MAX-SAT problem. UniKER
is the first to use forward chaining to conduct exact
inference, which provides an optimal solution to
the original MAX-SAT problem.
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Categories Methods Interactive Exact Logical
Inference

PSL-based
Regularization

KALE (Guo et al., 2016) × ×
RUGE (Guo et al., 2017) X ×

Rocktäschel et al. (Rocktäschel et al., 2015) × ×

Embedding-based
Variational

Inference to MLN

pLogicNet (Qu and Tang, 2019) X ×
ExpressGNN (Zhang et al., 2019) X ×

pGAT (Harsha Vardhan et al., 2020) X ×

Our Proposed Method UniKER X X

Table 1: Capabilities of different methods.

5 Experiments

5.1 Experimental Setup

Datasets. We implement experiments on three
large-scale real-world KGs (i.e., Family (Den-
ham, 1973), FB15k-237 (Bordes et al., 2013) and
WN18RR (Bordes et al., 2013)). AMIE+ (Galár-
raga et al., 2015) is used to generate candidate
rules automatically. More details about datasets,
rule generation and examples of logical rules are
provided in Appendix I and J.5.

Compared Methods. We evaluate our proposed
method against SOTA algorithms, including (1)
basic KGE models (e.g., RESCAL (Nickel et al.,
2011), SimplE (Kazemi and Poole, 2018), Hy-
pER (Balažević et al., 2019a), TuckER (Balaže-
vić et al., 2019b), TransE (Bordes et al., 2013),
DistMult (Yang et al., 2014) and RotatE (Sun
et al., 2019)), (2) traditional logical rule-based
methods (e.g., MLN (Richardson and Domingos,
2006) and BLP (De Raedt and Kersting, 2008)), (3)
two classes of approaches combining embedding
model with logical rules (two representative meth-
ods KALE (Guo et al., 2016) and RUGE (Guo et al.,
2017) for PSL-based regularization approaches,
and pLogicNet (Qu and Tang, 2019), Express-
GNN (Zhang et al., 2019) and pGAT (Harsha Vard-
han et al., 2020) for embedding-based variational
inference of MLN), and (4) other approaches to
combining embedding model with logical rules
(e.g., BoxE (Abboud et al., 2020)). To show that
UniKER can be easily generalized to various KGE
models, we chose TransE (Bordes et al., 2013),
DistMult (Yang et al., 2014) and RotatE (Sun et al.,
2019) as the scoring function for UniKER.

5.2 KG Completion

To compare different algorithms on KG inference
task, we mask the head or tail entity of each
test triple, and require each method to predict the

Figure 3: Impact of #iterations on UniKER (KG completion
task on Family dataset).

Figure 4: Proportion to the optimal number of inferred triples
w.r.t. #iterations for efficiency analysis of Forward Chaining.

masked entity. More detailed settings are in Ap-
pendix J.1. Table 2 shows the comparison results,
from which we find that: (1) UniKER consistently
outperforms KGE models in most cases with sig-
nificant performance gain, which can ascribe to the
utilization of additional knowledge from logical
rules; (2) UniKER also obtains better performance
than both classes of approaches which combine
embedding model with logical rules as it provides
an exact optimal solution to satisfiable problem
defined over all ground rules rather than employ
sampling strategies to do approximation.

Impact of Iterative Algorithm on KG Com-
pletion. To investigate how iterative process helps
improve reasoning ability of UniKER, we con-
duct experiments on Family dataset and record the
performance of UniKER on test data in terms of
Hit@1, Hit@10 and MRR in every iteration. In

7



Model Family FB15k-237 WN18RR
Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR

RESCAL 0.489 0.894 0.639 0.108 0.322 0.179 0.123 0.239 0.162
SimplE 0.335 0.888 0.528 0.150 0.443 0.249 0.290 0.351 0.311
HypER† 0.364 0.903 0.551 0.252 0.520 0.341 0.436 0.522 0.465
TuckER† 0.373 0.898 0.567 0.266 0.544 0.358 0.443 0.526 0.470

BLP† - - - 0.062 0.150 0.092 0.187 0.358 0.254
MLN 0.655 0.732 0.694 0.067 0.160 0.098 0.191 0.361 0.259

KALE 0.433 0.869 0.598 0.131 0.424 0.230 0.032 0.353 0.172
RUGE 0.495 0.962 0.677 0.098 0.376 0.191 0.251 0.327 0.280

ExpressGNN 0.105 0.282 0.164 0.150 0.317 0.207 0.036 0.093 0.054
pLogicNet 0.683 0.874 0.768 0.261 0.567 0.364 0.301 0.410 0.340
pGAT† - - - 0.377 0.609 0.457 0.395 0.578 0.459

BoxE† - - - - 0.538 0.337 - 0.541 0.451

TransE 0.221 0.874 0.453 0.231 0.527 0.330 0.007 0.406 0.165
UniKER-TransE 0.873 0.971 0.916 0.463 0.630 0.522 0.040 0.561 0.307
DistMult 0.360 0.885 0.543 0.220 0.486 0.308 0.304 0.409 0.338
UniKER-DistMult 0.770 0.945 0.823 0.507 0.587 0.533 0.432 0.538 0.485
RotatE 0.787 0.933 0.862 0.237 0.526 0.334 0.421 0.563 0.469
UniKER-RotatE 0.886 0.971 0.924 0.495 0.612 0.539 0.437 0.580 0.492
† Results on FB15k-237 and WN18RR are taken from the original papers.

