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Abstract

In human networks, nodes belonging to a marginalized group often have a dispro-
portionate rate of unknown or missing features. This, in conjunction with graph
structure and known feature biases, can cause graph feature imputation algorithms
to predict values for unknown features that make the marginalized group’s feature
values more distinct from the the dominant group’s feature values than they are in
reality. We call this distinction the discrimination risk. We prove that a higher
discrimination risk can amplify the unfairness of a machine learning model ap-
plied to the imputed data. We then formalize a general graph feature imputation
framework called mean aggregation imputation and theoretically and empirically
characterize graphs in which applying this framework can yield feature values
with a high discrimination risk. We propose a simple algorithm to ensure mean
aggregation-imputed features provably have a low discrimination risk, while min-
imally sacrificing reconstruction error (with respect to the imputation objective).
We evaluate the fairness and accuracy of our solution on synthetic and real-world
credit networks.

1 Introduction

Machine learning (ML) methods [1, 2, 3, 4, 5] have been successfully applied to graph-structured
data such as social networks, product graphs, and molecules [6, 7] to aid in important problems like
content recommendation, product recommendation, and molecular property prediction [8, 9, 7, 10, 11].
However, many methods rely on fully-observed features for each node, which are not available for
privacy reasons, as a consequence of exclusionary data collection practices, or due to the high
expenses involved in feature annotation [12, 13, 14]. As a result, the development of algorithms to
leverage a graph’s structure and known node feature values to impute unknown or missing features
has emerged as an important research area [15, 16].

In human networks, nodes belonging to a marginalized group (e.g., on the basis of race, gender,
disability, etc.) often have a disproportionate rate of unknown features compared to the dominant
group because marginalized communities may be more reluctant to share their data, annotators erase
their data, and they are sidelined in data collection [17, 18, 19, 20]. Furthermore, node neighborhoods
are often associated with group membership [21, 22], especially in homophilic graphs where nodes
belonging to the same group have a higher likelihood of being connected [23]. Homophily can be
due to social stratification [24] or the limited collection of inter-links (i.e., edges between nodes
belonging to different groups) [23, 7]. Moreover, known feature values can be tainted and proxies for
group membership [18, 25]. Hence, even if graph feature imputation algorithms do not have direct
access to the group membership of a node, these algorithms are influenced by unknown feature rate
disparities, graph structure, and known feature values. In fact, they can predict values for unknown
features that cause the the marginalized group’s feature values to be more distinct from the dominant
group’s feature values than they are in reality.
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To illustrate this phenomenon, let’s consider an automated candidate screening system based on
the job applicant network shown in Figure 1, where nodes represent applicants and edges between
applicants indicate that they have similar past work experiences. Each node has one feature: the
number of years that the applicant has previously worked. Furthermore, each node belongs to one of
two groups, the disabled community Q or the able-bodied community R1. All the nodes in R have
a known feature value of 5 years, while all the nodes in Q have unknown feature values; however,
in reality, all the nodes in Q also have a feature value of 5 years. Additionally, all the nodes in Q
are connected to each other but have few links (if any) to nodes in R because of systemic barriers
including hiring discrimination and a lack of accommodations [27]. Consequently, after applying
the graph feature imputation algorithm Feature Propagation [16], because of the disparate rates of
unknown features between the groups and structure of the graph, the nodes in Q will have, on average,
feature values that are more distinct from the feature values of the nodes in R than the ground truth.
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Figure 1: A job applicant network. After applying Feature Propagation [16], the nodes in Q will have
feature values that are more distinct from the feature values of the nodes in R than the ground truth.

We call this distinction in imputed feature values between the marginalized and dominant groups
the discrimination risk. In this paper, we present a theoretically-justified formulation of the
discrimination risk of imputed features. We further prove that a higher discrimination risk can
amplify the unfairness of a ML model applied to the imputed data, which can be especially dangerous,
unethical, and illegal in high-stakes applications like automated candidate screening and loan approval
[28, 29, 30, 31]. For instance, in the automated candidate screening example, a model applied to the
imputed data may more easily learn to identify and reject disabled job applicants because they appear
to have fewer years of work experience than able-bodied applicants, thereby reinforcing systemic
discrimination against the disabled community [27].

We also formalize a general graph feature imputation framework called mean aggregation imputa-
tion that encompasses common diffusion-based imputation algorithms in the literature. Subsequently,
we theoretically and empirically characterize graphs in which applying mean aggregation feature
imputation can yield a high discrimination risk, without making any assumptions about the underlying
distributions of unknown features or graph structure. To the best of our knowledge, we are the first to
study the effect of graph feature imputation on the fairness of models. This is challenging because
we must consider biases stemming from graph structure.

Furthermore, we propose a simple algorithm to ensure mean aggregation-imputed features provably
have a low discrimination risk, while minimally sacrificing reconstruction error (with respect to
the imputation objective). We do so by viewing mean aggregation imputation through the lens of
gradient descent and projecting imputed feature values onto the feasible space of feature values
with low discrimination risk. We empirically evaluate the fairness and accuracy of our solution on
synthetic and real-world credit networks, finding that it improves fairness without a significant loss in
reconstruction error on the synthetic datasets but doesn’t improve fairness on the real-world datasets.
We close by discussing the limitations of our solution.

2 Related work

Feature imputation Feature imputation algorithms leverage known feature values to predict unknown
feature values (and sometimes update known feature values). For example, unknown feature values
may be filled as the mean of known values [16]. However, more intricate feature imputation methods
have been proposed in the ML, statistics, and epidemiology literature, with popular approaches
including matrix completion [32, 33, 34, 35], nearest neighbors [36, 37], multiple imputation via
conditional models [38, 39, 40], and causal inference [41, 42]. Notably, while feature imputation
may be applied to data with unknown feature values prior to the data being passed to a ML model,

1In reality, disability is a fluid and complex identity that should not be reduced to a binary [26].
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feature imputation is distinct from label prediction with missing data, wherein models work directly
with unknown feature values [43, 44, 45, 46, 47, 48, 49, 50]; we do not consider the latter paradigm
in this paper. Works have extended feature imputation approaches for tabular data to incorporate
graph structure [51, 52]. Graph feature imputation using deep learning methods is also gaining
traction [53, 54, 15]. However, [16] proposes a non-neural diffusion-based approach called Feature
Propagation that imputes graph features by minimizing the graph’s Dirichlet energy.

Fairness of missing data and feature imputation Works have theoretically and empirically in-
vestigated the impact of missing data [55, 56, 19, 57, 58] and feature imputation on the fairness of
ML models [56, 59, 60, 61, 30, 62]. These works consistently find that missing data can amplify
biases, and some show that in practice, feature imputation can yield less unfair (relative to excluding
missing data) but nevertheless discriminatory model outcomes. However, these works only study
tabular data and do not consider biases that emerge from graph structure [20, 22, 63]. Furthermore,
they often adapt models to directly work with missing data rather than mitigate the unfairness of
feature imputation itself. Despite the prevalence of graph feature imputation methods, to the best of
our knowledge, there is no research on their influence on the fairness of models. Some works have
explored fairness constraints in semi-supervised settings [64, 65], but they assume that node features
are entirely available, which is not the case in feature imputation.

Fair graph machine learning We focus on group fairness, which ensures model predictions exhibit
some form of parity between different groups [66, 21, 67, 29, 68, 69]. Works have studied (amongst
other fairness formulations) statistical parity, wherein a model predicts the positive outcome at the
same rate for different groups, and equalized odds, in which the accuracy of model predictions is
equivalent across different groups [70]. In the automated candidate screening example, statistical
parity would imply that all candidates have an equivalent opportunity to pass screening regardless
of group membership, while equalized odds would mean that, regardless of group membership
(i.e., P(Z|S = Q) = P(Z|S = R)), candidates are classified with an equivalent accuracy by the
automated screening model (i.e., P(Z|Y, S = Q) = P(Z|Y, S = R)). When ground-truth labels are
tainted (e.g., the screening system is trained with sexist hiring data), we may prefer statistical parity
to equal opportunity. While our theoretical study of discrimination risk is aligned with statistical
parity, we empirically explore the effect of mean aggregation imputation with a lower discrimination
risk on both the demographic parity and equalized odds of models. Mechanisms for improving
group fairness have been categorized into pre-processing [22], training-time [21, 23, 71], and post-
processing [72, 73]. Our work is similar to pre-processing, as we seek to lower the discrimination risk
of imputed training data towards improving model fairness. There exist many works on modifying
graph structure to mitigate topology-induced biases [73, 74, 22, 71, 75, 76]. However, because graph
semantics (especially for large graphs) are difficult to interpret, it is unclear if the solutions that
these papers propose preserve the semantics of the original graph. On the other hand, our work
does not modify graph structure and instead optimally transforms imputed features to have a low
discrimination risk. [77] investigates the fairness of graph neural networks in the presence of limited
group membership information but does not consider imputation; in contrast, our work assumes
group membership is fully available but features are not.

3 Discrimination risk and model unfairness

To understand how feature imputation could amplify the unfairness of a ML model, we now present
a theoretically-justified metric called the discrimination risk, which applies beyond the setting of
graphs and is agnostic to model architecture and labels. (We explore discrimination risk in the
context of graphs in Section 5.) Suppose we have an arbitrary data distribution D and two groups:
a marginalized group Q and a dominant group R. For any data instance (x, y, s) ∼ D, let x ∈ X
be the d-dimensional feature values of the instance (where xi denotes the i-th entry of x), let y ∈ Y
be its label, and let s ∈ {Q,R} be its group membership. We assume that we can observe the
group membership of any data instance and that no instance can belong to both the marginalized and
dominant groups.

