
Fuzzy Logic Based Logical Query Answering on Knowledge Graphs

Xuelu Chen, Ziniu Hu, Yizhou Sun
Department of Computer Science, University of California, Los Angeles

{shirleychen, bull, yzsun}@ucla.edu

Abstract

Answering complex First-Order Logical (FOL) queries on
large-scale incomplete knowledge graphs (KGs) is an im-
portant yet challenging task. Recent advances embed logi-
cal queries and KG entities in the same space and conduct
query answering via dense similarity search. However, most
logical operators designed in previous studies do not satisfy
the axiomatic system of classical logic, limiting their per-
formance. Moreover, these logical operators are parameter-
ized and thus require many complex FOL queries as train-
ing data, which are often arduous to collect or even inacces-
sible in most real-world KGs. We thus present FuzzQE, a
fuzzy logic based logical query embedding framework for
answering FOL queries over KGs. FuzzQE follows fuzzy
logic to define logical operators in a principled and learning-
free manner, where only entity and relation embeddings re-
quire learning. FuzzQE can further benefit from labeled com-
plex logical queries for training. Extensive experiments on
two benchmark datasets demonstrate that FuzzQE provides
significantly better performance in answering FOL queries
compared to state-of-the-art methods. In addition, FuzzQE
trained with only KG link prediction can achieve comparable
performance to those trained with extra complex query data.

1 Introduction
Knowledge graphs (KGs), such as Freebase (Bollacker et al.
2008), YAGO (Rebele et al. 2016), and NELL (Mitchell
et al. 2018), provide structured representations of facts about
real-world entities and relations. One of the fundamental
tasks over KGs is to answer complex queries involving log-
ical reasoning, e.g., answering First-Order Logical (FOL)
queries with existential quantification (∃), conjunction (∧),
disjunction (∨), and negation (¬). For instance, the question
“Who sang the songs that were written by John Lennon or
Paul McCartney but never won a Grammy Award?” can be
expressed as the FOL query shown in Fig 1.

This task is challenging due to the size and the incom-
pleteness of KGs. FOL query answering has been studied
as a graph query optimization problem in the database com-
munity (Hartig and Heese 2007; Zou et al. 2011; Schmidt,
Meier, and Lausen 2010). These methods traverse the KG to
retrieve answers for each sub-query and then merge the re-

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: FOL query and its dependency graph for the ques-
tion “Who sang the songs that were written by John Lennon
or Paul McCartney but never won a Grammy Award?”.

sults. Though being extensively studied, these methods can-
not well resolve the above-mentioned challenges. The time
complexity exponentially grows with the query complexity
and is affected by the size of the intermediate results. This
makes them difficult to scale to modern KGs, whose enti-
ties are often numbered in millions (Bollacker et al. 2008;
Vrandečić and Krötzsch 2014). For example, Wikidata is
one of the most influential KGs and reports that their query
engine fails when the number of entities in a sub-query (e.g.,
people born in Germany) exceeds a certain threshold1. In ad-
dition, real-world KGs are often incomplete, which prevents
directly answering many queries by searching KGs. A recent
study shows that only 0.5% of football players in Wikidata
have a highly complete profile, while over 40% contain only
basic information (Balaraman, Razniewski, and Nutt 2018).

To address the challenges of time complexity and KG in-
completeness, a line of recent studies (Hamilton et al. 2018;
Ren, Hu, and Leskovec 2020; Ren and Leskovec 2020) em-
bed logical queries and entities into the same vector space.
The idea is to represent a query using a dependency graph
(Figure 1) and embed a complex logical query by iteratively
computing embeddings from anchor entities to the target
node in a bottom-up manner. The continuous and meaning-
ful entity embeddings empower these approaches to handle
missing edges. In addition, these models significantly re-
duce time and space complexity for inference, as they reduce
query answering to dense similarity matching of query and

1https://www.wikidata.org/wiki/Wikidata:SPARQL query
service/query optimization



entity embeddings and can speed it up using methods like
maximum inner product search (MIPS) (Shrivastava and Li
2014).

These methods nonetheless entail several limitations:
First, the logical operators in these models are often defined
ad-hoc, and many do not satisfy basic logic laws (e.g., the
associative law (ψ1∧ψ2)∧ψ3 ≡ ψ1∧ (ψ2∧ψ3) for logical
formulae ψ1, ψ2, ψ3), which limits their inference accuracy.
Second, the logical operators of existing methods are based
on deep architectures, which require many training queries
containing such logical operations to learn the parameters.
This greatly limits the models’ scope of application due to
the challenge of collecting numerous reasonable complex
queries with accurate answers.

Our goal is to create a logical query embedding frame-
work that satisfies logical laws and provides learning-free
logical operators. We hereby present FuzzQE (Fuzzy Query
Embedding), a fuzzy logic based embedding framework
for answering logical queries on KGs. We borrow the idea
of fuzzy logic and use fuzzy conjunction, disjunction, and
negation to implement logical operators in a more principled
and learning-free manner. Our approach provides the follow-
ing advantages over existing approaches: (i) FuzzQE em-
ploys differentiable logical operators that fully satisfy the
axioms of logical operations and can preserve logical oper-
ation properties in vector space. This superiority is corrobo-
rated by extensive experiments on two benchmark datasets,
which demonstrate that FuzzQE delivers a significantly bet-
ter performance compared to state-of-the-art methods in an-
swering FOL queries. (ii) Our logical operations do not re-
quire learning any operator-specific parameters. We con-
duct experiments to show that even when our model is
only trained with link prediction, it achieves better results
than state-of-the-art logical query embedding models trained
with extra complex query data. This represents a huge ad-
vantage in real-world applications since complex FOL train-
ing queries are often arduous to collect. In addition, when
complex training queries are available, the performance of
FuzzQE can be further enhanced.

In addition to proposing this novel and effective frame-
work, we propose some basic properties that a logical
query embedding model ought to possess as well as analyze
whether existing models can fulfill these conditions. This
analysis provides theoretical guidance for future research on
embedding-based logical query answering models.

2 Related Work
Embedding entities in Knowledge Graphs (KGs) into con-
tinuous embeddings have been extensively studied (Bordes
et al. 2013; Yang et al. 2015; Trouillon et al. 2016; Sun
et al. 2019), which can answer one-hop relational queries
via link prediction. These models, however, cannot han-
dle queries with multi-hop (Guu, Miller, and Liang 2015)
or complex logical reasoning. Hamilton et al. (2018) thus
propose a graph-query embedding (GQE) framework that
encodes a conjunctive query via a dependency graph with
relation projection and conjunction (∧) as operators. Ren,
Hu, and Leskovec (2020) extend GQE by using box embed-
ding to represent entity sets, where they define the disjunc-

tion (∨) operator to support Existential Positive First-Order
(EPFO) queries. Sun et al. (2020) concurrently propose to
represent sets as count-min sketch (Cormode and Muthukr-
ishnan 2005) that can support conjunction and disjunction
operators. More recently, Ren and Leskovec (2020) further
include the negation operator (¬) by modeling the query
and entity set as beta distributions. Friedman and Van den
Broeck (2020) extend FOL query answering to probabilis-
tic databases. These query embedding models have shown
promising results to conduct multi-hop logical reasoning
over incomplete KGs efficiently regarding time and space;
however, we found that these models do not satisfy the ax-
ioms of either Boolean logic (Chvalovskỳ 2012) or fuzzy
logic (Klement, Mesiar, and Pap 2000), which limits their in-
ference accuracy. To address this issue, our approach draws
from fuzzy logic and uses the fuzzy conjunction, disjunc-
tion, and negation operations to define the logical operators
in the vector space.

In addition to the above logical query embedding models,
a recent work CQD (Arakelyan et al. 2021) proposes training
an embedding-based KG completion model (e.g., ComplEx
(Trouillon et al. 2016)) to impute missing edges during infer-
ence and merge entity rankings using t-norms and t-conorms
(Klement, Mesiar, and Pap 2000). Using beam search for
inference, CQD has demonstrated strong capability of gen-
eralizing from KG edges to arbitrary EPFO queries. How-
ever, CQD has severe scalability issues since it involves
scoring every entity for every atomic query. This is unde-
sirable in real-world applications, since the number of enti-
ties in real-world KGs are often in millions (Bollacker et al.
2008; Vrandečić and Krötzsch 2014). Furthermore, its in-
ference accuracy is thus bounded by KG link prediction per-
formance. In contrast, our model is highly scalable, and its
performance can be further enhanced when additional com-
plex queries are available for training.

3 Preliminaries

A knowledge graph (KG) consists of a set of triples
〈es, r, eo〉, with es, eo ∈ E (the set of entities) denoting the
subject and object entities respectively and r ∈ R (the set of
relations) denoting the relation between es and eo. Without
loss of generality, a KG can be represented as a First-Order
Logic (FOL) Knowledge Base, where each triple 〈es, r, eo〉
denotes an atomic formula r(es, eo), with r ∈ R denoting a
binary predicate and es, eo ∈ E as its arguments.