Table 2: Effectiveness on KG completion task

Model θ Hit@1 Hit@10 MRR

TransE - 0.026 0.800 0.319

10 0.286 0.776 0.466
20 0.311 0.816 0.503

UniKER-TransE 30 0.322 0.833 0.520
40 0.352 0.812 0.523
50 0.292 0.791 0.486

Table 3: Ablation study on noise threshold θ% on Family
dataset (whose train set is injected with noise)

particular, KGE model is trained based on the orig-
inal data without any inferred triples included in
iteration 0. As presented in Fig. 3, we observed
that (1) with the increase of iterations, the perfor-
mance improves rapidly first, and gradually slows
down; (2) UniKER has a bigger impact on Hit@k
compared to MRR.

Robustness Analysis. To investigate the ro-
bustness of UniKER, we compare the reasoning
ability of UniKER with TransE on Family dataset
with noise. Complete details of injecting noise are
summarized in Appendix J.1. We vary θ among
{10, 20, 30, 40, 50} to study the effect of the thresh-
old used to eliminate noisy triples. The comparison
results are presented in Table 3. We observe that
(1) UniKER outperforms TransE on noisy KG with
significant performance gain; (2) with the increase
of θ, the performance first increases and then de-
creases. The best performance is achieved when
θ = 40%.

Effect of Threshold Ψ Used to Include Poten-

Model ψ Hit@1 Hit@10 MRR

UniKER-TransE 10 0.873 0.971 0.916
UniKER-TransE 20 0.878 0.972 0.919
UniKER-TransE 30 0.873 0.972 0.916
UniKER-TransE 40 0.874 0.973 0.917
UniKER-TransE 50 0.871 0.970 0.915

Table 4: Results of Reasoning on Family Dataset with Differ-
ent Thresholds (ψ%) to Include Useful Hidden Triples.

tial Useful Hidden Triples To investigate effect
of threshold used to include useful hidden triples,
we also compare the reasoning ability of UniKER
with TransE on Family dataset with different thresh-
olds Ψ. As threshold can vary a lot for different
data sets, to propose a unified way to determine
proper threshold Ψ, we take score frk(ei, ej) cor-
responding to the triple which ranks as top ψ%
in test dataset as threshold Ψ. We vary ψ among
{10, 20, 30, 40, 50}. The comparison results are
presented in Table 9. We can observe that reason-
ing ability of UniKER does not vary a lot with
different thresholds. In other words, the perfor-
mance is less sensitive to the parameter ψ, which
is appealing in practice.

5.3 Efficiency Analysis
Besides the promising results on KG reasoning, our
UniKER is superior in terms of efficiency. Though
we have theoretically analyzed the computational
complexity of UniKER in Appendix H, the effi-
ciency of forward chaining highly depends on KG
datasets. Note that forward chaining learns the
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optimal truth assignment for the satisfiable prob-
lem iteratively, the number of iterations required
to achieve the optimal solution may influence its
scalability. We first conduct two experiments on
six datasets (details are introduced in Appendix
I): (1) as presented in Fig. 4, we record the pro-
portion of inferred triples accumulated in every
iteration over all inferred triples. The result shows
that forward chaining can achieve the optimal so-
lution within 12 iterations, and infer most correct
triples within only 4 iterations; (2) as illustrated
in Appendix J.3, we evaluate the scalability of for-
ward chaining against a number of SOTA inference
algorithms for MLN (e.g., MCMC (Carlo, 2004),
MC-SAT (Poon and Domingos, 2006), BP (Yedidia
et al., 2001), liftedBP (Singla and Domingos, 2008)
and Tuffy (Niu et al., 2011)). Forward chaining
runs 100− 100, 000 times faster than them. Some
widely used algorithms MCMC and MC-SAT even
cannot handle RC1000 dataset, which indicates the
scalability of UniKER. Then, we compared the
overall efficiency of our proposed UniKER with
other methods. As shown in Appendix J.3, the time
cost per epoch of UniKER is shorter than other
methods combining embedding with logical rules
experimentally, indicating its efficiency.

5.4 Mutual Enhancement between KGE and
Logical Inference

In this section, we aim to show that the synergy of
KGE and logical inference via UniKER is more
powerful than a plain union.

Enhancement of Logical Inference via KGE.
On one hand, high quality embedding learned by
KGE models is useful to prepare more complete
KGs via including useful hidden triples, which the
performance of logical inference highly depends
on. To show the benefit brought by KGE over logi-
cal inference, we evaluate UniKER-TransE against
forward chaining on Family Dataset with the triple
classification task, which aims to predict correct
facts in the testing data. In order to create a testing
set for classification, we randomly corrupt relations
of correct testing triplets for negative triples con-
struction. It results in a total of 2×#Test triplets
with equal number of positive and negative exam-
ples. During evaluation, we adopt three evaluation
metrics, i.e., precision, recall and F1. As shown in
Table 5, we can observe that although the precision
slightly decreases, UniKER outperforms forward
chaining with significant performance gain in terms

Model Precision Recall F1

Forward Chaining 1.000 0.919 0.958
UniKER-TransE 0.991 0.955 0.973

Table 5: UniKER-TransE v. Forward Chaining on Family
dataset (whose test set only retains triples that can be inferred
by logical rules) on triple True/False classification task.

Model Hit@1 Hit@3 Hit@10 MRR

TransE 0.267 0.651 0.803 0.476
UniKER-TransE 0.710 0.866 0.904 0.816

Table 6: Results of reasoning of UniKER-TransE v.s. TransE
on Family dataset (whose test set eliminates triples that can
derive from logical rules).

of recall and F1, which validates the enhancement
brought by KGE model over logical inference.