Definition 1 (Discrimination Risk) We define the discrimination risk of D as:

RD =
∥∥E(x,y,s)∼D[x|s = Q]− E(x,y,s)∼D[x|s = R]

∥∥
∞ , (1)

We now explore the relevance of discrimination risk to model unfairness. Let D′ be the data
distribution with ground-truth features and D be the distribution with imputed features. We will show
that if RD > RD′ , imputation may amplify model unfairness.
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To be concrete, let’s again consider the example of the automated candidate screening system. Let
P(S ∈ {Q,R}) be the distribution over the group membership of job applicants. Furthermore, let
P(X ′ ∈ X ) be the distribution over the ground-truth feature values of applicants (e.g., number of
years previously worked, highest degree, etc.) In contrast, let P(X ∈ X ) be the distribution over
imputed feature values of applicants. Let P(Y ∈ Y) be the distribution over ground-truth applicant
labels (e.g., whether an applicant should be hired, a screening score for an applicant, etc.) Now, let h′

be a model trained on samples from D′ (without direct access to S), and h be another model trained
on samples from D (without direct access to S). Additionally, let P(Z ′ ∈ Y) be the distribution over
the predictions of h′ on instances sampled from P(X ′), and let P(Z ∈ Y) be the distribution over the
predictions of h on instances sampled from P(X).

We have the dependencies S → X ′ and S → X because disability affects the number of years
previously worked by a job applicant. Additionally, S → X because S can influence the feature
imputation algorithm (as illustrated in Figure 1). Furthermore, we assume that h′ and h have access to
the feature values of an applicant, but not the applicant’s group membership, and that the association
of S with Z ′ through Y can be fully explained by X ′. Thus, Z ′ is conditionally independent of S
given X ′. Similarly, we assume that the association of S with Z through Y can be fully explained by
X , so Z is conditionally independent of S given X .

Because we are interested in how feature imputation may amplify model unfairness, we investi-
gate when the statistical parity or total variation distance dTV (P(Z|S = Q),P(Z|S = R)) >
dTV (P(Z ′|S = Q),P(Z ′|S = R)) [78], where P(Z|S = Q) is the prediction distribution con-
ditioned on group-Q membership. dTV (A,B) measures the distance between two probability
distributions A and B as supx∈F |A(x) − B(x)|. Intuitively, dTV (P(Z|S = Q),P(Z|S = R))
captures how much the prediction distribution of h absolutely differs between Q and R, and thus it
quantifies the (statistical parity) unfairness of h. We now discuss the relationships of dTV (P(Z ′|S =
Q),P(Z ′|S = R)) to dTV (P(X ′|S = Q),P(X ′|S = R)) and dTV (P(Z|S = Q),P(Z|S = R)) to
dTV (P(X|S = Q),P(X|S = R)). We begin with the following lemma from [79].

Lemma 1 (Corollary 17 from [79]) By the Data Processing Inequality, dTV (P(Z ′|S =
Q),P(Z ′|S = R)) ≤ dTV (P(X ′|S = Q),P(X ′|S = R)) and dTV (P(Z|S = Q),P(Z|S =
R)) ≤ dTV (P(X|S = Q),P(X|S = R)).

Please refer to Section A.1 for the proof of Lemma 1. At a high level, Lemma 1 states that the
statistical parity unfairness of a model is upper-bounded by the statistical parity distance of the feature
distributions between the groups. We now use Lemma 1 to prove the following theorem that connects
dTV (P(Z ′|S = Q),P(Z ′|S = R)) to RD′ and dTV (P(Z|S = Q),P(Z|S = R)) to RD.

Theorem 1 Suppose P(X ′|S = Q) = N (µ′
Q,Σ

′
Q);P(X ′|S = R) = N (µ′

R,Σ
′
R);P(X|S = Q) =

N (µQ,ΣQ); and P(X|S = R) = N (µR,ΣR). We then get the following bounds:

dTV (P(Z ′|S = Q),P(Z ′|S = R)) ∈

 1
4·max{λmax(Σ′

Q
),λmax(Σ′

R
)}

C′·R2
D′

+1
,

√
1−

√
detΣ′

Q

detΣ′
R
· e−

C′·R2
D′

λmin(Σ′
R)

−tr(Σ′−1
R Σ′

Q)+d

 ;

dTV (P(Z|S = Q),P(Z|S = R)) ∈

 1
4·max{λmax(ΣQ),λmax(ΣR)}

C·R2
D

+1
,

√
1−

√
detΣQ

detΣR
· e−

C·R2
D

λmin(ΣR)
−tr(Σ−1

R ΣQ)+d

 ,

where 0 ≤ C ′ ≤ d and 0 ≤ C ≤ d. Please refer to Section A.2 for the proof of Theorem 1.

This result suggests that minimizing RD can minimize the unfairness of the model h applied to the
imputed data. Furthermore, it is possible that RD > RD′ , in which case feature imputation may
amplify the unfairness of a model. While we leverage strong generative assumptions in Theorem 1, it
is plausible that X ′|S = Q and X ′|S = R are normally-distributed. Furthermore, mean aggregation
imputation (Section 4) produces approximately normal X|S = Q and X|S = R (by the Central
Limit Theorem). We additionally note that the lower bounds do not require the feature values to be
normally distributed; the bounds only assume their distributions have finite covariance. Finally, for
arbitrary distributions, matching even an infinite number of moments is not sufficient to bound their
distance [80].

While RD applies beyond graphs and is agnostic to model architecture and labels, in practice, it is
important to consider model complexity and task context. We also add that RD risk bears resemblance
to the Average Treatment Effect studied in causality [81]. Moreover, [59] proposes a metric also
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called discrimination risk which quantifies how much the deviation of imputed feature values from
the ground-truth feature values differs across groups; this quantity is aligned with the equalized odds
of a model applied to the imputed data. In contrast, RD simply measures how much imputed features
differ across groups, enabling its computation when ground-truth feature values are not available, and
is aligned with the statistical parity of a model. We leave extending our definition of discrimination
risk to other formulations of fairness as future work [70].

4 Graph feature imputation

We would like to investigate the discrimination risk of graph feature imputation. Prior to doing so,
we present a general framework called mean aggregation imputation that encompasses common
non-neural diffusion-based graph feature imputation algorithms in the literature.

Suppose we have an undirected weighted homogeneous graph G = (V,E). Each node has d features,
hence the node feature matrix X ∈ RN×d, where N = |V | (i.e., the cardinality of V ). For simplicity,
we assume that d = 1. The feature value is unknown for some nodes in G (denoted as the set U ),
and known for others (denoted as the set K). The feature value of each node is either known or
unknown (i.e., U ∪K = V and U ∩K = ∅). Let XS refer to the feature values of the nodes in set

S. Assume without loss of generality that X =

[
XK

XU

]
. Furthermore, let A ∈ RN×N denote the

weighted adjacency matrix of G, where Aij is the nonnegative weight corresponding to the edge
from node j to node i. Additionally, let AS1S2 denote the submatrix of A with rows belonging to the

nodes in set S1 and columns belonging to the nodes in set S2. Let A :=

[
AKK AKU

AUK AUU

]
. D is the

diagonal degree matrix, i.e., Dii =
∑N

j=1 Aij and D :=

[
DK 0
0 DU

]
.

Definition 2 (Mean Aggregation Feature Imputation) Denote the feature values at iteration t of
mean aggregation feature imputation as X(t). Furthermore, let X(t)

S refer to the feature values of the
nodes in set S at iteration t. Then, at each iteration t:

MX(t+1) := ϕ(MX(t)) =

[
βI|K| 0
0 I|U |

]
TMX(t) +

[
(1− β)I|K| 0

0 0

]
MX(0), (2)

where M : RN → RN is a diagonal invertible map, T ∈ RN×N is a right-stochastic matrix, and
β ∈ [0, 1] is a regularization hyperparameter.

When d > 1, we apply mean aggregation feature imputation to each channel independently2, and it
only works with continuous (not discrete) features. Mean aggregation encompasses common graph
feature imputation methods, including Global Mean (predicts unknown feature values as the uniform
mean of known feature values), Neighbor Mean (predicts unknown feature values as the degree-
weighted mean of the known feature values for neighboring nodes), Feature Propagation (predicts
unknown feature values that minimize the Dirichlet energy of the graph while preserving known
feature values), and Graph Regularization (predicts feature values via a smoothness constraint
and a fitting constraint for the known features). For proofs, refer to Section A.3. Despite Neighbor
Mean, Feature Propagation, and Graph Regularization being intended for homophilic graphs [16],
mean aggregation feature imputation encompasses algorithms that could perform well on heterophilic
graphs as well with an appropriate choice of T [16]. We also note that T cannot be A, as this might
cause feature values to explode over multiple iterations.

5 Discrimination risk of mean aggregation feature imputation

To understand how mean aggregation feature imputation may amplify the unfairness of a ML
model, we theoretically characterize graphs in which mean aggregation imputation increases the
discrimination risk, without making assumptions about the underlying distributions of unknown
features or graph structure.

We begin by defining new notation. In particular, we first focus on the case of a single feature (i.e.,
d = 1), and extend our analysis to the case d > 1 in Section A.5. Let Xv be the feature of a node v.

2Incorporating associations between features is a promising direction of research.
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Let Q denote the set of nodes that belong to the marginalized group, and R denote the set of nodes
that belong to the dominant group. We assume that Q ∪ R = V and Q ∩ R = ∅. We define the
discrimination risk after t iterations of mean aggregation imputation as:

R(t) :=
∣∣∣Eq∼Q[X

(t)
q ]− Er∼R[X

(t)
r ]
∣∣∣ , (3)

where the expectations are taken uniformly over the nodes in each set. Now, define X̃ := MX .
Then, a modified version of the discrimination risk after t iterations of mean aggregation imputation
is R̃(t) :=

∣∣∣Eq∼Q[X̃
(t)
q ]− Er∼R[X̃

(t)
r ]
∣∣∣. In Theorem 2, we bound the discrimination risk R̃(t)

of the imputed features with respect to R̃(0). We bound R̃(t) rather than R(t) for simplicity;
however, we empirically validate that the bound properties also hold for R(t) in Section 7. Define
µ̃
(t)
Q := Eq∼Q[X̃

(t)
q ] and µ̃

(t)
R := Er∼R[X̃

(t)
r ]. Furthermore, let σ̃(t) denote the maximal deviation

of the feature values at iteration t, i.e., ∀q1 ∈ Q, |X̃(t)
q1 − µ̃

(t)
Q | ≤ maxq2∈Q |X̃(t)

q1 − X̃
(t)
q2 | ≤ σ̃(t)

and ∀r1 ∈ R, |X̃(t)
r1 − µ̃

(t)
R | ≤ maxr2∈R |X̃(t)

r1 − X̃
(t)
r2 | ≤ σ̃(t). Additionally, define TS1→S2 :=∑

b∈S2

∑
a∈S1

Tba.