We aim to answer FOL queries expressed with existen-
tial quantification (∃), conjunction (∧), disjunction(∨), and
negation (¬). The disjunctive normal form (DNF) of an FOL
query q is defined as follows:

q[V?] , V? : ∃V1, ..., Vk(v11∧...∧v1N1)∨...∨(vM1∧...∧vMNM )

where V? is the target variable of the query, and V1, ..., VK
denote the bound variable nodes. Each vmn (m =
1, ...,M, n = 1, ..., Nm) represents a literal, i.e., a logical



Logic Law Model Property

∧

I
Conjunction Elimination
ψ1 ∧ ψ2 → ψ1 φ(q1 ∧ q2, e) ≤ φ(q1, e)
ψ1 ∧ ψ2 → ψ2 φ(q1 ∧ q2, e) ≤ φ(q2, e)

II Commutativity
ψ1 ∧ ψ2 ↔ ψ2 ∧ ψ1 φ((q1 ∧ q2), e) = φ((q2 ∧ q1), e)

III Associativity
(ψ1 ∧ ψ2) ∧ ψ3 ↔ ψ1 ∧ (ψ2 ∧ ψ3) φ((q1 ∧ q2) ∧ q3, e) = φ(q1 ∧ (q2 ∧ q3), e)

∨

IV
Disjunction Amplification
ψ1 → ψ1 ∨ ψ2 φ(q1, e) ≤ φ(q1 ∨ q2, e)
ψ2 → ψ1 ∨ ψ2 φ(q2, e) ≤ φ(q1 ∨ q2, e)

V Commutativity
ψ1 ∨ ψ2 ↔ ψ2 ∨ ψ1 φ((q1 ∨ q2), e) = φ((q2 ∨ q1), e)

VI Associativity
(ψ1 ∨ ψ2) ∨ ψ3 ↔ ψ1 ∨ (ψ2 ∨ ψ3) φ((q1 ∨ q2) ∨ q3, e) = φ(q1 ∨ (q2 ∨ q3), e)

¬
VII Involution

¬¬ψ1 → ψ1 φ(q, e) = φ(¬¬q, e)

VIII Non-Contradiction
ψ1 ∧ ¬ψ1 → 0 φ(q, e) ↑ ⇒ φ(¬q, e) ↓

Table 1: Here we list eight logic laws (I - VIII) from classical logic (Zimmermann 1991) and give the corresponding proper-
ties that a query embedding model should possess. ψ1, ψ2, ψ3 represent logical formulae. φ denotes the scoring function that
estimates the probability that the entity e can answer the query q. φ(q, e) ↑⇒ φ(¬q, e) ↓ means φ(¬q, e) is monotonically
decreasing with regard to φ(q, e).

atom or the negation of a logical atom:

vmn =



r(e, V ) r ∈ R, e ∈ E , V ∈ {V?, V1, ..., Vk}
¬r(e, V ) r ∈ R, e ∈ E , V ∈ {V?, V1, ..., Vk}
r(V, V ′) r ∈ R, V ∈ {V1, ..., Vk}

V ′ ∈ {V?, V1, ..., Vk}, V 6= V ′

¬r(V, V ′) r ∈ R, V ∈ {V1, ..., Vk}
V ′ ∈ {V?, V1, ..., Vk}, V 6= V ′

The goal of answering the logical query q is to find a set
of entities Sq = {a|a ∈ E , q[a] holds true}, where q[a] is a
logical formula that substitutes the query target variable V?
with the entity a.

A complex query can be considered as a combination of
multiple sub-queries. For example, the query q[V?] = V? :
Compose(John Lennon, V?) ∧ Compose(Paul McCartney,
V?) can be considered as q1 ∧ q2, where

q1[V?] = V? : Compose(John Lennon, V?)
q2[V?] = V? : Compose(Paul McCartney, V?).

Formally, we have:

Sq1∧q2 = Sq1 ∩ Sq1 ;

Sq1∨q2 = Sq1 ∪ Sq1 ;

S¬q = S{
q

where (·){ denotes set complement.
Notation wise, we use boldfaced notations pe and Sq to

represent the embedding for entity e and the embedding for

Sq , i.e., the answer entity set for query q, respectively. We
use ψ1, ψ2, ψ3 to denote logical formulae.

3.1 Logic Laws and Model Properties
The general idea of logical query embedding models is to
recursively define the embedding of a query (e.g., q1 ∧ q2)
based on logical operations on its sub-queries’ embeddings
(e.g., q1 and q2). These logical operations have to satisfy
logic laws, which serve as additional constraints to learning-
based query embedding models. Unfortunately, most ex-
isting query embedding models have (partially) neglected
these laws, which result in inferior performance.

In this section, we study these logic laws shared by both
classical logic and basic fuzzy logic (Zimmermann 1991)
and deduce several basic properties that the logical operators
should possess. The logic laws and corresponding model
properties are summarized in Table 1.

Axiomatic Systems of Logic Let L be the set of all the
valid logic formulae under a logic system, and ψ1, ψ2, ψ3 ∈
L represent logical formulae. I(·) denotes the truth value of
a logical formula. The semantics of Boolean Logic are de-
fined by (i) the interpretation I : L → {0, 1}, (ii) the Modus
Ponen inference rule “from ψ1 and ψ1 → ψ2 infer ψ2”,
which characterizes logic implication (→) as follows:

ψ1 → ψ2 holds if and only if I(ψ2) ≥ I(ψ1)

and (iii) a set of axioms written in Hilbert-style deductive
systems (Klir and Yuan 1995). Those axioms define other



∧ ∨ ¬
Expressivity (Closed) Com. Asso. Elim. Expressivity (Closed) Com. Asso. Ampli. Expressivity (Closed) Inv. Non-Contra.

GQE X(X) X 7 7 X(7) X X X 7 N/A N/A

Query2Box X(X) X X X X(7) X X X 7 N/A N/A

BetaE X(X) X 7 7
(i) DNF X(7) X X X

X(X) X 7(ii) DM X(X) X X 7

FuzzQE X(X) X X X X(X) X X X X(X) X X

Table 2: Comparisons of different models regarding the properties of logical operations. Expressivity indicates whether the
model can handle such logical operations, and closed indicates whether the embedding is in a closed form. Commu., Asso.,
Elim., Ampli., Inv. and Non-contra. stand for commutativity, associativity, conjunction elimination, disjunction amplification,
involution, and non-contradiction respectively.

logic connectives via logic implication (→); for example,
the following three axioms characterize the conjunction (∧)
of Boolean logic (Chvalovskỳ 2012):

ψ1 ∧ ψ2 → ψ1

ψ1 ∧ ψ2 → ψ2

(ψ3 → ψ1)→ ((ψ3 → ψ2)→ (ψ3 → ψ1 ∧ ψ2))

The first two axioms guarantee that the truth value of ψ1∧ψ2

never exceeds the truth values of ψ1 and ψ2, and the last one
enforces that I(ψ1 ∧ ψ2) = 1 if I(ψ1) = I(ψ2) = 1. The
three axioms also imply commutativity and associativity of
logical conjunction ∧. More discussions about the axiomatic
systems can be found in Appendix B.

Model Properties Let φ(q, e) be the embedding model
scoring function estimating the probability that the entity
e can answer the query q. This means that φ(q, e) esti-
mates the truth value I(q[e]), where q[e] is a logical for-
mula that uses e to fill q. For example, given the query
q = V? : Compose(John Lennon, V?) and the entity e =
“Let it Be”, φ(q, e) estimates the truth value of the logical
formula Compose(John Lennon,Let it Be). We can thus use
logic laws to deduce reasonable properties that a query em-
bedding model should possess. For instance, ψ1 ∧ ψ2 → ψ1

is an axiom that characterizes logic conjunction (∧), which
enforces that I(ψ1 ∧ ψ2) ≤ I(ψ1), and we accordingly ex-
pect the embedding model to satisfy φ(q1∧q2, e) ≤ φ(q1, e),
i.e., an entity e is less likely to satisfy q1 ∧ q2 than q1.

Based on the axioms and deduced logic laws of classi-
cal logic (Fodor and Roubens 1994), we summarize a series
of model properties that a logical query embedding model
should possess in Table 1. The list is not exhaustive but in-
dicative.

3.2 Analysis of Prior Models on Model Properties
This section examines three representative logical query
embedding models, namely GQE (Hamilton et al. 2018),
Query2Box (Ren, Hu, and Leskovec 2020), and BetaE (Ren
and Leskovec 2020), regarding their capability of satisfy-
ing the properties in Table 1. We summarize our findings in
Table 2. GQE, Query2Box, BetaE represent queries as vec-
tors, boxes (axis-aligned hyper-rectangles), and Beta distri-
butions, respectively. The embedding-based logical opera-

Figure 2: Illustration of query embeddings and embeddings
of conjunctive queries in GQE, Query2Box, and BetaE. The
conjunction operators takes embeddings of queries q1, q2 as
input and produce an embedding for q1 ∧ q2.

tors transform embeddings of sub-queries into embeddings
of the outcome query. A brief summary of logical operators
of these models are given in Appendix C.