Enhancement of KGE via Logical Inference.
On the other hand, logical rules are useful to gather
more reliable triples for KGE by exploiting sym-
bolic compositionality of KG relations, which leads
to the enhancement of the reasoning ability of KGE
model. To investigate the added value brought
by logical rules over KGE, we evaluate UniKER-
TransE against TransE on Family dataset on the
KG completion task. As some triples in test dataset
can be directly derived from logical rules, to en-
sure the improvement comes from the reasoning
ability enhancement of KGE model, we exclude
the triples derived directly from rules from the test
data. As presented in Table 6, we can observe
that UniKER-TransE outperforms TransE model
with huge performance gain, especially in terms
of Hit@1, which can ascribe to the added value
brought by logical rules over KGE.

6 Conclusion

In this paper, we proposed a novel framework,
known as UniKER, to integrate embedding and
definite Horn rules in an iterative manner for better
KG inference. We have shown that UniKER can
fully leverage the knowledge in definite Horn rules
and completely transfer them into the embeddings
in an extremely efficient way.

Acknowledgements

This work was partially supported by NSF III-
1705169, NSF 1937599, DARPA HR00112090027,
Okawa Foundation Grant, and Amazon Research
Awards.

9



References
Ralph Abboud, Ismail Ilkan Ceylan, Thomas

Lukasiewicz, and Tommaso Salvatori. 2020.
Boxe: A box embedding model for knowledge base
completion. arXiv preprint arXiv:2007.06267.

Sören Auer, Christian Bizer, Georgi Kobilarov, Jens
Lehmann, Richard Cyganiak, and Zachary Ives.
2007. Dbpedia: A nucleus for a web of open data.
In The semantic web, pages 722–735. Springer.

Stephen H Bach, Matthias Broecheler, Bert Huang,
and Lise Getoor. 2015. Hinge-loss markov random
fields and probabilistic soft logic. arXiv preprint
arXiv:1505.04406.
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A Illustration of Potential Useful Hidden
Triples

Let every relation rk in KG associate with an
|E| × |E| matrix M(k), in which the element
M

(k)
ij = 1 if the triple (ei, rk, ej) ∈ O, and 0

otherwise. The algorithms to identify both types of
“potential useful" triples as illustrated in Fig. 2 in
main context are given as follows.

• When the “potential useful" triple is the first
or the last predicate in a ground rule, other
observed triples in a chain-like definite Horn
rule still constitute a complete path, which can
be extracted efficiently by sparse matrix multi-
plication. Take Fig. 2 (c) in main context as
an example, to identify the “potential useful"
triple r1(ei, ep), we have to first extract all con-
nected path r2(ep, eq)∧ r3(eq, ej) by calculating
M = M(2)M(3), where M(2) and M(3) are ad-
jacency matrices corresponding to relations r2
and r3. Each nonzero element Mpj indicates a
connected path between ep and ej . We denote
all indexes correspond to nonzero rows in M as
δ = {p|(

∑
j Mpj) 6= 0}, which indicates that

there is always a connected path starting at p. For
specific p ∈ δ, ∆p = {(ei, r1, ep)|ei ∈ E} de-
fines a set “potential useful" triples. If (ei, r1, ep)
in ∆p is predicted to be true via KGE, the head
predicates r0(ei, ej) can be inferred.

• Otherwise, the path corresponds to the conjunc-
tive body of the ground rule get broken into two
paths by the “potential useful" triple, which we
have to extract separately. As shown in Fig.2
(d) in main context , when identifying “poten-
tial useful" triples r2(ep, eq) ∈ vH , two paths
to be extracted are essentially two single rela-
tions r1 and r3, whose corresponding matrices
are M(1) and M(3), respectively. We denote all
indexes correspond to nonzero columns in M(1)

as δ1 = {p|(
∑

iM
(1)
ip ) 6= 0} and all indexes

correspond to nonzero rows in M(3) as δ2 =

{q|(
∑

j M
(3)
qj ) 6= 0}. ∆12 = {(ep, r2, eq)|p ∈

δ1, q ∈ δ2} defines a set “potential useful" triples.
If (ep, r2, eq) in ∆12 is predicted to be true via
KGE, the head predicates {r0(ei, ej)|M(1)

ip 6=
0,M

(3)
qj 6= 0} can be inferred.

B Dynamic Programming to Calculate
M for Long Rules

Considering that the body of a chain-like defi-
nite Horn rules Fk can be regard as sequence
of relations, which can be denoted as B(Fk) =
[rn, . . . , rm]. As mentioned in subsection Includ-
ing Potential Useful Hidden Triples, to identify
all “potential useful" triples for rule Fk, we have
to compute all possible sub-sequences of its body.
To alleviate computational complexity, we adopt
a dynamic programming algorithm. In particular,
we maintain a table T to record all previous calcu-
lation and compute new results based on T . The
keys of T are all possible sub-sequences of B(Fk)
for all rules Fk and the values of T are the corre-
sponding M matrix. We initialize T by including
adjacent matrix corresponding to all relations in
the KG (e.g., T = {k : M(k)}|R|k=1).