Theorem 2 Let the contraction coefficient α :=
∣∣∣1− TR→Q∩U+βTR→Q∩K

|Q| − TQ→R∩U+βTQ→R∩K

|R|

∣∣∣.
Then, α ≤ 1, and:

max

αtR̃(0) − 2

t−1∑
j=0

αj

 σ̃(0), 0

 ≤ R̃(t) ≤ αtR̃(0) + 2

t−1∑
j=0

αj

 σ̃(0)

α < 1 =⇒ lim
t→∞

R̃(t) ≤ 2σ̃(0)

1− α
.

Please refer to Section A.4 for a proof of Theorem 2. Theorem 2 shows that the bounds on the
discrimination risk contract more slowly (with more iterations of mean aggregation feature imputation)
with a larger α. Furthermore, the upper bound on the discrimination risk is larger with a larger α and
may depend on the initial unknown feature values.

5.1 Analysis of Theorem 2

Theorem 2 allows for interesting interpretations of how graph properties like the rate of unknown
features, group size, and graph structure affect the discrimination risk of mean aggregation imputation.
Below, we successively vary each property (holding the other properties constant) and investigate
its impact on α, and in turn the discrimination risk. We focus on Feature Propagation [16], but our
analysis may be easily extended to other mean aggregation imputation algorithms. We assume for
simplicity that all edges have a weight of 1.

Unknown feature rates A low unknown feature rate for both groups or disparate unknown feature
rates across the groups can increase α, and thus the discrimination risk of mean aggregation-
imputed features. Suppose the intra-link rate P((u, v) ∈ E|u ∈ Q, v ∈ Q) = P((u, v) ∈
E|u ∈ R, v ∈ R) = 1

2 and inter-link rate P((u, v) ∈ E|u ∈ Q, v ∈ R) = P((u, v) ∈
E|u ∈ R, v ∈ Q) = 1

2 . Furthermore, assume equal (relative) group sizes, i.e., |Q|
N = |R|

N = 1
2 .

Then, TR→Q∩U+βTR→Q∩K

|Q| =
TR→Q∩U

N/2 =
∑

q∈Q∩U

∑
r∈R Tqr

N/2 =
∑

q∈Q∩U

∑
r∈R D−1

qq Aqr

N/2 . By decompo-

sition, Dqq =
∑

u∈Q Aqu +
∑

v∈R Aqv = 1
2 |Q|+ 1

2 |R| = N
2 . Therefore, TR→Q∩U+βTR→Q∩K

|Q| =∑
q∈Q∩U

∑
r∈R Aqr

N2/4 =
1
2 (|Q∩U |×|R|)

N2/4 =
1
2 (P(v∈U |v∈Q)·|Q|×|R|)

N2/4 = 1
2P(v ∈ U |v ∈ Q), where

P(v ∈ U |v ∈ Q) is the unknown feature rate for group Q. Similarly, TQ→R∩U+βTQ→R∩K

|R| =
1
2P(v ∈ U |v ∈ R). Thus, α = |1− 1

2P(v ∈ U |v ∈ Q)− 1
2P(v ∈ U |v ∈ R)|. This aligns with [60]’s

finding that imputation fairness can be influenced by the imbalance of feature missingness across
groups, although [60] studies equalized odds rather than statistical parity fairness.

Group sizes Group size alone may not affect α or the discrimination risk of mean aggregation-imputed
features. Suppose the intra-link rate P((u, v) ∈ E|u ∈ Q, v ∈ Q) = P((u, v) ∈ E|u ∈ R, v ∈
R) = 1

2 and inter-link rate P((u, v) ∈ E|u ∈ Q, v ∈ R) = P((u, v) ∈ E|u ∈ R, v ∈ Q) = 1
2 .
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Furthermore, assume equal unknown feature rates, i.e., P(v ∈ U |v ∈ Q) = P(v ∈ U |v ∈ R) = 1
2 .

Then, TR→Q∩U+βTR→Q∩K

|Q| =
∑

q∈Q∩U

∑
r∈R Tqr

|Q| =
∑

q∈Q∩U

∑
r∈R D−1

qq Aqr

|Q| . Dqq = N
2 . Therefore,

TR→Q∩U+βTR→Q∩K

|Q| =
∑

q∈Q∩U

∑
r∈R Aqr

|Q|·N/2 =
1
2 (|Q∩U |×|R|)

|Q|·N/2 =
1
2 (

1
2 |Q|×|R|)
|Q|·N/2 = 1

2 · |R|
N . Similarly,

TQ→R∩U+βTQ→R∩K

|R| = 1
2 · |Q|

N . Thus, α = |1− 1
2 · |R|

N − 1
2 · |Q|

N | = 1
2 .

Graph structure A low inter-link to intra-link ratio can increase α and the discrimination
risk of mean aggregation-imputed features. Suppose we have equal unknown feature rates, i.e.,
P(v ∈ U |v ∈ Q) = P(v ∈ U |v ∈ R) = 1

2 . Furthermore, assume equal (relative) group sizes, i.e.,
|Q|
N = |R|

N = 1
2 . Then, TR→Q∩U+βTR→Q∩K

|Q| =
∑

q∈Q∩U

∑
r∈R Tqr

N/2 =
∑

q∈Q∩U

∑
r∈R D−1

qq Aqr

N/2 . Dqq =∑
u∈Q Aqu +

∑
v∈R Aqv = P((u, v) ∈ E|u ∈ Q, v ∈ Q)|Q|+ P((u, v) ∈ E|u ∈ R, v ∈ Q)|R| =

N
2 [P((u, v) ∈ E|u ∈ Q, v ∈ Q) + P((u, v) ∈ E|u ∈ R, v ∈ Q)]. Therefore, TR→Q∩U+βTR→Q∩K

|Q| =

P((u,v)∈E|u∈R,v∈Q)(|Q∩U |×|R|)
[P((u,v)∈E|u∈Q,v∈Q)+P((u,v)∈E|u∈R,v∈Q)]·N2/4 =

1
2 |Q|×|R|

[1+ P((u,v)∈E|u∈R,v∈Q)
P((u,v)∈E|u∈Q,v∈Q) ]·N2/4

= 1
2 ·

1

1+
P((u,v)∈E|u∈R,v∈Q)
P((u,v)∈E|u∈Q,v∈Q)

. Similarly, TQ→R∩U+βTQ→R∩K

|R| = 1
2 · 1

1+
P((u,v)∈E|u∈Q,v∈R)
P((u,v)∈E|u∈R,v∈R)

. Thus,

α =

∣∣∣∣1− 1
2 · 1

1+
P((u,v)∈E|u∈R,v∈Q)
P((u,v)∈E|u∈Q,v∈Q)

− 1
2 · 1

1+
P((u,v)∈E|u∈Q,v∈R)
P((u,v)∈E|u∈R,v∈R)

∣∣∣∣. Because G is undirected,

P((u, v) ∈ E|u ∈ R, v ∈ Q) = P((u, v) ∈ E|u ∈ Q, v ∈ R) and P((u, v) ∈ E|u ∈ Q, v ∈ Q) =
P((u, v) ∈ E|u ∈ R, v ∈ R).

Ultimately, our theoretical (Section 5) and empirical (Section B.5) characterizations of α and the
discrimination risk can be leveraged to audit real-world graph data for structural factors that contribute
to the unfairness of mean aggregation feature imputation and ML models applied to the imputed data.

6 Fairer graph feature imputation

We propose a simple and effective solution to ensure mean aggregation feature imputation provably
has a low discrimination risk, while minimally sacrificing reconstruction error (with respect to the
imputation objective). At a high level, we want to constrain the discrimination risk at every iteration t
of imputation to be at most ϵ (i.e., ∀t ∈ [0,∞),R(t) ≤ ϵ). We do this by viewing mean aggregation
imputation through a gradient descent lens and projecting imputed feature values onto the feasible
space of feature values with discrimination risk at most ϵ at each iteration [82]. We focus on a single
feature i, but our algorithms can be extended to more features by applying them to each feature
separately.

We begin with the case where known feature values remain fixed (i.e., β = 0). Recall the iterative
algorithm for mean aggregation feature imputation when β = 0:

MX(t+1) := ϕ(MX(t)) =

[
0 0
0 I|U |

]
TMX(t) +

[
I|K| 0
0 0

]
MX(0).

We see that ∀t ∈ [0,∞), X
(t)
K = XK . Furthermore, define ∆ := IN − M−1TM . In the case of

Feature Propagation, ∆ = IN −D
1
2 (D−1A)D− 1

2 = IN −D− 1
2AD− 1

2 is the symmetric normalized
Laplacian of G [16]. We see that X(t+1)

U = (IN −∆)UUX
(t)
U −∆UKXK . As discussed in [16], we

can view the update X
(t+1)
U := X

(t)
U − γ(∆UUX

(t)
U +∆UKXK) as an iteration of gradient descent

(with step size γ = 1) on the objective function ℓ(x) = 1
2x

T∆UUx+XT
K∆KUx+ 1

2X
T
K∆KKXK ,

where XK is constant. For Feature Propagation, ℓ is the Dirichlet energy of G [16]. We now present
a theorem that shows how to perform mean aggregation feature imputation with a discrimination risk
of at most ϵ when the known feature values remain fixed.