Conjunction (∧) Fig. 2 illustrates embedding-based con-
junction operators of the three models, which take embed-
dings of queries q1, q2 as input and produce an embedding
for q1∧q2. GQE, Query2Box, and BetaE are purposely con-
structed to be permutation invariant (Hamilton et al. 2018;
Ren, Hu, and Leskovec 2020; Ren and Leskovec 2020), and
their conjunction operators all satisfy commutativity (Law
II). The conjunction operators of GQE and BetaE do not
satisfy associativity (III) since they rely on the operation
of averaging, which is not associative. GQE does not sat-
isfy conjunction elimination (I); for example, supposing that
pe = 1

2 (Sq1 + Sq2), Sq1 6= Sq2, we have φ(q1 ∧ q2, e) =

cos(pe,
1
2 (Sq1 + Sq2)) > cos(pe,Sq1) = φ(q1, e). BetaE

does not satisfy conjunction elimination (I) for similar rea-
sons.

Disjunction (∨) Previous works handle disjunction in two
ways: the Disjunctive Normal Form (DNF) rewriting ap-
proach proposed by Query2Box (Ren, Hu, and Leskovec
2020), and the De Morgan’s law (DM) approach proposed
by BetaE (Ren and Leskovec 2020). The DNF rewriting
method involves rewriting each query as a DNF to ensure
that disjunction only appears in the last step, which enables
the model to simply retain all input embeddings. The model
correspondingly cannot represent the disjunction result as
a closed form; for example, the disjunction of two boxes
remains two separate boxes instead of one (Ren, Hu, and



Leskovec 2020). The DM approach uses De Morgan’s law
ψ1 ∨ ψ2 ≡ ¬(¬ψ1 ∧ ¬ψ2) to compute the disjunctive query
embedding, which requires the model to have a conjunction
operator and a negation operator. This approach advanta-
geously produces representation in a closed form, allowing
disjunction to be performed at any step of the computation.
The disadvantage is that if the negation operator does not
work well, the error will be amplified and affect disjunction.
The DM variant of BetaE, namely BetaEDM, does not satisfy
disjunction amplification (IV) since its negation operator vi-
olates non-contradiction (VIII).

Negation To the best of our knowledge, BetaE is the
only previous model that can handle negation. BetaE has
proved that its negation operator is involutory (VII) (Ren
and Leskovec 2020). However, this operator lacks the non-
contradiction property (VIII), as for BetaE φ(¬q, e) is not
monotonically decreasing with regard to φ(q, e). An illus-
tration is given in Appendix C.2.

3.3 Fuzzy Logic
Fuzzy logic differs from Boolean logic by associating ev-
ery logical formula with a truth value in [0, 1]. Fuzzy logic
systems usually retain the axioms of Boolean logic, which
ensures that all the logical operation behaviors are con-
sistent with Boolean logic when the truth values are 0 or
1. Different fuzzy logic systems add different axioms to
define the logical operation behavior for the case when
the truth value is in (0, 1) (Klir and Yuan 1995). A t-
norm > : [0, 1] × [0, 1] 7→ [0, 1] represents general-
ized conjunction in fuzzy logic. Prominent examples of
t-norms include Gödel t-norm >min{x, y} = min(x, y),
product t-norm >prod{x, y} = xy, and Łukasiewicz t-
norm>Łukasiewicz(x, y) = max{0, x + y − 1}, for x, y ∈
[0, 1]. Any other continuous t-norm can be described as an
ordinal sum of these three basic ones (Klement, Mesiar, and
Pap 2000). Analogously, t-conorm are dual to t-norms for
disjunction in fuzzy logic – given a t-norm >, the t-conorm
is defined as⊥(x, y) = 1−>(1−x, 1−y) based on De Mor-
gan’s law and the negator n(x) = 1−x for x, y ∈ [0, 1] (Kle-
ment, Mesiar, and Pap 2000). This technique has inspired
numerous subsequent works. For example, CQD (Arakelyan
et al. 2021) uses t-norms and t-conorms to rank entities for
query answering on KGs.

4 Methodology
In this section, we propose our model FuzzQE, a frame-
work for answering FOL queries in the presence of missing
edges. FuzzQE embeds queries as fuzzy vectors (Katsaras
and Liu 1977). Logical operators are implemented via fuzzy
conjunction, fuzzy disjunction and fuzzy negation in the em-
bedding space.

4.1 Queries and Entities in Fuzzy Space
Predicting whether an entity can answer a query means pre-
dicting the probability that the entity belongs to the answer
set of this query. In our work, we embed queries and entities
to the fuzzy space [0, 1]d, a subspace of Rd (Katsaras and Liu
1977).

Query Embedding Consider a query q and its fuzzy an-
swer set Sq , its embedding Sq is defined as a fuzzy vector
Sq ∈ [0, 1]d (Katsaras and Liu 1977). Intuitively, let Ω de-
note the universe of all the elements, and let {Ui}di=1 de-
note a partition over Ω, i.e., Ω = ∪di=1Ui and Ui ∩ Uj = ∅
for i 6= j. Each dimension i of Sq denotes the probability
whether the corresponding subset Ui is part of the answer
set Sq , i.e., Sq(i) = Pr(Ui ⊆ Sq).

Entity Embedding For an entity e, we consider its em-
bedding pe from the same fuzzy space, i.e., pe ∈ [0, 1]d. To
model its uncertainty, we model it as a categorical distribu-
tion to fall into each subset Ui, namely, pe(i) = Pr(e ∈ Ui),
and

∑d
i=1 pe(i) = 1.

Score Function Accordingly, the score function φ(q, e)
is defined as the expected probability that e belongs to the
fuzzy set Sq:

φ(q, e) = Ee∼pe [e ∈ Sq]

=

d∑
i=1

Pr(e ∈ Ui) Pr(Ui ⊆ Sq)

= Sq
ᵀpe

Note for query embedding in FuzzQE, the all-one vector 1
represents the universe set (i.e., Ω), and the all-zero vector 0
represents an empty set ∅.

The above representation and scoring provides the follow-
ing benefits: (i) The representation is endowed with proba-
bilistic interpretation, and (ii) each dimension of the embed-
ding vector is between [0, 1], which satisfies the domain and
range requirements of fuzzy logic and allows the model to
execute element-wise fuzzy conjunction/disjunction/nega-
tion. In light of the fact that L1 normalization could impose
sparsity on entity embeddings, we also alternatively explore
adopting L2 normalization to improve embedding learning,
i.e.,

∑d
i=1 p

2
e(i) = 1.

4.2 Relation Projection for Atomic Queries
Atomic queries like q = Compose(John Lennon, V?) serve
as building blocks of complex queries. To embed atomic
queries, we associate each relation r ∈ R with a projection
operator Pr, which is modeled by a neural network with a
weight matrix Wr ∈ Rd×d and a bias vector br ∈ Rd, and
transforms an anchor entity embedding pe into a query em-
bedding:

Sq = Pr(pe) = g(LN(Wrpe + br))

where LN is Layer Normalization (Ba, Kiros, and Hinton
2016), and g : Rd 7→ [0, 1]d is a mapping function that con-
strains Sq ∈ [0, 1]d. Particularly, we consider two different
choices for g:

Logistic function : g(x) =
1

1 + e−(x)

Bounded rectifier : g(x) = min(max(x, 0), 1)

We follow (Schlichtkrull et al. 2018) and adopt basis-
decomposition to define Wr and br:

Wr =

K∑
j=1

αrjMj ; br =

K∑
j=1

αrjvj



Namely, Wr as a linear combination of K basis transfor-
mations Mj ∈ Rd×d with coefficients αrj that depend on
r. Similarly, br is a linear combination of K basis vectors
vj ∈ Rd with coefficients αrj . This form prevents the rapid
growth in the number of parameters with the number of re-
lations and alleviates overfitting on rare relations. It can be
seen as a form of effective weight sharing among different
relation types (Schlichtkrull et al. 2018). Atomic queries that
project from one set to another can be embedded similarly.

In principle, any sufficiently expressive neural network or
translation-based KG embedding model (Bordes et al. 2013;
Ji et al. 2015) could be employed as the relation projection
operator in our framework.