Algorithm 2: Dynamic Programming to Calcu-

late M
Input: A set of chain-like definite Horn rules F ; A

table T = {k : M(k)}|R|k=1
1 for Fk ∈ F do
2 l← len(B(Fk))
3 for i ∈ range(l) do
4 for j ∈ range(i+ 1, l) do
5 if B(Fk)[i : j] /∈ T then
6 T [B(Fk)[i : j]] = T [B(Fk)[i :

j − 1]] ∗ T [B(Fk)[j]]
7 end
8 end
9 end

10 end

C Analogous MAX-SAT Problem
Defined Over Lukasiewicz Logic

Consider a set of logical clauses C =
{C1, . . . , Cm}, where Cj ∈ C is a disjunction
of variable rk(ei, ej) or its negation ¬rk(ei, ej),
which can be written as:

(∨rk(ei,ej)∈I+j rk(ei, ej))

∨(∨rk(ei,ej)∈I−j ¬rk(ei, ej))
(7)

where I+j (resp. I−j ) is the set of variables that are
not negated (resp. negated). Instead of interpreting
the clauses C using Boolean logic, Lukasiewicz
logic allow variables rk(ei, ej) to take soft truth
values I(rk(ei, ej)) in an interval between [0, 1].
Given two variables xi and xj , the formulas for the
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relaxation of the logical conjunction (∧), disjunc-
tion (∨), and negation (¬) are as follows:

I(xi ∧ xj) = max{0, I(xi) + I(xj)− 1}
I(xi ∨ xj) = min{1, I(xi) + I(xj)}

I(¬xi) = 1− I(xi).

Therefore, by associating eachCj ∈ C with weight
wj , the analogous MAX-SAT problem defined over
C in Lukasiewicz logic can be written as:

max
{rk(ei,ej)}∈[0,1]n

∑
Cj∈C

wj min{
∑

rk(ei,ej)∈I+j

rk(ei, ej)

+
∑

rk(ei,ej)∈I−j

(1− rk(ei, ej)), 1}

(8)
where wj is the weight of Cj . It is equivalent to the
relaxation of MAX-SAT problem. The proof is as
follows.

The MAX-SAT problem defined over weighted
C can be formulated as the integer linear program
as follows:

max
{rk(ei,ej)}∈{0,1}n

∑
Cj∈C

wj min{
∑

rk(ei,ej)∈I+j

rk(ei, ej)

+
∑

rk(ei,ej)∈I−j

(1− rk(ei, ej)), 1}

(9)
where wj is the weight of Cj . Finding a most prob-
able assignment to the variables rk(ei, ej) is NP-
hard (Shimony, 1994). Using relaxation techniques
developed in the randomized algorithms commu-
nity, we can independently round each Boolean
variable rk(ei, ej) to true with probability pijk.
Then, the expected satisfaction score Ŵ of clauses
C is:

Ŵ =
∑
Cj∈C

wj(1−
∏

rk(ei,ej)∈I+j

(1− pijk)

∏
rk(ei,ej)∈I−j

pijk)
(10)

The optimal Ŵ would give the exact MAX-SAT
solution. According to (Bach et al., 2015), to ap-
proximately optimize Ŵ , we can relax Eq.(9) as
following:

max
ŷ∈[0,1]n

∑
Cj∈C

wj min{
∑

rk(ei,ej)∈I+j

ˆyijk

+
∑

rk(ei,ej)∈I−j

(1− ˆyijk), 1}
(11)

This results in the equivalence of Eq.(8) and MAX-
SAT relaxation. Therefore, the optimum of Eq.(8)
can only approximate the optimum of MAX-SAT
problem.

D Satisfiability of KG Inference under
Restriction of Definite Horn Rules

Given a set of logical rulesF and their ground rules
Fg, if there exists at least one truth assignment that
satisfies all ground rules Fg, we call it satisfiable.
We will show there exists a truth assignment to all
hidden triples in a KG such that all ground rules are
satisfied when restricting logical rules to be definite
Horn rules.

Theorem 1. Knowledge graph inference is satis-
fiable when restricting logical rules to be definite
Horn rules.

Proof. A set of ground rules is unsatisfiable if we
can derive a pair of opposite ground predicates (i.e.,
r0(ei, ej) and ¬r0(ei, ej)) from them. It is the case
if and only if ¬r0(ei, ej) is defined in KG as def-
inite Horn rules can only include one single posi-
tive head predicate which results in its incapability
in deriving negative triples. However, a typical
KG will not explicitly include negative triples (i.e.,
¬r0(ei, ej)). Thus we can never derive such a pair
of opposite ground predicates, which confirms that
KG inference is satisfiable when restricting logical
rules to be definite Horn rules.

E Summary of PSL-based
Regularization Approaches.

PSL-based regularization methods treat logical
rules as additional regularization, where satisfac-
tion of rules is integrated into the original embed-
ding loss. A typical integration is defined as fol-
lows: (1) sampling ground logical rules given the
template logical rules; (2) mapping each related
triple (i.e., predicate) into a confidence score (i.e.,
soft truth value); (3) computing the satisfaction
score to each ground rule based on its predicates’
scores; and (4) defining proper loss based on the
satisfaction score for all the ground rules. We now
use KALE (Guo et al., 2016) as an example to
illustrate the procedure described above. First, a
set of positive and negative ground rules (i.e., f+

and f−) are sampled given the template logical
rules. Together with atomic formulas (i.e., positive
and sampled negative triples), the whole set of for-
mulas is denoted as Fg. Second, each predicate
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rk(ei, ej) is assigned with a soft truth value, which
is a transformation of TransE-based scoring func-
tion: I(rk(ei, ej)) = 1 − 1