Theorem 3 (ϵ-Fair Imputation, β = 0) Vanilla mean aggregation feature imputation updates
X

(t+1)
U := X

(t)
U − γ(∆UUX

(t)
U + ∆UKXK) = Z

(t)
U , where γ = 1. Let ϵ-fair mean aggregation

feature imputation instead update X
(t+1)
U := PWZ

(t)
U + PB , where:

PW =

{
I|U |, RK − ϵ ≤ cTZ

(t)
U ≤ RK + ϵ

I|U | − ccT

cT c
, otherwise

, PB =
ccT

cT c


RK − ϵ, cTZ

(t)
U < RK − ϵ

RK + ϵ, cTZ
(t)
U > RK + ϵ

0, otherwise
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RK =
1

|R|
∑

r∈R∩K

Xr −
1

|Q|
∑

q∈Q∩K

Xq

c ∈ R|U |, cTZ
(t)
U =

1

|Q|
∑

q∈Q∩U

Z(t)
q − 1

|R|
∑

r∈R∩U

Z(t)
r

Then, assuming 0 ≤ λmin(∆UU ) ≤ λmax(∆UU ) < 1 (where λmin and λmax are the minimum
and maximum eigenvalues, respectively): 1) a unique optimal (with respect to ℓ) feasible solution
X∗

U exists; 2) for fixed step size γ = 1
λmax(∆UU ) , ϵ-fair imputation converges as ∥X(t)

U −X∗
U∥22 ≤(

1− λmin(∆UU )
λmax(∆UU )

)t
∥X(0)

U −X∗
U∥22; 3) for fixed step size γ ≤ 1

λmax(∆UU ) , ϵ-fair imputation converges
to X∗

U .

Please refer to Section A.6 for a proof of Theorem 3. The convergence of our solution to the unique
optimal (with respect to ℓ) feasible solution implies that our solution provably has a discrimination
risk of at most ϵ while minimally sacrificing reconstruction error (with respect to the objective).
Furthermore, because our solution simply interleaves projections into the mean aggregation imputation
framework, it preserves the framework’s speed and scalability [16]. We similarly have a solution
when β > 0 (i.e., when the known node feature values do not remain fixed) which we present in
Section A.7. Choosing ϵ, due to its uninterpretable nature, can be difficult in practice; we encourage
work on making ϵ more intelligible.

7 Experimental results and discussion

We empirically evaluate the fairness and reconstruction error of our solution on various mean
aggregation feature imputation algorithms and synthetic and real-world datasets. We find that while
our solution yields improved fairness without a significant loss in reconstruction error on the synthetic
datasets, there is not an improvement in fairness on the real-world datasets. All our code may be
found in the supplementary material.

Datasets We construct undirected two-block synthetic networks (SBM) using
StochasticBlockModelDataset from PyTorch Geometric [83] (where one block corre-
sponds to the marginalized group Q and the other block to the dominant group R) with various
(relative) group sizes and inter- and intra-link rates (more information in Section B.1). SBM does
not have a corresponding task, i.e., the nodes do not have labels. We also use the real-world
Credit defaulter and German credit networks from [29] (there exist limited “natively” graph
real-world datasets with sensitive attributes available). The Credit defaulter network consists of
30,000 nodes representing individuals, with edges between them indicating similar spending and
payment patterns. The corresponding task is to predict whether an individual will default on their
credit card payment or not, and the groups are those 25 years old or younger and those above the
age of 25 (more information in Section B.1). The German credit network comprises 1,000 nodes
representing clients in a German bank who are connected if they have similar credit accounts. The
corresponding task is to predict whether a client has good or bad credit risk, and the groups are men
and women (more information in Section B.1)3. We refrain from using the Recidivism graph
from [29] so as not to support the development of carceral technology [85].

Protocols and performance evaluation By default, none of the datasets contain unknown or missing
features. Despite the real-world prevalence of missing features, most publicly-available graph datasets
inherently do not have missing node features because current graph ML techniques predominantly rely
on fully-observable features. Hence, similarly to [16], to simulate diverse scenarios with unknown
features, for each group, we independently at random mark node feature values as unknown with a
different probability. Nodes, even within the same group, may have different unknown features. In
this way, we simulate missing completely at random (MCAR) and missing at random (MAR) on our
data. We experiment with all 25 combinations of unknown feature rates of {0.1, 0.3, 0.5, 0.7, 0.9}
for the groups. We choose this scheme to study the effect of disparate unknown feature rates across
the groups, which reflects the real world [17, 18, 19, 20]. Empirically characterizing the real-world
distributions of node feature missingness requires further study. We also encourage empirical work
on other unknown feature schemes, including missingness based on node degree or marking all or
none of the features for each node as unknown.

3In reality, gender is neither binary nor static, and treating it as such can produce harms [84]
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To impute unknown features, we use the vanilla mean aggregation imputation algorithms overviewed
in Section 4: Global Mean (GM), Neighbor Mean (NM), Feature Propagation (FP), and Graph
Regularization (GR) (with β = 0.25), and their ϵ-fair counterparts (for ϵ ∈ {0.0, 0.025, 0.05}). For
models, we use a linear classifier (linear), two-layer MLP (mlp), and two-layer Graph Convolutional
Network (gcn) [2] (more information in Section B.3). We train all models on the imputed data, but
validate and test on fully-observed data. Because there are no previous works (to the best of our
knowledge) that directly address the unfairness of graph feature imputation, we do not have baselines
against which to compare.

To evaluate imputed features for SBM, since we don’t have labels, we employ relative reconstruction
error RE [16]. For the real-world datasets, we consider the test accuracy (Acc) of models applied
to the imputed data. To evaluate group fairness, we compute the discrimination risk (DR) of the
imputed data. For SBM, we also train models on the imputed data to predict group membership and
calculate the test accuracy of the models on identifying group membership (which we refer to as MI)
[86, 21]. To evaluate group fairness for the real-world datasets, we use the test statistical parity (SP)
of the models, defined as |P(Z = 1|S = Q)−P(Z = 1|S = R)| [78], and test equalized odds (EO),
defined as |P(Z = 1|S = Q,Y = 1)− P(Z = 1|S = R, Y = 1)| [87]. Please refer to Section B.4
for more details on the metrics. For all metrics, we report the mean and standard error over 5 runs
using different random seeds. On each run, a new dataset (in the case of SBM) is generated, new splits
are created, and a new model is trained.

Q1. Does the contraction coefficient α align with the discrimination risk of mean aggregation
imputation across graphs with different properties? Figures 2 to 12 in the Appendix show that for
SBM, discrimination risk and α generally have a strong positive association over unknown feature
rates, group sizes, and inter-link rate to intra-link rate ratios, which substantiates Theorem 2. This
association is weaker for Global Mean and Neighbor Mean. Refer to Section B.5 for more details.

Q2. Does ϵ-fair mean aggregation imputation (compared to regular mean aggregation imputa-
tion) improve the group fairness of a model applied to the imputed data? Table 1 shows that,
for SBM, ϵ-fair mean aggregation imputation achieves comparable reconstruction error to its vanilla
counterpart while greatly reducing the discrimination risk and test group membership identification
accuracy for all models. As expected, we see that the discrimination risk of ϵ-fair imputation is at
most ϵ, and discrimination risk and test group membership identification accuracy are positively
associated, which substantiates Theorem 1. Furthermore, the reconstruction error for ϵ-fair FP and
GR (which leverage graph structure and are thus more susceptible to graph structural bias) are
much lower than that of the naïve ϵ-fair GM (which does not consider graph structure), but fair FP
and GR reduce the discrimination risk and test group membership identification accuracy for all
models to similar levels as fair GM. However, the test group membership identification accuracy
generally decreases less as ϵ decreases for mlp and gcn than it does for linear, which suggests that
minimizing the discrimination risk of imputed features is more effective at removing linearly-encoded
group membership information than non-linearly encoded information. Furthermore, ϵ-fair feature
imputation does not guard against group membership information that gcn learns via graph structure
during training. We have similar findings when averaging over different relative group sizes (refer to
Table 3) and combinations of inter- and intra-link rates (refer to Table 4).

In contrast, Tables 2 and 6 (in the Appendix) show that, for the real-world datasets, regular mean
aggregation imputation and its ϵ-fair counterpart yield comparable test accuracy and statistical parity
fairness for all models. In the case of Credit defaulter, our solution even appears to exacerbate
the unfairness of gcn. We find similar results for equalized odds, as shown in Tables 5 and 7. Notably,
we were unable to reproduce similar unfairness results to those in [29], even when all features are
known. More deeply understanding why our method does not work on the real-world datasets is an
important and interesting future work; we would like to analyze the modularity of the real-world
networks, as well as the distribution of node degrees, labels, and features across groups to diagnose
sources of failure.

8 Conclusion

We prove that a higher discrimination risk can amplify the unfairness of a ML model applied to
imputed data. We formalize a general graph feature imputation framework called mean aggregation
imputation and theoretically and empirically characterize graphs in which applying the framework
can yield a high discrimination risk. We propose a simple and effective solution to ensure mean
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Table 1: Reconstruction error (RE), discrimination risk (DR), and test group membership identi-
fication accuracy (MI) of all models averaged over all 25 combinations of unknown feature rates
of {0.1, 0.3, 0.5, 0.7, 0.9} for each group in SBM. We use 0.5 relative group sizes and 0.5 inter- and
intra-link rates.