4.3 Fuzzy Logic Based Logical Operators
Fuzzy logic is mathematically equivalent to fuzzy set theory
(Klir and Yuan 1995), with fuzzy conjunction equivalent to
fuzzy set intersection, fuzzy disjunction equivalent to fuzzy
set union, and fuzzy negation to fuzzy set complement.
Fuzzy logic could thus be used to define operations over
fuzzy vectors. As discussed in Section 3.3, the three most
prominent t-norm based logic systems are product logic,
Gödel logic, and Łukasiewicz logic (Klement, Mesiar, and
Pap 2000). With reference to product logic, FuzzQE com-
putes the embeddings of q1 ∧ q2, q1 ∨ q2, and ¬q as follows:

q1 ∧ q2 : C(Sq1,Sq2) = Sq1 ◦ Sq2
q1 ∨ q2 : D(Sq1,Sq2) = Sq1 + Sq2 − Sq1 ◦ Sq2
¬q : N (Sq) = 1− Sq

where ◦ denotes element-wise multiplication (fuzzy con-
junction), 1 is the all-one vector, and C,D,N denote the
embedding based logical operators respectively.

Alternatively, the conjunction and disjuction operators
can be designed based on Gödel logic as follows:

q1 ∧ q2 : C(Sq1,Sq2) = min(Sq1,Sq2)

q1 ∨ q2 : D(Sq1,Sq2) = max(Sq1,Sq2)

where min,max denotes element-wise minimum and maxi-
mum operation respectively.

We omit Łukasiewicz logic here since its output domain is
heavily concentrated in {0, 1}, which causes a query embed-
ding learning problem. More discussions about these three
logic systems can be found in Appendix F.

4.4 Model Learning and Inference
Given a query q, we optimize the following objective:

L = − log σ(
1

Zq
φ(q, e)− γ)− 1

k

k∑
i=1

log σ(γ − 1

Zq
φ(q, e′))

where e ∈ Sq is an answer to the query, e′ /∈ Sq represents
a random negative sample, and γ denotes the margin. Zq is
an L2 norm based scaling factor, which is introduced as a
means to balance margin sensitivity between queries during
training. In the loss function, we use k random negative sam-
ples and optimize the average. We seek to maximize φ(q, e)
for e ∈ Sq and minimize φ(q, e′) for e′ ∈ Sq .

For the model inference, given a query q, FuzzQE em-
beds it as Sq and rank all the entities by φ(q, ·).

4.5 Theoretical Analysis
For FuzzQE, we present the following propositions with
proof in Appendix A.
Proposition 1. Our conjunction operator C is commutative,
associative, and satisfies conjunction elimination.
Proposition 2. Our disjunction operator D is commutative,
associative, and satisfies disjunction amplification.
Proposition 3. Our negation operator N is involutory and
satisfies non-contradiction.

5 Experiments
In this section, we evaluate the ability of FuzzQE to answer
complex FOL queries over incomplete KGs.

5.1 Evaluation Setup
Datasets We evaluate our model on two benchmark
datasets provided by (Ren and Leskovec 2020), which con-
tain 14 types of logical queries on FB15k-237 (Toutanova
and Chen 2015) and NELL995 (Xiong, Hoang, and Wang
2017) respectively. The 14 types of query structures in
the datasets are shown in Fig. 3. Note that these datasets
provided by BetaE (Ren and Leskovec 2020) are an im-
proved and expanded version of the datasets provided by
Query2Box (Ren, Hu, and Leskovec 2020). Compared to the
earlier version, the new datasets Ren and Leskovec (2020)
contain 5 new types of queries that involve negation. The
validation/test set of the original 9 query types are regener-
ated to ensure that the number of answers per query is not
excessive, making this task more challenging. In the new
datasets, 10 query structures are used for both training and
evaluation: 1p, 2p, 3p, 2i, 3i, 2in, 3in, inp, pni, pin. 4 query
structures (ip, pi, 2u, up) are not used for training but only
included in evaluation in order to evaluate the model’s gen-
eralization ability of answering queries with logical struc-
tures that the model has never seen during training. We ex-
clude FB15k (Bordes et al. 2013) since this dataset suffers
from major test leakage (Toutanova and Chen 2015). Statis-
tics about the datasets are summarized in Appendix D.

Evaluation Protocol We follow the evaluation protocol in
(Ren and Leskovec 2020). To evaluate the model’s gener-
alization capability over incomplete KGs, the datasets are
masked out so that each validation/test query answer pair in-
volves imputing at least one missing edge. For each answer
of a test query, we use the Mean Reciprocal Rank (MRR)
as the major evaluation metric. We use the filtered setting
(Bordes et al. 2013) and filter out other correct answers from
ranking before calculating the MRR.

Baselines and Model Configurations We consider three
logical query embedding baselines for answering com-
plex logical queries on KGs: GQE (Hamilton et al. 2018),
Query2Box (Ren, Hu, and Leskovec 2020), and BetaE (Ren
and Leskovec 2020). We also compare with one recent state-
of-the-art query optimization model CQD (Arakelyan et al.
2021). For GQE, Query2Box, and BetaE we use implemen-
tation provided by (Ren and Leskovec 2020) 2. For BetaE

2https://github.com/snap-stanford/KGReasoning



Figure 3: Query structure types in the datasets provided by BetaE (Ren and Leskovec 2020). Naming convention: p for relation
projection, i for conjunction (intersection), n for negation (complement), u for disjunction (union). 10 query structures are used
for both training and evaluation: 1p, 2p, 3p, 2i, 3i, 2in, 3in, inp, pni, pin. In order to test the generalization capability of the
model, 4 query structures (ip, pi, 2u, up) are not present in training and only included for evaluation.

Type of Model Model AvgEPFO AvgNeg 1p 2p 3p 2i 3i pi ip 2u up 2in 3in inp pin pni

FB15k-237

Query Embedding

GQE 16.3 N/A 35.0 7.2 5.3 23.3 34.6 16.5 10.7 8.2 5.7 N/A N/A N/A N/A N/A
Query2Box 20.1 N/A 40.6 9.4 6.8 29.5 42.3 21.2 12.6 11.3 7.6 N/A N/A N/A N/A N/A

BetaE 20.9 5.5 39.0 10.9 10.0 28.8 42.5 22.4 12.6 12.4 9.7 5.1 7.9 7.4 3.5 3.4
FuzzQE 24.2 8.5 42.2 13.3 10.2 33.0 47.3 26.2 18.9 15.6 10.8 9.7 12.6 7.8 5.8 6.6

Query Optimization CQD 21.7 N/A 46.3 9.9 5.9 31.7 41.3 21.8 15.8 14.2 8.6 N/A N/A N/A N/A N/A

NELL995

Query Embedding

GQE 18.6 N/A 32.8 11.9 9.6 27.5 35.2 18.4 14.4 8.5 8.8 N/A N/A N/A N/A N/A
Query2Box 22.9 N/A 42.2 14.0 11.2 33.3 44.5 22.4 16.8 11.3 10.3 N/A N/A N/A N/A N/A

BetaE 24.6 5.9 53.0 13.0 11.4 37.6 47.5 24.1 14.3 12.2 8.5 5.1 7.8 10.0 3.1 3.5
FuzzQE 29.3 8.0 58.1 19.3 15.7 39.8 50.3 28.1 21.8 17.3 13.7 8.3 10.2 11.5 4.6 5.4

Query Optimization CQD 28.4 N/A 60.0 16.5 10.4 40.4 49.6 27.6 20.8 16.8 12.6 N/A N/A N/A N/A N/A

Table 3: MRR results (%) on answering FOL queries. We report MRR results (%) on test FOL queries. AvgEPFO and AvgNeg
denote the average MRR on EPFO queries (queries with ∃,∧,∨ and without negation) and queries containing negation respec-
tively. Results of GQE, Query2Box, and BetaE are taken from (Ren and Leskovec 2020).

and CQD, we compare with the model variant that generally
provides better performance, namely BetaEDNF and CQD-
BEAM. CQD cannot process complex logical queries dur-
ing training and is thus trained with KG edges. To the best
of our knowledge, BetaE is the only available baseline that
can handle negation. Therefore, for GQE, Query2Box, and
CQD, we compare with them only on EPFO queries (queries
with ∃,∧,∨ and without negation).

For FuzzQE, we report results using the logic system
that provide the best average MRR on the validation set. we
use AdamW (Loshchilov and Hutter 2019) as the optimizer.
Training terminates with early stopping based on the aver-
age MRR on the validation set with a patience of 15k steps.
We repeat each experiment three times with different ran-
dom seeds and report the average results. Hyperparameters
and more experimental details are given in Appendix E.

5.2 Main Results: Trained with FOL queries
We first test the ability of FuzzQE to model arbitrary FOL
queries when complex logical queries are available for train-

ing. Results are reported in Table 3.