3
√
d
‖ei + rk − ej‖1,

where ei, rk, and ej are embedding vectors to the
corresponding entities and relations and d is the
dimensionality of the embeddings. Third, the soft
truth value of a ground rule is computed according
to Lukasiewicz Logic, where the basic operations
are summarized in appendix C: Given the basic op-
erations, the truth value of any ground formula can
be calculated recursively. Finally, KALE defines a
loss function over formulas fromFg, which contain
both triples and ground rules. Similar to margin-
based ranking loss, embeddings are learned via
maximizing the difference between the soft truth
value of positive formulae I(f+) and its negative
samplings I(f−). Note that, by removing ground
rules from Fg, the loss is degenerated to regular
TransE-based embedding loss. Rocktäschel (Rock-
täschel et al., 2015) devised a model similar to
KALE. However, instead of learning entity em-
beddings for individual entity, they utilize matrix
factorization to learn joint embeddings of pairs of
entities vei,ej as well as embeddings of relations
vrk . Logistic loss is used to maximize the soft
truth value of positive formulaes I(f+). Different
from above methods, RUGE (Guo et al., 2017)
defines a loss function over triples. It employs scor-
ing function in ComplEx (Trouillon et al., 2016),
σ(Re(〈ei, rk, ej〉)), to model triples. Triples are
divided into two categories, including observed
triples (i.e., vO) and hidden triples (i.e., vH ). Ob-
served triples have labels yrk(ei,ej) = 1 whereas
sampled negative triples have labels yrk(ei,ej) = 0.
The soft label of hidden triples srk(ei,ej) ∈ [0, 1]
have to be predicted following t-norm fuzzy logic.
With yrk(ei,ej) and srk(ei,ej), RUGE learns embed-
ding by enforcing triples to be consistent with their
labels. The summary of all logical rule-based regu-
larization approaches can be found in Table 7.

F Summary of Embedding-based
Variational Inference for MLN.

To specify probability distributions over complex
relational domains compactly, Markov Logic Net-
work (MLN) (Richardson and Domingos, 2006)
provides a probabilistic extension of FOL via prob-
abilistic graphical models. Given a set of FOL
formulas F and their corresponding weight vector
w, it defines a Markov network with one node per
ground predicate and one feature per ground rule.

The weight of a feature is the weight of its origi-
nal FOL rules. Under the MLN model, the joint
probability of all triples is defined as:

pw(vO,vH) =
1

Z(w)
exp(

∑
i:Fi∈F

wini(vO,vH))

(12)
where ni(vO,vH) is the number of true ground-
ings of Fi based on the values of vO and vH , and
Z(w) is a normalization constant for w to make
the probabilities of all worlds sum up to one. Since
MLN inference subsumes probabilistic inference,
which is #P-complete, and logical inference, which
is NP-complete even in finite domains (Richard-
son and Domingos, 2006), it is a very challenging
problem computational wise. Several methods in-
cluding pGAT (Harsha Vardhan et al., 2020), Ex-
pressGNN (Zhang et al., 2019) and pLogicNet (Qu
and Tang, 2019) propose to conduct variational in-
ference of MLN to alleviate the time complexity.
We now use pLogicNet (Qu and Tang, 2019) as
an example to illustrate the procedure. pLogicNet
aims to train the MLN model by optimizing the
evidence lower bound (ELBO) for the likelihood
function of observed triples vO:

log pw(vO) ≥L(qθ, pw)

=Eqθ(vH)[log pw(vO,vH)

− log qθ(vH)]

where the variational distribution qθ(vH) is de-
fined using a knowledge graph embedding model,
by assuming each triple independently follows a
Bernoulli distribution, with parameters specified
by the embedding score function:

qθ(vH) =
∏

(ei,rk,ej)∈H

qθ(rk(ei, ej))

=
∏

(ei,rk,ej)∈H

Ber(rk(ei, ej)|frk(ei, ej))

where Ber represents the Bernoulli distribution and
frk(ei, ej) is an embedding scoring function denot-
ing the probability of triple (ei, rk, ej) to be true.
For example, in DistMult, frk(ei, ej) can be de-
fined as σ(eTi diag(rk)ej). This lower bound can
be effectively optimized using varitional EM algo-
rithm (Neal and Hinton, 1998). In variational E-
step, pw is fixed and qθ is updated to minimize the
KL divergence between qθ(vH) and pw(vH |vO).
In M-step, qθ is fixed and the weights of the
rules w is updated to maximize the joint prob-
ability of both observed and hidden triples (i.e.,
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Method Scoring Function Loss Constraints

KALE (Guo et al., 2016) 1− 1

3
√
d
‖ei + rk − ej‖1

∑
f+∈Fg

∑
f−∈N

f+
[γ − I(f+) + I(f−)]+ ‖e‖2 ≤ 1; ‖r‖2 ≤ 1

Rocktäschel et al. (Rocktäschel et al., 2015) σ(vrk .vei,ej )
∑
f+∈Fg

L(I(f+)) `2-regularization

RUGE (Guo et al., 2017) σ(Re(〈ei, rk, ej〉))

1

|O|
∑

rk(ei,ej)∈vO

L(I(rk(ei, ej)), yrk(ei,ej))

+
1

|H|
∑

rk(ei,ej)∈vH

L(I(rk(ei, ej)), srk(ei,ej))
ei, ej , rk ∈ Cd

Table 7: Summary of PSL-based Regularization Approaches.

Eqθ(vH)[log pw(vO,vH)]). However, due to the
expensive computational cost of MLN inference,
even for variational inference algorithms that are
developed to alleviate the time complexity, the effi-
ciency issue remains a big problem.