Method RE ↓ DR ↓ MIlinear ↓ MImlp ↓ MIgcn ↓
0-Fair GM 1.21± 0.021 0± 0 0.602± 0.098 0.669± 0.019 0.504± 0.038

0.025-Fair GM 1.204± 0.021 0.021± 0.002 0.72± 0.087 0.683± 0.01 0.551± 0.069
0.05-Fair GM 1.196± 0.02 0.034± 0.005 0.736± 0.037 0.69± 0.014 0.535± 0.058
Regular GM 1± 0 0.051± 0.015 0.817± 0.02 0.817± 0.013 0.651± 0.089

0-Fair NM 1.19± 0.02 0± 0 0.599± 0.094 0.686± 0.021 0.507± 0.04
0.025-Fair NM 1.183± 0.02 0.02± 0.002 0.72± 0.084 0.706± 0.013 0.552± 0.059
0.05-Fair NM 1.175± 0.019 0.033± 0.004 0.734± 0.037 0.706± 0.02 0.539± 0.052
Regular NM 0.977± 0.002 0.048± 0.014 0.828± 0.021 0.818± 0.013 0.631± 0.094

0-Fair FP 1.184± 0.020 0± 0 0.6± 0.096 0.702± 0.02 0.505± 0.034
0.025-Fair FP 1.176± 0.020 0.018± 0.003 0.716± 0.076 0.724± 0.014 0.562± 0.058
0.05-Fair FP 1.169± 0.019 0.025± 0.006 0.72± 0.03 0.723± 0.018 0.531± 0.058
Regular FP 0.977± 0.003 0.028± 0.009 0.814± 0.023 0.817± 0.012 0.612± 0.079

0-Fair GR 1.006± 0.004 0± 0 0.588± 0.093 0.713± 0.022 0.511± 0.039
0.025-Fair GR 1.005± 0.004 0.023± 0.002 0.757± 0.055 0.741± 0.012 0.577± 0.078
0.05-Fair GR 1.003± 0.004 0.039± 0.006 0.772± 0.027 0.744± 0.016 0.538± 0.066
Regular GR 0.977± 0.003 0.021± 0.007 0.814± 0.024 0.821± 0.01 0.604± 0.08

Table 2: Test accuracy (Acc) and statistical parity (SP) of all models averaged over all 25 combina-
tions of unknown feature rates of {0.1, 0.3, 0.5, 0.7, 0.9} for each group in German credit.

Method Acclinear ↑ Accmlp ↑ Accgcn ↑ SPlinear ↓ SPmlp ↓ SPgcn ↓
0.0-Fair GM 0.700± 0.006 0.707± 0.003 0.699± 0.002 0.051± 0.016 0.028± 0.004 0.011± 0.01

0.025-Fair GM 0.705± 0.003 0.707± 0.003 0.698± 0.002 0.044± 0.012 0.028± 0.007 0.02± 0.026
0.05-Fair GM 0.704± 0.007 0.708± 0.004 0.697± 0.002 0.034± 0.009 0.029± 0.003 0.013± 0.005
Regular GM 0.701± 0.002 0.708± 0.004 0.699± 0.001 0.043± 0.01 0.025± 0.005 0.006± 0.005

0.0-Fair NM 0.699± 0.005 0.706± 0.003 0.697± 0.003 0.053± 0.015 0.033± 0.007 0.007± 0.006
0.025-Fair NM 0.7± 0.006 0.706± 0.003 0.697± 0.002 0.041± 0.009 0.037± 0.007 0.015± 0.013
0.05-Fair NM 0.7± 0.006 0.706± 0.003 0.697± 0.002 0.046± 0.013 0.033± 0.005 0.01± 0.003
Regular NM 0.7± 0.003 0.708± 0.001 0.698± 0.001 0.044± 0.02 0.034± 0.007 0.016± 0.007

0.0-Fair FP 0.694± 0.021 0.713± 0.011 0.704± 0.007 0.012± 0.012 0.025± 0.025 0.019± 0.039
0.025-Fair FP 0.708± 0.012 0.706± 0.012 0.689± 0.027 0.024± 0.028 0.026± 0.026 0.026± 0.057
0.05-Fair FP 0.702± 0.03 0.706± 0.011 0.708± 0.046 0.078± 0.01 0.023± 0.026 0± 0
Regular FP 0.7± 0.024 0.708± 0.012 0.698± 0.01 0.063± 0.069 0.03± 0.02 0.007± 0.01

0.0-Fair GR 0.698± 0.005 0.703± 0.004 0.698± 0.001 0.04± 0.02 0.021± 0.003 0.006± 0.007
0.025-Fair GR 0.702± 0.004 0.702± 0.002 0.7± 0.001 0.041± 0.014 0.025± 0.002 0.008± 0.01
0.05-Fair GR 0.699± 0.004 0.703± 0.003 0.699± 0.003 0.034± 0.01 0.024± 0.004 0.005± 0.005
Regular GR 0.697± 0.003 0.703± 0.003 0.7± 0.001 0.038± 0.017 0.027± 0.005 0.01± 0.009

aggregation-imputed features provably have a low discrimination risk, while minimally sacrificing
reconstruction error (with respect to the imputation objective).

Our analysis and solution, like many fair ML algorithms, assume that groups are discrete and that
group membership is known and static, which is not true in reality [82, 84, 26]. Furthermore, we don’t
consider fairness at the intersections of different groups [88, 89], or operationalizations of fairness
beyond the parity of two non-overlapping groups [90]. Furthermore, while fairness is often framed
as sufficient for the creation of ethical systems, this is often not the case. For instance, ϵ-fair mean
aggregation imputation may be used to train a “fairer” model that diversifies news recommendations
to social media users [7], but this model could recommend hostile or intolerant news sources to
LGBTQIA+ users and cause psychological harm [82].
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A Proofs

A.1 Proof of Lemma 1 (special case of total variation distance)

We assume P(Z) and P(X) are continuous probability distributions, but this proof can be easily
altered for other kinds of probability distributions and the result still holds. Let P(S = Q) = p. By
definition, the total variation information:

ITV (P(Z);P(S)) = dTV (P(Z, S)||P(Z)⊗ P(S)) =
∑

s∈{Q,R} P(S = s)
∫
Y

1
2

∣∣∣ fZ,S(z,s)
fZ(z)P(S=s) − 1

∣∣∣ fZ(z) dz
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By breaking up joint probabilities into conditional probabilities and factoring:

ITV (P(Z);P(S)) =
∑

s∈{Q,R}

P(S = s)

∫
Y

1

2

∣∣∣∣fZ|S=s(z)P(S = s)

fZ(z)P(S = s)
− 1

∣∣∣∣ fZ(z) dz
=

∑
s∈{Q,R}

P(S = s)

∫
Y

1

2

∣∣fZ|S=s(z)− fZ(z)
∣∣dz

=
p

2

∫
Y

∣∣fZ|S=Q(z)− fZ(z)
∣∣dz + ∫

Y

1− p

2

∣∣fZ|S=R(z)− fZ(z)
∣∣ dz

=
1

2

[
p

∫
Y

∣∣fZ|S=Q(z)− (pfZ|S=Q(z) + (1− p)fZ|S=R(z))
∣∣dz

+ (1− p)

∫
Y

∣∣fZ|S=R(z)− (pfZ|S=Q(z) + (1− p)fZ|S=R(z))
∣∣ dz]

=
1

2

[
p

∫
Y

∣∣(1− p)fZ|S=Q(z)− (1− p)fZ|S=R(z)
∣∣dz

+ (1− p)

∫
Y

∣∣pfZ|S=R(z)− pfZ|S=Q(z)
∣∣dz]

=
p(1− p)

2

[∫
Y

∣∣fZ|S=Q(z)− fZ|S=R(z)
∣∣dz + ∫

Y

∣∣fZ|S=R(z)− fZ|S=Q(z)
∣∣ dz]

= p(1− p)

∫
Y

∣∣fZ|S=Q(z)− fZ|S=R(z)
∣∣dz

= 2p(1− p)dTV (P(Z|S = Q),P(Z|S = R))

It can be similarly shown that ITV (P(X);P(S)) = 2p(1− p)dTV (P(X|S = Q),P(X|S = R)).

Now, because Z is conditionally independent of S given X , by the Data Processing Inequality,
ITV (P(Z);P(S)) ≤ ITV (P(X);P(S)). Hence:

dTV (P(Z|S = Q),P(Z|S = R)) =
1

2p(1− p)
ITV (P(Z);P(S))

≤ 1

2p(1− p)
ITV (P(X);P(S)) = dTV (P(X|S = Q),P(X|S = R))

Similarly:

dTV (P(Z ′|S = Q),P(Z ′|S = R)) ≤ dTV (P(X ′|S = Q),P(X ′|S = R))

Note: Differences in the supports of P(Z) and P(X) should not influence one’s interpretation of
the inequality. dTV (·, ·) only requires that its two arguments have the same support. Because dTV

outputs the largest possible difference between the probabilities that the two distributions can assign
to the same event, the inequality can be viewed as a comparison of the differences in assigned
probabilities.

A.2 Proof of Theorem 1

Leveraging the Bretagnolle–Huber (BH) bound4, we can upper bound dTV in terms of the KL-
divergence dKL:

dTV (P(X|S = Q),P(X|S = R)) ≤
√
1− e−dKL(P(X|S=Q)||P(X|S=R))

By Section 9 from [92], dKL(P(X|S = Q)||P(X|S = R)) admits a closed-form solution:

4We use the BH bound rather than Pinsker’s inequality because Pinkser’s inequality becomes vacuous for
KL-divergence > 2 [91].
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dKL(P(X|S = Q)||P(X|S = R)) =
1

2

(
log

detΣR

detΣQ
− d+ tr(Σ−1

R ΣQ) + ∥µQ − µR∥2Σ−1
R

)
≤ 1

2

(
log

detΣR

detΣQ
− d+ tr(Σ−1

R ΣQ) + λmax(Σ
−1
R )∥µQ − µR∥22

)
,

where λmax(Σ
−1
R ) is the maximum eigenvalue of Σ−1

R . We note that λmax(Σ
−1
R ) = 1

λmin(ΣR) > 0

(where λmin(ΣR) is the minimum eigenvalue of ΣR) because ΣR is positive semidefinite.