Comparison with Query Embedding As shown in Ta-
ble 3, FuzzQE consistently outperforms all the logical
query embedding baselines. For EPFO queries, FuzzQE im-
proves the average MRR of best baseline BetaE (Ren and
Leskovec 2020) by 3.3% (ca. 15% relative improvement)
on FB15k-237 and 4.7% (ca. 19% relative improvement) on
NELL995. For queries with negation, FuzzQE significantly
outperforms the only available baseline BetaE. On aver-
age, FuzzQE improves the MRR by 3.0% (54% relatively)
on FB15k-237 and 2.1% (36% relatively) on NELL995 for
queries containing negation. We hypothesize that this signif-
icant enhancement comes from the principled design of our
negation operator that satisfies the axioms, while BetaE fails
to satisfy the non-contradiction property.

Comparison with Query Optimization: CQD We next
compare FuzzQEwith a recent query optimization baseline,
CQD (Arakelyan et al. 2021) on EPFO queries. On average,
FuzzQE provides 2.5% and 0.9% absolute improvement



Model AvgEPFO AvgNeg 1p 2p 3p 2i 3i pi ip 2u up 2in 3in inp pin pni

FB15k-237

GQE 17.7 N/A 41.6 7.9 5.4 25.0 33.6 16.3 10.9 11.9 6.2 N/A N/A N/A N/A N/A
Query2Box 18.2 N/A 42.6 6.9 4.7 27.3 36.8 17.5 11.1 11.7 5.5 N/A N/A N/A N/A N/A

BetaE 15.8 0.5 37.7 5.6 4.4 23.3 34.5 15.1 7.8 9.5 4.5 0.1 1.1 0.8 0.1 0.2
FuzzQE 21.8 6.6 44.0 10.8 8.6 32.3 41.4 22.7 15.1 13.5 8.7 7.7 9.5 7.0 4.1 4.7

NELL995

GQE 21.7 N/A 47.2 12.7 9.3 30.6 37.0 20.6 16.1 12.6 9.6 N/A N/A N/A N/A N/A
Query2Box 21.6 N/A 47.6 12.5 8.7 30.7 36.5 20.5 16.0 12.7 9.6 N/A N/A N/A N/A N/A

BetaE 19.0 0.4 53.1 6.0 3.9 32.0 37.7 15.8 8.5 10.1 3.5 0.1 1.4 0.1 0.1 0.1
FuzzQE 27.1 7.3 57.6 17.2 13.3 38.2 41.5 27.0 19.4 16.9 12.7 9.1 8.3 8.9 4.4 5.6

Table 4: MRR results (%) of logical query embedding models that are trained with only link prediction. This task tests the
ability of the model to generalize to arbitrary complex logical queries, when no complex logical query data is available for
training. AvgEPFO and AvgNeg denote the average MRR on EPFO (∃,∧,∨) queries and queries containing negation respectively.

in MRR on FB15k-237 and NELL995 respectively. It is
worth noting that FuzzQE outperforms CQD on most com-
plex query structures on NELL995 even with slightly worse
1p query answering performance. We hypothesize that the
1p query answering performance difference on NELL995
comes from the differenct abilities of different relation pro-
jection/link prediction models to encode sparse knowledge
graphs.

A major motivation for learning logical query embedding
is its high inference efficiency. We compare with CQD with
regard to the time for answering a query. On a NVIDIAr

GP102 TITAN Xp (12GB), the average time for CQD to an-
swer a FOL query on FB15k-237 is 13.9 ms (milliseconds),
while FuzzQE takes only 0.3 ms. On NELL995, where the
number of entities is 4 times the number in FB15k-237, the
average time for CQD is 68.1 ms, whereas FuzzQE needs
only 0.4 ms. CQD takes 170 times longer than FuzzQE.
The reason is that CQD is required to score all the entities
for each subquery to obtain the top-k candidates for beam
search.

5.3 Trained with only Link Prediction
This experiment tests the ability of the model to general-
ize to arbitrary complex logical queries when it is trained
with only the link prediction task. To evaluate it, we train
FuzzQE and other logical query embedding models using
only KG edges (i.e., 1p queries). For baseline models GQE,
Query2Box, and BetaE, we adapt them following the experi-
ment settings of the Q2B-AVG-1P model discussed in (Ren,
Hu, and Leskovec 2020). Specifically, we set all the sub-
query weights to 1.0 for this experiment.

As shown in Table 4, FuzzQE is able to generalize to
complex logical queries of new query structures even if
it is trained on link prediction and provides significantly
better performance than baseline models. Compared to the
best baseline, FuzzQE improves the average MRR by 3.6%
(20% relatively) for EPFO queries on FB15k-237 and 5.4%
(26% relatively) on NELL995. Regarding queries with nega-
tion, our model drastically outperforms the only available
baseline BetaE across datasets. In addition, compared with
the ones trained with complex FOL queries (in Table 3), It

is worth nothing that FuzzQE trained with only link pre-
diction can outperform BetaE models that are trained with
extra complex logical queries in terms of average MRR (in
Table 3). This demonstrates the superiority of the logical op-
erators in FuzzQE, which are designed in a principled and
learning-free manner. Meanwhile, FuzzQE can still take ad-
vantage of additional complex queries as training samples to
enhance entity embeddings.

6 Conclusion
We propose a novel logical query embedding frame-
work FuzzQE for answering complex logical queries on
KGs. Our model FuzzQE borrows operations from fuzzy
logic and implements logical operators in a principled
and learning-free manner. Extensive experiments show the
promising capability of FuzzQE on answering logical
queries on KGs. The results are encouraging and suggest
various extensions, including introducing logical rules into
embedding learning, as well as studying the potential use of
predicate fuzzy logic systems and other deeper transforma-
tion architectures. Future research could also use the defined
logical operators to incorporate logical rules to enhance rea-
soning on KGs. Furthermore, we are interested in jointly
learning embeddings for logical queries, natural language
questions, entity labels to enhance question answering on
KGs.

Acknowledgements
This work was partially supported by NSF III-1705169,
NSF 1937599, DARPA HR00112090027, Okawa Founda-
tion Grant, Amazon Research Awards, Cisco research grant,
and Picsart gift.

References
Arakelyan, E.; Daza, D.; Minervini, P.; and Cochez, M.
2021. Complex Query Answering with Neural Link Pre-
dictors. In 9th International Conference on Learning Rep-
resentations, ICLR 2021, Virtual Event, Austria, May 3-7,
2021. OpenReview.net.



Ba, L. J.; Kiros, J. R.; and Hinton, G. E. 2016. Layer Nor-
malization. CoRR, abs/1607.06450.
Balaraman, V.; Razniewski, S.; and Nutt, W. 2018. Re-
coin: Relative Completeness in Wikidata. In Companion
Proceedings of the The Web Conference 2018, WWW ’18,
1787–1792. Republic and Canton of Geneva, CHE: Interna-
tional World Wide Web Conferences Steering Committee.
ISBN 9781450356404.
Bollacker, K.; Evans, C.; Paritosh, P.; Sturge, T.; and Taylor,
J. 2008. Freebase: a collaboratively created graph database
for structuring human knowledge. In Proceedings of ACM
SIGMOD International Conference on Management of Data
(SIGMOD).
Bordes, A.; Usunier, N.; Garcia-Duran, A.; Weston, J.; and
Yakhnenko, O. 2013. Translating embeddings for modeling
multi-relational data. In Advances in Neural Information
Processing Systems (NIPS), 2787–2795.
Chvalovskỳ, K. 2012. On the independence of axioms in BL
and MTL. Fuzzy Sets and Systems, 197: 123–129.
Cormode, G.; and Muthukrishnan, S. 2005. An improved
data stream summary: the count-min sketch and its applica-
tions. J. Algorithms, 55(1): 58–75.
Dubois, D.; and Prade, H. 1980. Systems of linear fuzzy
constraints. Fuzzy sets and systems, 3(1): 37–48.
Fodor, J. C.; and Roubens, M. 1994. Fuzzy Preference Mod-
elling and Multicriteria Decision Support, volume 14 of
Theory and Decision Library. Springer. ISBN 978-90-481-
4466-2.
Friedman, T.; and Van den Broeck, G. 2020. Symbolic
Querying of Vector Spaces: Probabilistic Databases Meets
Relational Embeddings. In Adams, R. P.; and Gogate, V.,
eds., Proceedings of the Thirty-Sixth Conference on Uncer-
tainty in Artificial Intelligence, UAI 2020, virtual online,
August 3-6, 2020, volume 124 of Proceedings of Machine
Learning Research, 1268–1277. AUAI Press.
Guu, K.; Miller, J.; and Liang, P. 2015. Traversing Knowl-
edge Graphs in Vector Space. In Màrquez, L.; Callison-
Burch, C.; Su, J.; Pighin, D.; and Marton, Y., eds., Proceed-
ings of the 2015 Conference on Empirical Methods in Nat-
ural Language Processing, EMNLP 2015, Lisbon, Portugal,
September 17-21, 2015, 318–327. The Association for Com-
putational Linguistics.
Hamilton, W. L.; Bajaj, P.; Zitnik, M.; Jurafsky, D.; and
Leskovec, J. 2018. Embedding Logical Queries on Knowl-
edge Graphs. In Advances in Neural Information Processing
Systems 31: Annual Conference on Neural Information Pro-
cessing Systems 2018, NeurIPS 2018, December 3-8, 2018,
Montréal, Canada, 2030–2041.
Hartig, O.; and Heese, R. 2007. The SPARQL query graph
model for query optimization. In European Semantic Web
Conference, 564–578. Springer.
Ji, G.; He, S.; Xu, L.; Liu, K.; and Zhao, J. 2015. Knowl-
edge graph embedding via dynamic mapping matrix. In Pro-
ceedings of the Annual Meeting of Associations for Com-
putational Linguistics (ACL), 687–696. The Association for
Computer Linguistics.