G Implementation of Forward Chaining.

We have discussed the implementation of forward
chaining algorithm for chain-like definite Horn
rules in Section 4.1. Next, we discuss more general
implementation of forward chaining algorithm to
handle definite Horn rules in any form. As shown
in Fig. 5, unlike traditional logical inference meth-
ods, instead of instantiating the rules with all po-
tential triples in KG (including both observed and
unobserved triples), only observed triples are con-
sidered when apply forward chaining. Let us take
the definite Horn rule in Fig. 5 as an example. To
apply forward chaining to infer new facts, we first
focus on all observed triples related to first pred-
icate in the body, liveIn(person, country). Con-
sequently, "country" is limited to a small set of
concrete entities "USA","Denmark". By restrict-
ing "country" within the set "USA","Denmark", we
again ground officialLanguage (country, language)
with observed triples. The candidate entities for
"country" will be further limited to "USA". Finally,
only triples speakLanguage (Mina Miller, English)
can be inferred as the new facts and add to the KG.

H Theoretical Computational
Complexity Analysis of UniKER.

To theoretically demonstrate the superiority of our
proposed UniKER in terms of efficiency, we com-
pare the space and time complexity of UniKER
and other methods that combine KG embedding
and logical rules. More precisely, we only in-
clude logical rule-based regularization approaches
because embedding-based variational inference
for MLN is essentially a #P problem. Obvi-
ously, they have a much higher computational

cost than we do. As both logical rule-based
regularization approaches and our UniKER con-
sists of two parts, materialization (i.e., sampling
ground logical rules and inference U using for-
ward chaining) and KG embedding learning, we
include the complexity of both parts in Table 11.
Note that materialization only contributes to the
time complexity without affecting space complex-
ity. We denote ne/nr/nt/l/nl/θ/a/d as the number
of entities/relations/observed triples/length of rule
body/number of rules/sampling ratio/average de-
gree of entities/dimension of the embedding space.
We can observe that: (1) For space complexity,
our proposed UniKER is the same as other logical
rule-based regularization approaches; (2) For time
complexity, considering a � ne, if the sampling
ratio is not small enough, our proposed UniKER is
much smaller than other logical rule-based regular-
ization approaches.

I Data Statistics

The detailed statistics of three large scale
real-world KGs (e.g., Family, FB15k-237 and
WN18RR) are provided in Table 12. FB15K237
and WN18RR are the most widely used benchmark
datasets for KGE models, which don’t suffer from
test triple leakage in the training set. The Family
dataset is selected due to better interpretability and
high intuitiveness. In addition, three small scale
datasets (e.g., RC1000, sub-YAGO3-10 and sub-
Family) are also included in our experiments to
evaluate the scalability of forward chaining against
a number of SOTA inference algorithms for MLN
as shown in J.3 due to the poor scalability of MLN
.

• RC1000 is a typical benchmark dataset for
inference in MLN. It involves the task of re-
lational classification with hand-code rules
given.

• sub-YAGO3-10 is a subset of a well known
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Entities
Country 
USA, Denmark, Canada
Person
Thomas Alva Edison, Mary Stilwell,
Mina Miller, Valdemar Poulsen 
Language
English, Dansk

Knowledge Graph

language(person, language) ⇐ liveIn(person, country) ∧
officialLanguage (country, language)

Predicates
isMarriedTo

liveIn
officialLanguage

language

Observed Facts
isMarriedTo (Thomas Alva Edison, Mary Stilwell)
isMarriedTo (Thomas Alva Edison, Mina Miller)

language (Valdemar Poulsen, Dansk)
liveIn (Mina Miller, USA)

liveIn (Valdemar Poulsen, Denmark)
officialLanguage (USA, English)

officialLanguage (Canada, English)

Forward ChainingTraditional Logical Inference

language(person, language) ⇐ liveIn(person, country) ∧
officialLanguage (country, language)

person = Mina Miller
person = Valdemar Poulsen

country = USA
country = Canada

language(person, language) ⇐ liveIn(person, country) ∧
officialLanguage (country, language)

country = USA
country = Denmark

Language (Mina 
Miller, English)

officialLanguage (USA, English)
officialLanguage (Canada, English)

country = USA

language = English

language(person, language) ⇐ liveIn(person, country) ∧
officialLanguage (country, language)

person = 
Mina Miller

All ground predicates

New fact

Language (Thomas Alva Edison, English) ⇐ liveIn (Thomas Alva Edison, USA)
∧ officialLanguage (USA, English)

…
Language (Thomas Alva Edison, Dansk) ⇐ liveIn (Thomas Alva Edison, USA)

∧ officialLanguage (USA, Dansk)

liveIn (Thomas Alva Edison, USA) T
liveIn (Thomas Alva Edison, Denmark) ?
…
liveIn (Valdemar Poulsen , Canada) ?

officialLanguage (USA, English) T
officialLanguage (USA, Dansk) ?
…
officialLanguage (Canada, Dansk) ?

country = USA
country = Denmark

All ground rules

Truth value : T

SAT Solver

Figure 5: Traditional logical inference v.s. Forward chaining.

benchmark dataset of knowledge graph,
YAGO3-10.

For the large scale knowledge graph, we adopt
three commonly used benchmark datasets, includ-
ing Family, FB15k-237 and WN18RR.

• Family contains family relationships among
members of a family (Denham, 1973). We
substract a subset from Family dataset and
call it sub-Family.