It is clear that ∥µQ − µR∥2∞ = maxi∈[d] |(µQ)i − (µR)i|2 ≤
∑

i∈[d] |(µQ)i − (µR)i|2 = ∥µQ −
µR∥22. Moreover, ∥µQ−µR∥22 =

∑
i∈[d] |(µQ)i − (µR)i|2 ≤

∑
i∈[d] maxj∈[d] |(µQ)j − (µR)j |2 =

d · ∥µQ − µR∥2∞. Therefore, ∥µQ − µR∥22 = C · ∥µQ − µR∥2∞, for 1 ≤ C ≤ d.

Combining the previous observations and recognizing that ∥µQ − µR∥2∞ = R2
D:

dTV (P(X|S = Q),P(X|S = R)) ≤

√√√√
1−

√
detΣQ

detΣR
· e−

C·R2
D

λmin(ΣR)
−tr(Σ−1

R ΣQ)+d

Now, by Lemma 2.7 from [93]:

∥µQ − µR∥22 ≤ 4 ·max{λmax(ΣQ), λmax(ΣR)}
(

dTV (P(X|S = Q),P(X|S = R))

1− dTV (P(X|S = Q),P(X|S = R))

)
≤ 4 ·max{λmax(ΣQ), λmax(ΣR)}

1
dTV (P(X|S=Q),P(X|S=R)) − 1

Using ∥µQ − µR∥22 = C · ∥µQ − µR∥2∞ = C · R2
D, we can derive:

1
4·max{λmax(ΣQ),λmax(ΣR)}

C·R2
D

+ 1
≤ dTV (P(X|S = Q),P(X|S = R))

Similarly:

dTV (P(X ′|S = Q),P(X ′|S = R)) ∈

 1
4·max{λmax(Σ′

Q
),λmax(Σ′

R
)}

C′·R2
D′

+1
,

√
1−

√
detΣ′

Q

detΣ′
R
· e−

C′·R2
D′

λmin(Σ′
R)

−tr(Σ′−1
R Σ′

Q)+d


Then, the theorem is proved by application of Lemma 1.

A.3 Example mean aggregation imputation algorithms

Global Mean This method sets the unknown features to the uniform mean of all the known features.

To achieve this, we can choose M := IN , T :=

[
I|K| 0

1
|K|1|U |×|K| 0

]
(where 1 is the all-ones matrix),

β := 0, X(0)
K := XK , and X

(0)
U := 0. We only need to complete one iteration.

Neighbor Mean This method sets the unknown features to the degree-weighted mean of
the known features for neighboring nodes. We can choose M := IN , T := D−1A, β := 0,
X

(0)
K := XK , and X

(0)
U := 0. We only need to complete one iteration.

Feature Propagation This method proposed by [16] predicts the unknown features to min-
imize the Dirichlet energy of the graph while preserving the known feature values. [16] shows that
this is equivalent to iteratively computing until convergence:

X
(t+1)
K := X

(t)
K

X
(t+1)
U := (D

− 1
2

U AUKD
− 1

2

K )X
(t)
K + (D

− 1
2

U AUUD
− 1

2

U )X
(t)
U
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Multiplying both sides by D
− 1

2

U , we can re-express the second update rule as:

D
− 1

2

U X
(t+1)
U = (D−1

U AUK)(D
− 1

2

K X
(t)
K ) + (D−1

U AUU )(D
− 1

2

U X
(t)
U )

Therefore, to achieve Feature Propagation, we can choose M := D− 1
2 , T := D−1A, β := 0, and

X
(0)
K := XK . Per [16], we can choose X

(0)
U arbitrarily, and we need to iterate till convergence.

Graph Regularization This method inspired by [94] predicts the unknown features via a smoothness
constraint and a fitting constraint for the known features. [94] shows that this is equivalent to
iteratively computing until convergence:

X
(t+1)
K := β(D− 1

2AD− 1
2X(t))K + (1− β)XK

X
(t+1)
U := (D− 1

2AD− 1
2X(t))U ,

where the hyperparameter β ∈ (0, 1]. Therefore, similar to Feature Propagation, to achieve Graph
Regularization, we can choose M := D− 1

2 , T := D−1A, and X
(0)
K := XK . Per [94], we can choose

X
(0)
U arbitrarily, and we need to iterate till convergence.

A.4 Proof of Theorem 2

The following proof is partially inspired by the proof of Theorem 4.1 in [7]. Fix t to be an arbitrary
iteration of feature imputation. Recall we use the following iterative update rule to impute features:

X̃(t+1) :=

[
βI|K| 0
0 I|U |

]
TX̃(t) +

[
(1− β)I|K| 0

0 0

]
X̃

For a node q ∈ Q ∩ U , after one iteration of feature imputation:

X̃(t+1)
q :=

∑
s∈Q

TqsX̃
(t)
s +

∑
s∈R

TqsX̃
(t)
s

Similarly, for a node r ∈ R ∩ U , after one iteration of feature imputation:

X̃(t+1)
r :=

∑
s∈Q

TrsX̃
(t)
s +

∑
s∈R

TrsX̃
(t)
s

In contrast, for a node q ∈ Q ∩K, after one iteration of feature imputation:

X̃(t+1)
q := β

∑
s∈Q

TqsX̃
(t)
s +

∑
s∈R

TqsX̃
(t)
s

+ (1− β)X̃(t)
q

Similarly, for a node r ∈ R ∩K, after one iteration of feature imputation:

X̃(t+1)
r := β

∑
s∈Q

TrsX̃
(t)
s +

∑
s∈R

TrsX̃
(t)
s

+ (1− β)X̃(t)
r

We say v ∈ [µ± σ] ⇐⇒ µ− σ ⪯ v ⪯ µ+ σ. Then, for a node q ∈ Q ∩ U , by the right-stochastic
nature of T :

X̃(t+1)
q ∈

∑
s∈Q

Tqsµ̃
(t)
Q +

∑
s∈R

Tqsµ̃
(t)
R

± σ̃(t)


∈

[(
µ̃
(t)
Q +

∑
s∈R

Tqs

(
µ̃
(t)
R − µ̃

(t)
Q

))
± σ̃(t)

]
Similarly, for a node r ∈ R ∩ U :

X̃(t+1)
r ∈

∑
s∈Q

Trsµ̃
(t)
Q +

∑
s∈R

Trsµ̃
(t)
R

± σ̃(t)


∈

µ̃
(t)
R +

∑
s∈Q

Trs

(
µ̃
(t)
Q − µ̃

(t)
R

)± σ̃(t)
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In contrast, for a node q ∈ Q ∩K:

X̃(t+1)
q ∈

β

∑
s∈Q

Tqsµ̃
(t)
Q +

∑
s∈R

Tqsµ̃
(t)
R

+ (1− β)µ̃
(t)
Q

± σ̃(t)


∈

[(
µ̃
(t)
Q + β

∑
s∈R

Tqs

(
µ̃
(t)
R − µ̃

(t)
Q

))
± σ̃(t)

]
Similarly, for a node r ∈ R ∩K:

X̃(t+1)
r ∈

β

∑
s∈Q

Trsµ̃
(t)
Q +

∑
s∈R

Trsµ̃
(t)
R

+ (1− β)µ̃
(t)
R

± σ̃(t)


∈

µ̃
(t)
R + β

∑
s∈Q

Trs

(
µ̃
(t)
Q − µ̃

(t)
R

)± σ̃(t)


By the Law of Total Expectation:

Eq∼Q[X̃
(t+1)
q ] = P(q ∈ U |q ∈ Q)Eq∼Q∩U [X̃

(t+1)
q ] + P(q ∈ K|q ∈ Q)Eq∼Q∩K [X̃(t+1)

q ]

∈
[ 1

|Q|

( ∑
q∈Q∩U

µ̃
(t)
Q +

∑
s∈R

Tqs

(
µ̃
(t)
R − µ̃

(t)
Q

)
+

1

|Q|

 ∑
q∈Q∩K

µ̃
(t)
Q + β

∑
s∈R

Tqs

(
µ̃
(t)
R − µ̃

(t)
Q

))± σ̃(t)
]

∈
[(

µ̃
(t)
Q +

1

|Q|
∑

q∈Q∩U

∑
s∈R

Tqs

(
µ̃
(t)
R − µ̃

(t)
Q

)
+

β

|Q|
∑

q∈Q∩K

∑
s∈R

Tqs

(
µ̃
(t)
R − µ̃

(t)
Q

))
± σ̃(t)

]
Similarly, Er∼R[X̃

(t+1)
r ]:

∈

µ̃
(t)
R +

1

|R|
∑

r∈R∩U

∑
s∈Q

Trs

(
µ̃
(t)
Q − µ̃

(t)
R

)
+

β

|R|
∑

r∈R∩K

∑
s∈Q

Trs

(
µ̃
(t)
Q − µ̃

(t)
R

)± σ̃(t)


Thus, the gap in expectation of the features of the nodes in Q and R after one iteration of feature
imputation is:

Eq∼Q[X̃
(t+1)
q ]− Er∼R[X̃

(t+1)
r ] ∈

1−

 1

|Q|
∑

q∈Q∩U

∑
s∈R

Tqs +
1

|R|
∑

r∈R∩U

∑
s∈Q

Tqs


− β

 1

|Q|
∑

q∈Q∩K

∑
s∈R

Tqs +
1

|R|
∑

r∈R∩K

∑
s∈Q

Tqs

 ·
(
µ̃
(t)
Q − µ̃

(t)
R

)± 2σ̃(t)


Define the contraction coefficient:

α :=

∣∣∣∣1− TR→Q∩U + βTR→Q∩K

|Q|
− TQ→R∩U + βTQ→R∩K

|R|

∣∣∣∣
Because 0 ≤ TR→Q∩U+βTR→Q∩K

|Q| ≤ TR→Q∩U+TR→Q∩K

|Q| =
TR→Q

|Q| <
TV →Q

|Q| = 1, and similarly,

0 ≤ TQ→R∩U+βTQ→R∩K

|R| < 1, it must be that 0 ≤ α ≤ 1.
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Then:

max{α|Eq∼Q[X̃
(t)
q ]− Er∼R[X̃

(t)
r ]| − 2σ̃(t), 0} ≤ |Eq∼Q[X̃

(t+1)
q ]− Er∼R[X̃

(t+1)
r ]|

|Eq∼Q[X̃
(t+1)
q ]− Er∼R[X̃

(t+1)
r ]| ≤ α|Eq∼Q[X̃

(t)
q ]− Er∼R[X̃

(t)
r ]|+ 2σ̃(t)

max{αR̃(t) − 2σ̃(t), 0} ≤ R̃(t+1) ≤ αR̃(t) + 2σ̃(t)

Inductively, the discrimination risk R̃(t) after t iterations of feature imputation is bounded by:

max

αtR̃(0) − 2

t−1∑
j=0

αj σ̃(j)

 , 0

 ≤ R̃(t) ≤ αtR̃(0) + 2

t−1∑
j=0

αj σ̃(j)



∀v ∈ V , X̃
(t+1)
v is a convex combination of

⋃
u∈V {X̃

(t)
u }. This is because each row of T

and βT + (1− β)I|K| contains nonnegative entries that sum to 1. Therefore, X̃(t+1)
v must be in the

(closed) convex hull of
⋃

u∈V {X̃
(t)
u }. Thus,

⋃
u∈V {X̃

(t)
u } inductively must be contained within the

(closed) convex hull of
⋃

u∈V {X̃
(0)
u }, which has extreme points ⊆

⋃
u∈V {X̃

(0)
u }. Consequently,

∀t ∈ [0,∞), σ̃(t) ≤ σ̃(0).

Hence:

max

αtR̃(0) − 2

t−1∑
j=0

αj

 σ̃(0), 0

 ≤ R̃(t) ≤ αtR̃(0) + 2

t−1∑
j=0

αj

 σ̃(0)

If α < 1:

max

{
αtR̃(0) − 2

(
1− αt

1− α

)
σ̃(0), 0

}
≤ R̃(t) ≤ αtR̃(0) + 2

(
1− αt

1− α

)
σ̃(0)

Moreover, upon convergence:

0 ≤ lim
t→∞

R̃(t) ≤ 2σ̃(0)

1− α

Note: While it appears that a large initial maximal deviation in feature values within a group may
harm fairness, a large initial deviation does not necessarily entail diversity. For example, suppose
a few nodes in a group have a low initial feature value but many more nodes have a much higher
initial feature value (i.e., large initial difference without diversity). Then, after mean aggregation, the
feature values for all the nodes in the group may be higher on average than they were initially, and
more distinct on average from the node feature values in the other group. This would contribute to a
higher discrimination risk.

A.5 Extending Theorem 2

We can extend Theorem 2 to the case the number of features d > 1. By Theorem 1, the modified
discrimination risk at iteration t (including all features) is:

max

min
i∈[d]

αt
iR̃

(0)
i − 2

t−1∑
j=0

αj
i

 σ̃
(0)
i , 0

 ≤ max
i∈[d]

R̃(t)
i ≤ max

i∈[d]
αt
iR̃

(0)
i + 2

t−1∑
j=0

αj
i

 σ̃
(0)
i

Moreover, assuming ∀i ∈ [d], αi < 1, upon convergence, the discrimination risk is:

maxi∈[d] limt→∞ R̃(t)
i ≤ maxi∈[d]

2σ̃
(0)
i

1−αi
.
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A.6 Proof of Theorem 3

We want to constrain the discrimination risk of mean aggregation feature imputation to be at most ϵ.
To this end, we can modify mean aggregation feature imputation to update X(t+1)

U := PWZ
(t)
U + PB

such that X(t+1) has a discrimination risk of at most ϵ for all t. |Eq∼Q[X
(t+1)
q ]− Er∼R[X

(t+1)
r ]| =

| 1
|Q|
∑

q∈Q∩K Xq +
1

|Q|
∑

q∈Q∩U Z
(t)
q − ( 1

|R|
∑

r∈R∩K Xr +
1
|R|
∑

r∈R∩U Z
(t)
r )|. Hence, we have

a closed convex polytope wherein unknown feature values yield discrimination risk of at most ϵ:

RK − ϵ ≤ 1

|Q|
∑

q∈Q∩U

Z(t)
q − 1

|R|
∑

r∈R∩U

Z(t)
r = cTZ

(t)
U ≤ RK + ϵ

If RK − ϵ ≤ cTZ
(t)
U ≤ RK + ϵ, then PW = I|U | and PB = 0. Otherwise, we must project

onto the closer of the two boundaries of the polytope. In this case, PW = I|U | − ccT

cT c
and PB =

ccT

cT c

{
RK − ϵ, cTZ

(t)
U < RK − ϵ

RK + ϵ, cTZ
(t)
U > RK + ϵ

.

The affine projection we perform at each step is closed and convex. Furthermore, ℓ is λmax(∆UU )-
smooth for the Euclidean norm (where λmax is the maximum eigenvalue) because for x1, x2 ∈ R|U |:

∥∇ℓ(x1)−∇ℓ(x2)∥2 = ∥(∆UUx1 +∆UKXK)− (∆UUx2 +∆UKXK)∥2

=
√
(x1 − x2)T∆2

UU (x1 − x2)

≤
√
λ2
max(∆UU )∥x1 − x2∥22

= λmax(∆UU )∥x1 − x2∥2
In the case of Feature Propagation, λmax(∆UU ) < 1 due to properties of the symmetric normalized
Laplacian [16].

Additionally, for m ≥ 0, when m ≤ λmin(∆UU ), ℓ(x)− m
2 x

Tx is convex because:

ℓ(x)− m

2
xTx =

1

2
xT∆UUx+XT

K∆KUx+
1

2
XT

K∆KKXK − m

2
xTx

=
1

2
xT (∆UU −mI)x+XT

K∆KUx+
1

2
XT

K∆KKXK

This expression is convex if and only if its Hessian ∆UU−mI has nonnegative eigenvalues. Therefore,
m can be at most λmin(∆UU ).

Then, by [95] and [96]:

1. a unique optimal (with respect to ℓ) feasible solution X∗
U exists

2. for fixed step size γ = 1
λmax(∆UU ) , ϵ-fair imputation converges as ∥X(t)

U − X∗
U∥22 ≤(

1− λmin(∆UU )
λmax(∆UU )

)t
∥X(0)

U −X∗
U∥22

3. for fixed step size γ ≤ 1
λmax(∆UU ) , ϵ-fair imputation converges to X∗

U

A.7 Theorem 4

We have a solution when β > 0 (i.e., when the known node feature values do not remain fixed).

We can view the update of X(t+1) :=

[
βI|K| 0
0 I|U |

]
M−1TMX(t) +

[
(1− β)I|K| 0

0 0

]
X as an

iteration of gradient descent (with step size γ = 1) for the objective function ℓ(x) = 1
2x

T∆x +
1
2 (

1−β
β )∥xK −XK∥22 [94].

Theorem 4 (ϵ-Fair Imputation, β > 0) Vanilla mean aggregation feature imputation updates

X(t+1) :=

[
βI|K| 0
0 I|U |

]
(IN−∆)X(t)+

[
(1− β)I|K| 0

0 0

]
X = Z(t). Let ϵ-fair mean aggregation
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feature imputation instead update X(t+1) := PWZ(t) + PB , where:

PW =

{
IN , −ϵ ≤ cTZ(t) ≤ ϵ

IN − ccT

cT c
, otherwise

, PB =
ccT

cT c


−ϵ, cTZ(t) < −ϵ

ϵ, cTZ(t) > ϵ

0, otherwise

c ∈ RN , cTZ(t) =
1

|Q|
∑
q∈Q

Z(t)
q − 1

|R|
∑
r∈R

Z(t)
r

Then, assuming 0 ≤ λmin(∆) + 1−β
β ≤ λmax(∆) + 1−β

β < 1: 1) a unique optimal (with respect to
ℓ) feasible solution X∗ exists; 2) for fixed step size γ = 1

λmax(∆)+ 1−β
β

, ϵ-fair imputation converges

as ∥X(t) −X∗∥22 ≤
(
1− λmin(∆)+ 1−β

β

λmax(∆)+ 1−β
β

)t

∥X(0) −X∗∥22; 3) for fixed step size γ ≤ 1
λmax(∆)+ 1−β

β

,

ϵ-fair imputation converges to X∗.

Proof of Theorem 4 We want to constrain the discrimination risk of mean aggregation feature
imputation to be at most ϵ. To this end, we can modify mean aggregation feature imputation to update
X(t+1) := PWZ(t) + PB such that X(t+1) has a discrimination risk of at most ϵ for all t.

|Eq∼Q[X
(t+1)
q ] − Er∼R[X

(t+1)
r ]| = 1

|Q|
∑

q∈Q Z
(t)
q − 1

|R|
∑

r∈R Z
(t)
r . Hence, we have a closed

convex polytope wherein feature values have discrimination risk of at most ϵ:

−ϵ ≤ 1

|Q|
∑
q∈Q

Z(t)
q − 1

|R|
∑
r∈R

Z(t)
r = cTZ(t) ≤ ϵ

If −ϵ ≤ cTZ(t) ≤ ϵ, then PW = IN and PB = 0. Otherwise, we must project onto the closer of the

two boundaries of the polytope. In this case, PW = IN − ccT

cT c
and PB = ccT

cT c

{
−ϵ, cTZ(t) < −ϵ

ϵ, cTZ(t) > ϵ
.