Johnson, J.; Douze, M.; and Jégou, H. 2017. Billion-
scale similarity search with GPUs. arXiv preprint
arXiv:1702.08734.
Katsaras, A.; and Liu, D. 1977. Fuzzy vector spaces and
fuzzy topological vector spaces. Journal of Mathematical
Analysis and Applications, 58(1): 135–146.
Klement, E.; Mesiar, R.; and Pap, E. 2000. Triangular
Norms, volume 8 of Trends in Logic. Springer. ISBN 978-
90-481-5507-1.
Klir, G.; and Yuan, B. 1995. Fuzzy sets and fuzzy logic,
volume 4. Prentice hall New Jersey.
Loshchilov, I.; and Hutter, F. 2019. Decoupled Weight De-
cay Regularization. In 7th International Conference on
Learning Representations, ICLR 2019, New Orleans, LA,
USA, May 6-9, 2019. OpenReview.net.
Mitchell, T.; Cohen, W.; Hruschka, E.; Talukdar, P.; Yang,
B.; Betteridge, J.; Carlson, A.; Dalvi, B.; Gardner, M.;
Kisiel, B.; et al. 2018. Never-ending learning. Communi-
cations of the ACM.
Rebele, T.; Suchanek, F.; Hoffart, J.; Biega, J.; Kuzey, E.;
and Weikum, G. 2016. YAGO: A multilingual knowledge
base from wikipedia, wordnet, and geonames. In Proceed-
ings of the International Semantic Web Conference (ISWC),
volume 9982 of Lecture Notes in Computer Science, 177–
185. Springer.
Ren, H.; Hu, W.; and Leskovec, J. 2020. Query2box: Rea-
soning over Knowledge Graphs in Vector Space Using Box
Embeddings. In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April
26-30, 2020. OpenReview.net.
Ren, H.; and Leskovec, J. 2020. Beta Embeddings for Multi-
Hop Logical Reasoning in Knowledge Graphs. In Advances
in Neural Information Processing Systems 33: Annual Con-
ference on Neural Information Processing Systems 2020,
NeurIPS 2020, December 6-12, 2020, virtual.
Schlichtkrull, M. S.; Kipf, T. N.; Bloem, P.; van den Berg,
R.; Titov, I.; and Welling, M. 2018. Modeling Relational
Data with Graph Convolutional Networks. In The Seman-
tic Web - 15th International Conference, ESWC 2018, Her-
aklion, Crete, Greece, June 3-7, 2018, Proceedings, vol-
ume 10843 of Lecture Notes in Computer Science, 593–607.
Springer.
Schmidt, M.; Meier, M.; and Lausen, G. 2010. Foundations
of SPARQL query optimization. In Proceedings of the 13th
International Conference on Database Theory, 4–33.
Shrivastava, A.; and Li, P. 2014. Asymmetric LSH (ALSH)
for Sublinear Time Maximum Inner Product Search (MIPS).
In Ghahramani, Z.; Welling, M.; Cortes, C.; Lawrence,
N. D.; and Weinberger, K. Q., eds., Advances in Neural
Information Processing Systems 27: Annual Conference on
Neural Information Processing Systems 2014, December 8-
13 2014, Montreal, Quebec, Canada, 2321–2329.
Sun, H.; Arnold, A. O.; Bedrax-Weiss, T.; Pereira, F.; and
Cohen, W. W. 2020. Faithful Embeddings for Knowledge
Base Queries. In Larochelle, H.; Ranzato, M.; Hadsell, R.;
Balcan, M.; and Lin, H., eds., Advances in Neural Informa-
tion Processing Systems 33: Annual Conference on Neural



Information Processing Systems 2020, NeurIPS 2020, De-
cember 6-12, 2020, virtual.
Sun, Z.; Deng, Z.-H.; Nie, J.-Y.; and Tang, J. 2019. Ro-
tatE: Knowledge graph embedding by relational rotation in
complex space. In International Conference on Learning
Representations (ICLR).
Toutanova, K.; and Chen, D. 2015. Observed versus latent
features for knowledge base and text inference. In Proceed-
ings of the 3rd workshop on continuous vector space models
and their compositionality, 57–66.
Trouillon, T.; Welbl, J.; Riedel, S.; Gaussier, E.; and
Bouchard, G. 2016. Complex embeddings for simple link
prediction. In Proceedings of the International Confer-
ence on Machine Learning (ICML), volume 48, 2071–2080.
PMLR.
Vrandečić, D.; and Krötzsch, M. 2014. Wikidata: a free
collaborative knowledge base. Communications of ACM,
57(10): 78–85.
Xiong, W.; Hoang, T.; and Wang, W. Y. 2017. DeepPath:
A Reinforcement Learning Method for Knowledge Graph
Reasoning. In Palmer, M.; Hwa, R.; and Riedel, S., eds.,
Proceedings of the 2017 Conference on Empirical Meth-
ods in Natural Language Processing, EMNLP 2017, Copen-
hagen, Denmark, September 9-11, 2017, 564–573. Associa-
tion for Computational Linguistics.
Yang, B.; Yih, W.-t.; He, X.; Gao, J.; and Deng, L. 2015.
Embedding entities and relations for learning and inference
in knowledge bases. International Conference on Learning
Representations (ICLR).
Zaheer, M.; Kottur, S.; Ravanbakhsh, S.; Póczos, B.;
Salakhutdinov, R.; and Smola, A. J. 2017. Deep Sets. In
Guyon, I.; von Luxburg, U.; Bengio, S.; Wallach, H. M.;
Fergus, R.; Vishwanathan, S. V. N.; and Garnett, R., eds.,
Advances in Neural Information Processing Systems 30: An-
nual Conference on Neural Information Processing Systems
2017, December 4-9, 2017, Long Beach, CA, USA, 3391–
3401.
Zimmermann, H. 1991. Fuzzy Set Theory - and Its Applica-
tions. Springer. ISBN 978-94-015-7951-3.
Zou, L.; Mo, J.; Chen, L.; Özsu, M. T.; and Zhao, D. 2011.
GStore: Answering SPARQL Queries via Subgraph Match-
ing. Proc. VLDB Endow., 4(8): 482–493.



Appendix
A Proof of propositions

We hereby provide proof of propositions for FuzzQE using product logic. The same can be proved for Gödel logic.

A.1 Proof of Proposition 1
Commutativity φ(q1 ∧ q2, e) = φ(q2 ∧ q1, e)
Proof. We have C(Sq1,Sq2) = q1 ◦ q2 = q2 ◦ q1 = C(Sq2,Sq1) where ◦ denotes element-wise multiplication.
Therefore, φ(q1 ∧ q2, e) = pe

ᵀC(Sq1,Sq2) = pe
ᵀC(Sq2,Sq1) = φ(q2 ∧ q1, e).

Associativity φ((q1 ∧ q2) ∧ q3, e) = φ(q1 ∧ (q2 ∧ q3), e)

Proof. Since C(C(Sq1,Sq2)),Sq3) = q1 ◦ q2 ◦ q3 = C(Sq1, C(Sq2,Sq3)), we have

φ((q1 ∨ q2) ∨ q3, e)
=pe

ᵀC(C(Sq1,Sq2)),Sq3)

=pe
ᵀC(Sq1, C(Sq2,Sq3))

=φ(q1 ∨ (q2 ∨ q3), e)

Conjunction elimination φ(q1 ∧ q2, e) ≤ φ(q1, e), φ(q1 ∧ q2, e) ≤ φ(q2, e)

Proof. φ(q1 ∧ q2, e) ≤ φ(q1, e) can be proved by

φ(q1 ∧ q2, e)
=pe

ᵀC(Sq1,Sq2)

=pe
ᵀ(Sq1 ◦ Sq2)

=

d∑
i=1

peiSq1iSq2i

≤
d∑
i=1

peiSq1i

=φ(q1, e)

φ(q1 ∧ q2, e) ≤ φ(q2, e) can be proved similarly.