• FB15k-237 is the most commonly used bench-
mark knowledge graph datasets introduced
in (Bordes et al., 2013). It is an online collec-
tion of structured data harvested from many
sources, including individual, user-submitted
wiki contributions.

• WN18RR is another widely used benchmark
knowledge graph datasets introduced in (Bor-
des et al., 2013). It is designed to produce
an intuitively usable dictionary and thesaurus,
and support automatic text analysis. Its enti-
ties correspond to word senses, and relation-
ships define lexical relations between them.

J Experimental Details.

J.1 Setting for Knowledge Graph Completion

To compare among the reasoning ability of
UniKER and aforementioned baseline algorithms,

we mask the head or tail entity of each test triple,
and require each method to predict the masked en-
tity. We use three large-scale datasets including
Family, FB15K-237 and WN18RR. During eval-
uation, we use the filtered setting (Bordes et al.,
2013) and three evaluation metrics, i.e., Hit@1,
Hit@10 and MRR. We randomly split the data into
training set and test set with the ratio of 8:2 and do
not exclude the triples derived from rules from test
data. To fairly compare among all baseline meth-
ods, we consistently apply this same setting to all of
them. Due to the unavailable codes, we take the re-
sults of BLP from the corresponding paper (Qu and
Tang, 2019) and the results of pGAT from the cor-
responding paper (Harsha Vardhan et al., 2020). As
only the results on the FB15k-237 and WN18RR
datasets are reported, we only compare with them
on these two datasets.

Hyperparameter Settings Adam (Kingma and
Ba, 2014) is adopted as the optimizer. We set the
parameters for all methods by a grid search strat-
egy. The range of different parameters is set as fol-
lows: embedding dimension k ∈ {250, 500, 1000},
batch size b ∈ {256, 512, 1024}, and fixed margin
γ ∈ {6, 9, 12, 24}. Afterwards, we compare the
best results of different methods. Both the entity
embeddings and the relation embeddings are uni-
formly initialized and no regularization is imposed
on them. The detailed hyperparameter settings can
be found in Table 8.
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Model Dataset
Batch
Size

# Negative
Samples

Embedding
Dim γ α

Learning
Rate

UniKER-TransE
FB15K-237 1024 256 1000 24 1 0.0001
WN18RR 512 1024 500 6 0.5 0.00005

Family 512 1024 250 12 0.5 0.001

UniKER-RotatE
FB15K-237 1024 256 250 9 1 0.00005
WN18RR 512 1024 250 6 0.5 0.00005

Family 1024 256 250 24 1 0.0002

UniKER-DistMult
FB15K-237 1024 256 1000 12 1 0.00005
WN18RR 1024 1024 500 12 1 0.00005

Family 1024 256 250 24 0.5 0.0001

Table 8: The best hyperparameter setting of UniKER on several benchmarks.

Model ψ Hit@1 Hit@10 MRR

UniKER-TransE 10 0.873 0.971 0.916
UniKER-TransE 20 0.878 0.972 0.919
UniKER-TransE 30 0.873 0.972 0.916
UniKER-TransE 40 0.874 0.973 0.917
UniKER-TransE 50 0.871 0.970 0.915

Table 9: Results of Reasoning on Family Dataset with
Different Thresholds (ψ%) to Include Useful Hidden
Triples.

Robustness Analysis. As all kinds of noise
might be contained in the process of constructing
KGs, we introduce noise by substituting the true
head entity or tail entity with randomly selected
entity. Following this approach, we construct a
noisy Family dataset with noisy triples to be 40%
of original data. All generated noisy triples only
fused into the original training set while validation
and test sets remain the same.

J.2 Effect of Threshold Ψ Used to Include
Potential Useful Hidden Triples

To investigate effect of threshold used to include
useful hidden triples, we also compare the rea-
soning ability of UniKER with TransE on Family
dataset with different thresholds Ψ. As threshold
can vary a lot for different data sets, to propose a
unified way to determine proper threshold Ψ, we
take score frk(ei, ej) corresponding to the triple
which ranks as top ψ% in test dataset as threshold
Ψ. We vary ψ among {10, 20, 30, 40, 50}. The
comparison results are presented in Table 9. We
can observe that reasoning ability of UniKER does
not vary a lot with different thresholds. In other
words, the performance is less sensitive to the pa-
rameter ψ, which is appealing in practice.

J.3 Efficiency Analysis
We evaluate the scalability of forward chaining
against a number of state-of-the-art inference al-
gorithms for MLN (e.g., MCMC (Carlo, 2004),
MC-SAT (Poon and Domingos, 2006), BP (Yedidia
et al., 2001), liftedBP (Singla and Domingos, 2008)
and Tuffy (Niu et al., 2011)) over all the six datasets
given in Table 12. Details of each baseline are
listed below:

• Markov Chain Monte Carlo (MCMC) (Carlo,
2004) is the most widely used method for
approximate inference in MLN. The basic
idea is to utilize Markov blanket to calculate
marginal probabilities of ground predicates.

• MC-SAT (Poon and Domingos, 2006) is an ef-
ficient MCMC algorithm that combines slice
sampling with satisfiability testing.

• Belief Propagation (BP) (Yedidia et al., 2001)
is another widely used method for approx-
imate inference in MLN. It is a message-
passing algorithm for performing inference
on graphical models.

• lifted Belief Propagation (liftedBP) (Singla
and Domingos, 2008) is a lifted version of
belief propagation algorithm.

• Tuffy (Niu et al., 2011) is an open-source
MLN inference engine that achieves scalabil-
ity compared to prior art implementations.

The results of their inference time are given in
Table 13. Additionally, we compared the over-
all efficiency of our proposed UniKER with other
methods. As shown in Table 10, UniKER showed
its efficiency in the time cost per epoch. Even with
the inference period, UniKER is faster than other
methods combining embedding with logical rules
experimentally.
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Model Time per Epoch #Epochs for Convergence

KALE >1000 s 500
RUGE >1000 s 800
ExpressGNN 168 s 200
pLogicNet 7.2 s 600
UniKER-TransE 6.5 s 400

Table 10: Efficiency Analysis on Family Dataset.

J.4 Impact of Coverage of Logical Rules on
Family Dataset

To further analyze the impact of coverage of logical
rules on KG inference, we measure the coverage
of logical rules using the total number of triples,
which can be inferred from the given set of definite
Horn rules. Due to space limitations, we only show
the results on the Family dataset as we have similar
observations on the remaining datasets. To ensure
enough coverage of logical rules, we take the whole
Family dataset as training data while the triples,
which can be inferred from the training data using
all 41 logical rules, are regarded as test data. To
investigate the effects of coverage of logical rules,
we vary the number of definite Horn rules among
{10, 20, 30, 35, 36, 38, 41}. We provide the num-
ber of triples that can be inferred from these sets of
rules in Table 14. As shown in Figure 6, we com-
pare UniKER-DistMult against its default model
DistMult as well as forward chaining algorithm.
In particular, we regard link prediction in KG as
binary classification and evaluate all methods in
terms of triple True/False classification accuracy.
We make the observations that: (1) When the cov-
erage of logical rule is not enough, traditional rule-
based methods have shown poor performance; (2)
Without the incorporation of logical rules, DistMult
has already shown pretty good reasoning ability;
(3) The performance of UniKER sustainedly and
steadily increases with the increase of coverage of
logical rules; (4) When we include only 30 rules,
UniKER has already achieved accuracy close to
1, which is much higher than forward chaining. A
small number of logical rules is very appealing in
practice as it is costly and labor-intensive to obtain
high-quality logical rules.

J.5 Example of Logical Rules Used in
Experiments

To generate candidate rules, we automatically mine
rules using AMIE+ (Galárraga et al., 2015). Con-
sidering that longer generated rules usually suffer
from lower quality and require much more compu-
tational resource, the candidate rules we used in

Figure 6: Impact of Coverage of Logical Rules on Fam-
ily Dataset on Triple True/False Classification Task.

experiments are of length at most three. Several
logical rule examples for each dataset are presented
in Table 15.
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Method Space Complexity Time Complexity
Materialisation Embedding

KGE TransE (Bordes et al., 2013) O(ned+ nrd) - O(ntd)
Dismult (Yang et al., 2014) O(ned+ nrd) - O(ntd)

Logical Rule-based
Regularization

KALE (Guo et al., 2016) O(ned+ nrd) O(θnlne
l+1) O(ntd+ θnlne

l+1d)
Rocktäschel et al. (Rocktäschel et al., 2015) O(ned+ nrd+ nenr) O(nlnea

l) O(nenrd+ ned
2 + nrd

2 + nlnea
ld)

RUGE (Guo et al., 2017) O(ned+ nrd) O(θnlne
l+1) O(ntd+ θnlne

l+1d)

Our Model UniKER O(ned+ nrd) O(nlnea
l) O(ntd+ nlnea

ld)

Table 11: Comparison of Space and Time Complexity for Model Training.

Dataset Type #Entity #Relation #Triple #Rule

RC1000 Citation network 656 4 1006 3
sub-Family Family network 68 12 412 41
sub-YAGO3-10 YAGO knowledge 55 8 61 5
Family Family network 3007 12 28356 41
FB15k-237 Freebase knowledge 14541 237 310116 300
WN18RR Lexical network 40943 11 93003 11

Table 12: Data Statistics.

Model sub-YAGO3-10 sub-Family RC1000 Family FB15k-237 WN18RR

MCMC 76433s - - - - -
MCSAT 1292s 25912s - - - -
BP 10s 16343s - - - -
liftedBP 15s 16075s - - - -

Tuffy 0.849s 1.398s 4.899s - - -

Forward Chaining 0.003s 0.034s 0.007s 0.593s 186s 30s

Table 13: Comparison of Inference Time for Forward Chaining vs. MLN.

#Rule 5 10 20 30 35 36 38 41

#Inferred Triple 870 6276 7915 10973 15302 18429 19780 21549

Table 14: Coverage of Different Number of Rules on Family Dataset.

Dateset Logical Rule Examples

Family
father(x, y)← husband(x, z) ∧mother(z, y)
nephew(x, y)← son(x, z) ∧ sister(z, y)
uncle(x, y)← brother(x, z) ∧ father(z, y)

FB15k-237

award_nominations.award_nominee(x, y)
← awards_won.award_winner(x, z) ∧ award_nominations.award_nominee(y, z)

release_date.film_release_region(x, y)
← release_date.film_release_region(x, z) ∧military_conflicts.combatants(z, y)

release_date.film_release_region(x, y)
← actor/film.performance/film(z, x) ∧ nationality(z, y)

WN18RR

_also_see(x, y)← _also_see(y, x)
_hypernym(x, y)← _verb_group(x, z) ∧ _hypernym(z, y)
_synset_domain_topic_of(x, y)
← _derivationally_related_form(x, z) ∧ _synset_domain_topic_of(z, y)

Table 15: Example of Logical Rules on Family, FB15k-237 and WN18RR Datasets.
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