A.2 Proof of Proposition 2
Commutativity φ(q1 ∨ q2, e) = φ(q2 ∨ q1, e)
Proof. We have D(Sq1,Sq2) = Sq1 + Sq2 − Sq1 ◦ Sq2 = Sq2 + Sq1 − Sq2 ◦ Sq1 = D(Sq2,Sq1).
Therefore, φ(q1 ∨ q2, e) = pe

ᵀD(Sq1,Sq2) = pe
ᵀD(Sq2,Sq1) = φ(q2 ∨ q1, e).

Associativity φ((q1 ∧ q2) ∧ q3, e) = φ(q1 ∧ (q2 ∧ q3), e)

Proof.

D(D(Sq1,Sq2)),Sq3)

=D(Sq1 + Sq2 − Sq1 ◦ Sq2,Sq3)

=(Sq1 + Sq2 − Sq1 ◦ Sq2) + Sq3 − (Sq1 + Sq2 − Sq1 ◦ Sq2) ◦ Sq3
=Sq1 + Sq2 + Sq3 − Sq1 ◦ Sq2 − Sq1 ◦ Sq3 − Sq2 ◦ Sq3 + Sq1 ◦ Sq2 ◦ Sq3
=D(Sq1,D(Sq2,Sq3))

Therefore

φ((q1 ∨ q2) ∨ q3, e)
=pe

ᵀD(D(Sq1,Sq2)),Sq3)

=pe
ᵀD(Sq1,D(Sq2,Sq3))

=φ(q1 ∨ (q2 ∨ q3), e)



Disjunction amplification φ(q1 ∨ q2, e) ≥ φ(q1, e), φ(q1 ∨ q2, e) ≥ φ(q2, e)

Proof. φ(q1 ∨ q2, e) ≥ φ(q1, e) can be proved by

φ(q1 ∨ q2, e)
=pe

ᵀD(Sq1,Sq2)

=pe
ᵀ(Sq1 + Sq2 − Sq1 ◦ Sq2)

=

d∑
i=1

pei(Sq1i + Sq2i − Sq1iSq2i)

=

d∑
i=1

peiSq1i + peiSq2i(1− Sq1i)

≥
d∑
i=1

peiSq1i

=φ(q1, e)

φ(q1 ∨ q2, e) ≥ φ(q2, e) can be proved similarly.

A.3 Proof of Proposition 3
Involution φ(q, e) = φ(¬¬q, e)
Proof.

N (N (q)) = 1− (1− Sq) = Sq

Therefore φ(¬¬q, e) = pe
ᵀN (N (Sq)) = φ(q, e)

Non-contradiction φ(q, e) ↑⇒ φ(¬q, e) ↓
Proof. The Łukasiewicz negation c(x) = 1− x is monotonically decreasing with regard to x. Therefore, φ(¬q, e) is monoton-
ically decreasing with regard to φ(q, e).



B Axiomatic systems of logic
Axiomatic systems of logic consist of a set of axioms and the Modus Ponen inference rule: from ϕ and ϕ → ψ infer ψ.
Implication → is defined as ϕ → ψ holds if the truth value of ψ is larger than or equal to ϕ. In Table 5, we compare the
semantics of classical logic and product logic and show that product logic operations are fully compatible with classical logic.
In Table 6, we provide the list of axioms written in Hilbert-style deductive system for classical logic, and three prominent fuzzy
logic systems: Łukasiewicz logic, Gödel logic, and product logic (Klement, Mesiar, and Pap 2000). We also provide some of
the derivable logic laws. Interested readers are referred to (Zimmermann 1991) for proofs.

Table 5: Semantics of classical logic and product logic. FmL denote all valid logic formulae under the logic system, and
ϕ,ψ ∈ FmL are logical formulae. I(·) denotes the truth value of a logical formula.

Classical Logic Product Logic

Interpretation I I : FmL → {0, 1} I : FmL → [0, 1]

I(ϕ ∧ ψ) I(ϕ)I(ψ) I(ϕ)I(ψ)

I(ϕ ∨ ψ) I(ϕ) + I(ψ)− I(ϕ)I(ψ) I(ϕ) + I(ψ)− I(ϕ)I(ψ)

I(ϕ→ ψ)

{
1, if I(ϕ) ≤ I(ψ)
I(ψ), otherwise

{
1, ifI(ϕ) ≤ I(ψ)
I(ψ), otherwise



Table 6: Axioms and derivable logic laws of classical logic, basic fuzzy logic, and three prominent fuzzy logic systems that are
based on on basic fuzzy logic: Łukasiewicz logic, Gödel logic, and product logic (Klement, Mesiar, and Pap 2000). • denotes
that the formula is in the minimal axiomatic system (Chvalovskỳ 2012), while ◦ means the logic law could be derived from the
minimal axiomatic system. EFQ stands for Ex falso quodlibet, which is Latin for from falsehood, anything. Strong conjunction
of fuzzy logic is usually defined by t-norm (See Appendix F) and denoted by & in literature. Here, to make it easier to compare
with classical logic, we uniformly use ∧ in the axioms.

Axiom / Logic Law Classical Logic Basic Fuzzy Logic Łukasiewicz Gödel Product

Transitivity (ϕ→ χ)→ ((ψ → χ)→ (ϕ→ χ)) • • • • •

Weakening ϕ→ (ψ → ϕ) • • • • •

Exchange (ϕ→ (ψ → χ))→ (ψ → (ϕ→ χ)) • • • • •

∧(I) ϕ ∧ ψ → ϕ • • • • •

∧(II) ϕ ∧ ψ → ψ • • • • •

∧(III) (χ→ ϕ)→ ((χ→ ψ)→ (χ→ ϕ ∧ ψ)) • • • • •

∨(I) ϕ ∨ ψ → ϕ • • • • •

∨(II) ϕ ∨ ψ → ψ • • • • •

∨(III) (χ→ ϕ)→ ((χ→ ψ)→ (χ→ ϕ ∨ ψ)) • • • • •

Prelinearity (ϕ→ ψ) ∨ (ψ → ϕ) • • • • •

EFQ 0→ ϕ • • • • •

ϕ ∧ ψ ↔ ψ ∧ ϕ ◦ ◦ ◦ ◦ ◦

(ϕ ∧ ψ) ∧ χ↔ ϕ ∧ (ψ ∧ χ) ◦ ◦ ◦ ◦ ◦

ϕ ∨ ψ ↔ ψ ∨ ϕ ◦ ◦ ◦ ◦ ◦

(ϕ ∨ ψ) ∨ χ↔ ϕ ∨ (ψ ∨ χ) ◦ ◦ ◦ ◦ ◦

Contraction (ϕ→ (ϕ→ ψ))→ (ϕ→ ψ) ◦ •

Wajsberg ¬¬ϕ→ ϕ ◦ •

ϕ ∧ ¬ϕ→ 0 ◦ •

XI ¬¬χ→ (((ϕ ∧ χ)→ (ψ ∧ χ))→ (φ→ ψ)) ◦ •



C Logical Operators of GQE, Query2Box, and BetaE
C.1 Conjunction
GQE, Query2Box, BetaE represent queries as vectors, boxes (axis-aligned hyper-rectangles), and Beta distributions, respec-
tively. Fig. 2 illustrates embedding-based conjunction operators of the three models, which takes embeddings of queries q1, q2
as input and produce an embedding for q1 ∧ q2. Our analysis in Section 3.2 focuses on the nature of the geometry operations,
and we thus omit deep architectures of the logical operators of these models from our analysis, such as the attention mechanism
or deep sets (Zaheer et al. 2017) for weighing sub-queries. We assume all the sub-queries should have identical weights. The
details about the original implementation are given below.

GQE
C(Sq1,Sq2) = Ψ(NNk(Sq1,Sq2))

where Sq1,Sq2 ∈ Rd, NNk is a k-layer feedforward neural network, Ψ is a symmetric vector function, usually defined as the
element-wise mean (Ren, Hu, and Leskovec 2020).

Query2Box In Query2Box, each query is represented by d boxes, i.e., a vector SqCEN ∈ Rd for box centers and a vector
SqOFF ∈ R+d for box sizes. The conjunction operator CCEN, COFF are defined as follows:

CCEN(Sq1,Sq2) = w1SqCEN1 + w2SqCEN1; wi =
exp(MLP(Sqi))∑
j exp(MLP(Sqj))

, i = 1, 2

COFF(Sq1,Sq2) = w′ ◦min(SqOFF1,SqOFF2); w′ = σ(DeepSets(SqOFF1,SqOFF2))

where wi is an input query weight using the attention mechanism, w′ is learnable coefficients that shrink box sizes, ◦ is the
element-wise product, MLP(·) : R2d → Rd is the Multi-Layer Perceptron, σ(·) is the sigmoid function, DeepSets(·) is the
permutation-invariant deep architecture (Zaheer et al. 2017), and both min(·) and exp(·) are applied in a dimension-wise
manner. When analyzing properties, we assume the deep architectures can work ideally, and COFF always finds the perfect
intersection box size.

BetaE In BetaE, each query is represented by d Beta distributions. Each Beta distribution is shaped by an alpha parameter
and a beta parameter. Thus a query is represented by a vector Sqα ∈ R+d for alpha parameters and a vector Sqβ ∈ R+d for
beta parameters. The conjunction operator Cα, Cβ are defined as follows:

Cα(Sqα1,Sqα2) = w1Sqα1
+ w2Sqα2

Cβ(Sqβ1,Sqβ2) = w1Sqα1
+ w2Sqα2

; wi =
exp(MLP(Sqi))∑
j exp(MLP(Sqj))

, i = 1, 2

where wi is the input query weight computed by the attention mechanism:

C.2 Negation
Disjunction operators of GQE, Query2Box, and BetaE are described in Section 3.1 and thus omitted here. To the best of our
knowledge, BetaE is the only existing model that could model negation. The negation operatorNα,Nβ of BetaE are defined as
follows:

Nα(Sq)(i) = 1/Sqα(i), i = 1, ..., d

Nβ(Sq)(i) = 1/Sqβ(i), i = 1, ..., d

Fig 4 shows a case where the negation operator of BetaE does not satisfy non-contradiction, as φ(¬q, e) is not monotonically
decreasing with regard to φ(q, e).



Figure 4: Illustration of an example where the negation operator of BetaE does not satisfy non-contradiction, i.e. φ(¬q, e) is
not monotonically decreasing with regard to φ(q, e).



D Dataset statistics and query structures
We use the benchmark datasets provided by BetaE (Ren and Leskovec 2020), which is publicly available at https://github.
com/snap-stanford/KGReasoning. The datasets contain 14 types of logical queries on FB15k-237 (Toutanova and Chen 2015)
and NELL995 (Xiong, Hoang, and Wang 2017) respectively. The queries are generated based on the official training/valida-
tion/testing edge splits of those KGs. The 14 types of query structures in the datasets are shown in Fig. 3. We list the number of
training/validation/test queries in Table 8. The KG statistics are summarized in Table 7.

Table 7: Knowledge graph dataset statistics as well as training, validation, and test edge splits.

Dataset Entities Relations Training Edges Validation Edges Test Edges Total Edges

FB15k-237 14505 237 272115 17526 20438 310079
NELL 63361 200 114213 143234 14267 142804

Table 8: Number of training, validation, and test queries for different query structures. For columns that list multiple query
structures, the number in the table represents the number of each query structure.

Training Validation Test

Dataset 1p/2p/3p/2i/3i 2in/3in/inp/pin/pni 1p others 1p others

FB15k-237 149,689 149,68 20,101 5,000 2,812 5,000
NELL995 107,982 10,798 16,927 4,000 17,034 4,000



E Experimental details
Implementation For GQE (Hamilton et al. 2018), Query2Box (Ren, Hu, and Leskovec 2020), and BetaE (Ren and Leskovec
2020), we use the implementation from https://github.com/snap-stanford/KGReasoning. For CQD, we use the implementation
at https://github.com/uclnlp/cqd. The source code of our model is included in a code appendix. All source code of our model
will be made publicly available upon publication of the paper with a license that allows free usage for research purposes.

Model configurations and hyperparameters We use AdamW (Loshchilov and Hutter 2019) as the optimizer. Training
terminates with early stopping based on the average MRR on the validation set with a patience of 15k steps. We run each
method up to 450k steps. We repeat each experiment three times and report the average results.

As in (Ren, Hu, and Leskovec 2020; Ren and Leskovec 2020), for fair comparison, we use the same embedding dimen-
sionality d and the number of negative samples k for all the methods. With reference to (Ren and Leskovec 2020), we set the
embdding dimensionality to d = 800 and use k = 128 negative samples per positive sample. We finetune other hyperparameters
and the choice of the subspace mapping function g : Rd → [0, 1]d by grid search based on the average MRR on the validation
set. We search hyperparameters in the following range: learning rate from {0.001, 0.0005, 0.0001}, number of relation bases
from {30, 50, 100, 150}, batch size b from {128, 512, 1000}. g is chosen from from {Logistic function, Bounded rectifier}.

The best hyperparameter combination on FB15k-237 is learning rate 0.001, number of relation bases 150, batch size 512, g
as a logistic function. The best combination on NELL995 is learning rate 0.0005, number of relation bases 30, batch size 1000,
g as a bounded rectifier. For baselines GQE , Q2B, and BetaE, we use the best combinations reported by (Ren and Leskovec
2020). For CQD, we use the ones reported in (Arakelyan et al. 2021). We follow the setting in the official code repository for
any hyperparameter unspecified in the paper.

Hardware and software Specifications Each single experiment is run on CPU Intelr Xeonr E5-2650 v4 12-core and
a single NVIDIAr GP102 TITAN Xp (12GB) GPU. RAM size is 256GB. The operating system is Ubuntu 18.04.01. Our
framework is implemented wtih Python 3.9 and Pytorch 1.9.



F t-norm based fuzzy logic systems
Functions that qualify as fuzzy conjunction and fuzzy disjunction are usually referred to in literature as t-norms (triangular
norms) and t-conorms (triangular conorms) respectively in literature (Klir and Yuan 1995).

A t-norm (Dubois and Prade 1980) is a function t : [0, 1]× [0, 1]→ [0, 1] which is commutative and associative and satisfies
the boundary condition t(a, 1) = a as well as monotonicity, i.e., t(a, b) ≤ t(c, d) if a ≤ c and b ≤ d. Prominent examples of
t-norms include minimum, product, and Łukasiewicz t-norm.
t-conorm is the logical dual form of the t-norm. Following De Morgan’s law, given the canonical negator c(x) = 1− x, the

t-conorm s of a t-norm t is defined as s(a, b) = 1− t(1− a, 1− b). A t-conorm is commutative and associative, and satisfies
the boundary condition s(a, 0) = a as well as monotonicity: s(a, b) ≤ s(c, d) if a ≤ c and b ≤ d. Interested readers are referred
to (Klir and Yuan 1995) for proofs.

The formulas of t-conorms that correspond to the minimum (Gödel), product, and Łukasiewicz t-norms are given in Table 9.
The illustration is given in Fig 5.

Table 9: Prominent examples of t-norms and the corresponding t-norms derived by De Morgan’s law and the canonical negator
c(x) = 1−x. We list the special properties of the formulas in addition to the basic properties (i.e., commutativity, associativity,
monotonicity, and boundary condition) of t-norm and t-conorm.

t-norm (∧) t-conorm (∨) Special Properties

minimum (Gödel) t(a, b) = min(a, b) s(a, b) = max(a, b) idempotent
product t(a, b) = ab s(a, b) = a+ b− ab strict monotonicity
Łukasiewicz t(a, b) = max(a+ b− 1, 0) s(a, b) = min(a+ b, 1) nilpotent

Figure 5: Illustration of fuzzy conjunction and disjunction, which is equivalent to fuzzy set intersection and union.



G Time Comparison with CQD
We compare with CQD with regard to the time for answering a query. The experiment is conducted on a NVIDIAr GP102
TITAN Xp (12GB) GPU. The full hardware and software specifications are given in Appendix E. For CQD, we use its official
implementation 3 and experiment setting (Arakelyan et al. 2021). The beam search candidate number for CQD is set as 64,
i.e., CQD finds top 64 entity candidates for each sub-query and uses it as seeds for search in the next round. For FuzzQE,
we retrieve top 64 entity candidates for each query as well. We use FAISS (Johnson, Douze, and Jégou 2017) to speed up
dense similarity search, whereexact measurement matching is adopted instead of approximate measurement matching. FAISS
cannot be applied to CQD, because (i) CQD is not a logical query embedding framework that retrieves entity answers by dense
similarity search, and (ii) scoring an entity for a query involves computation in the complex number domain.

Fig 6 shows the average time of CQD and FuzzQE for answering a complex FOL query. Fig 7 shows the time required by
CQD and FuzzQE for answering each query type, aggregated over FB15k-237 and NELL995. The structure of different query
types are shown in Fig. 3 in Appendix D. Consistent with the observation in (Arakelyan et al. 2021), the main computation
bottleneck of CQD are multi-hop queries (e.g., 3p queries), since the model is required to invoke the link prediction model for
each node in the dependency graph to obtain the top-k candidates for the next step. We also note that as the number of entities
increases, the time required by CQD to answer a query significantly grows. In contrast, the inference time of FuzzQE is almost
independent of the number of entities and the complexity of the query.

Figure 6: Average time (milliseconds) for answering an FOL query on a single NVIDIAr GP102 TITAN Xp (12GB) GPU.
FB15k-237 contains 14,505 entities. NELL995 contains 63,361 entities, roughly 4 times the number of FB15k-237.

3https://github.com/uclnlp/cqd



Figure 7: Average time (milliseconds) required by CQD and FuzzQE for answering each query type in FB15k-237 and
NELL995.