The affine projection we perform at each step is closed and convex. Furthermore, ℓ is(
λmax(∆) + 1−β

β

)
-smooth for the Euclidean norm because for x1, x2 ∈ RN :

∥∇ℓ(x1)−∇ℓ(x2)∥2 =

∥∥∥∥(∆x1 +
1− β

β
((x1)K −XK)

)
−
(
∆x2 +

1− β

β
((x2)K −XK)

)∥∥∥∥
2

≤
√
(x1 − x2)T∆2(x1 − x2) +

1− β

β

√
(x1 − x2)T

([
I|K| 0
0 0

])2

(x1 − x2)

≤
(
λmax(∆) +

1− β

β

)
∥x1 − x2∥2

Additionally, for m ≥ 0, when m ≤ λmin(∆) + 1−β
β , ℓ(x)− m

2 x
Tx is convex because:

ℓ(x)− m

2
xTx =

1

2
xT∆x+

1

2

(
1− β

β

)
∥xK −XK∥22 −

m

2
xTx

=
1

2
xT (∆−mI)x+

1

2

(
1− β

β

)
∥xK −XK∥22

This expression is convex if and only if its Hessian ∆ − mI + 1−β
β

[
I|K| 0
0 0

]
has nonnegative

eigenvalues. Therefore, m can be at most λmin(∆) + 1−β
β .

Then, by [95] and [96]:

1. a unique optimal (with respect to ℓ) feasible solution X∗ exists

2. for fixed step size γ = 1
λmax(∆)+ 1−β

β

, ϵ-fair imputation converges as ∥X(t) − X∗∥22 ≤(
1− λmin(∆)+ 1−β

β

λmax(∆)+ 1−β
β

)t

∥X(0) −X∗∥22

3. for fixed step size γ ≤ 1
λmax(∆)+ 1−β

β

, ϵ-fair imputation converges to X∗
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B Additional experimental results

B.1 Datasets

SBM synthetic datasets Each network has 500 train nodes, 250 validation nodes, and 250 test nodes,
split uniformly at random. Each node has a 10-dimensional feature vector sampled as described in
the documentation5. All edges have a weight of 1. PyTorch Geometric is used in accordance with its
MIT license.

Real-world datasets In the Credit defaulter dataset, each node has 13 features (e.g., education,
credit history, etc.), with an average degree of 95.79± 85.88 [29]. In the German credit dataset,
each node has 27 features (e.g., loan amount, account-related features, etc.), with an average degree
of 44.48 ± 26.51. For both datasets, we use a 50/25/25 train/validation/test split, with each split
comprising an equal portion of each label, and we do not include group membership as a feature. To
the best of our knowledge (via manual sampling and inspection), neither dataset contains personally
identifiable information or offensive content. We use [29]’s data and data loading code6 in accordance
with the MIT license.

B.2 Imputation algorithms

We run GM and NM for 1 iteration each, and FP and GR for 40 iterations. We adapted the code for
data utilities, Feature Propagation, and model training from [16]7 in accordance with its Apache-2.0
license. We state all changes in this paper. We implement all algorithms using PyTorch, in accordance
with its license [97].

B.3 Models and training

For mlp and gcn, we use a hidden dimension of 64. We train all models full-batch using the Adam
optimizer with a learning rate of 0.005 and Dropout rate of 0.5 [98, 99]. We also use early stopping
with a patience of 200 epochs, i.e., we stop training when the best validation accuracy has not changed
for 200 epochs, and train for a maximum of 10000 epochs. We do not do any hyperparameter tuning.
We implement and train all models using PyTorch and PyTorch Geometric [97, 83]. We train all
models on a single tesla v100-sxm2-16gb GPU on an internal cluster.

B.4 Performance Evaluation

To evaluate imputed features for SBM, since we don’t have labels, we employ relative reconstruction
error RE (calculated as ∥Xtrue −Xpred∥2/∥Xtrue∥2, where Xtrue and Xpred are the ground-truth
and imputed features, respectively [16]. A lower reconstruction error is better, and we would like
regular mean aggregation imputation and its ϵ-fair counterparts to have comparable reconstruction
errors. To measure performance on the real-world datasets, we consider the test accuracy (Acc) of
models applied to the imputed data. A higher test accuracy is preferable, and we again would like
comparable accuracies for regular and ϵ-fair imputation.

To evaluate group fairness, we compute the discrimination risk (DR) of the imputed data. A
lower discrimination risk is preferable. For the SBM synthetic datasets, we also measure how much
information the imputed features contain about group membership. We do this by training the models
on the imputed data to predict group membership and calculate the test accuracy of the models
on identifying group membership (which we refer to as MI) [86, 21]. (We note that this setting
may violate our theoretical assumptions in 3 that the association of group membership with model
predictions can be fully explained by the node features.) The models may be conceptualized as
adversaries attempting to recover group membership from the imputed features. Thus, we would like
MI to be closer to 0.5 (i.e., the imputed features contain no information about group membership). We
do not compute MI for the real-world datasets, as inferring group membership or identity from real-
world data is invasive, invalid, and can be weaponized against marginalized communities (e.g., to find

5https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html#torch_
geometric.datasets.StochasticBlockModelDataset

6https://github.com/chirag126/nifty
7https://github.com/twitter-research/feature-propagation

25

https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html#torch_geometric.datasets.StochasticBlockModelDataset
https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html#torch_geometric.datasets.StochasticBlockModelDataset
https://github.com/chirag126/nifty
https://github.com/twitter-research/feature-propagation


Table 3: Reconstruction error (RE), discrimination risk (DR), and test group membership identifica-
tion accuracy (MI) of all models averaged over relative sizes of group Q of {0.1, 0.3, 0.5, 0.7, 0.9}
in SBM. We use 0.5 unknown feature rates for both groups and 0.5 inter- and intra-link rates.

Method RE ↓ DR ↓ MIlinear ↓ MImlp ↓ MIgcn ↓
0-Fair GM 1.054± 0.004 0± 0 0.758± 0.025 0.78± 0.014 0.742± 0.018

0.025-Fair GM 1.051± 0.004 0.022± 0.004 0.79± 0.012 0.787± 0.012 0.74± 0.014
0.05-Fair GM 1.048± 0.003 0.032± 0.003 0.791± 0.018 0.794± 0.013 0.747± 0.019
Regular GM 1± 0 0.041± 0.008 0.835± 0.01 0.845± 0.011 0.771± 0.027

0-Fair NM 1.015± 0.003 0± 0 0.757± 0.023 0.792± 0.015 0.738± 0.016
0.025-Fair NM 1.012± 0.003 0.019± 0.003 0.791± 0.022 0.8± 0.014 0.744± 0.011
0.05-Fair NM 1.009± 0.003 0.029± 0.006 0.787± 0.017 0.807± 0.011 0.746± 0.017
Regular NM 0.959± 0.003 0.038± 0.013 0.835± 0.011 0.843± 0.015 0.763± 0.024

0-Fair FP 1.003± 0.005 0± 0 0.757± 0.019 0.799± 0.014 0.736± 0.013
0.025-Fair FP 1± 0.005 0.021± 0.002 0.785± 0.021 0.801± 0.014 0.754± 0.017
0.05-Fair FP 0.997± 0.005 0.033± 0.005 0.789± 0.016 0.806± 0.012 0.738± 0.016
Regular FP 0.947± 0.005 0.051± 0.017 0.829± 0.006 0.841± 0.02 0.760± 0.022

0-Fair GR 0.962± 0.005 0± 0 0.752± 0.024 0.788± 0.019 0.742± 0.013
0.025-Fair GR 0.961± 0.005 0.023± 0.003 0.797± 0.015 0.797± 0.02 0.752± 0.016
0.05-Fair GR 0.96± 0.005 0.036± 0.005 0.799± 0.009 0.805± 0.014 0.739± 0.017
Regular GR 0.945± 0.006 0.036± 0.012 0.821± 0.015 0.82± 0.014 0.759± 0.021

Table 4: Reconstruction error (RE), discrimination risk (DR), and test group membership identifi-
cation accuracy (MI) of all models averaged over all 25 combinations of inter- and intra-link rates
of {0.1, 0.3, 0.5, 0.7, 0.9} in SBM. We use 0.5 relative group sizes and 0.5 unknown feature rates for
both groups.

Method RE ↓ DR ↓ MIlinear ↓ MImlp ↓ MIgcn ↓
0-Fair NM 1.028± 0.009 0± 0 0.609± 0.102 0.729± 0.046 0.905± 0.003

0.025-Fair NM 1.023± 0.008 0.014± 0.011 0.724± 0.09 0.749± 0.035 0.911± 0.008
0.05-Fair NM 1.019± 0.008 0.02± 0.02 0.74± 0.046 0.768± 0.036 0.911± 0.01
Regular NM 0.931± 0.003 0.022± 0.024 0.845± 0.026 0.866± 0.027 0.924± 0.008

0-Fair FP 1.022± 0.012 0± 0 0.64± 0.064 0.742± 0.038 0.905± 0.003
0.025-Fair FP 1.017± 0.012 0.014± 0.012 0.697± 0.095 0.753± 0.039 0.912± 0.007
0.05-Fair FP 1.013± 0.012 0.023± 0.022 0.740± 0.040 0.762± 0.04 0.909± 0.008
Regular FP 0.918± 0.004 0.034± 0.043 0.844± 0.025 0.853± 0.035 0.922± 0.009

0-Fair GR 0.948± 0.043 0± 0 0.578± 0.105 0.773± 0.038 0.905± 0.004
0.025-Fair GR 0.946± 0.004 0.016± 0.013 0.779± 0.036 0.793± 0.038 0.915± 0.005
0.05-Fair GR 0.945± 0.004 0.02± 0.02 0.769± 0.018 0.797± 0.0366 0.912± 0.009
Regular GR 0.916± 0.005 0.023± 0.032 0.846± 0.023 0.864± 0.023 0.921± 0.009

and incarcerate LGBTQIA+ individuals) [100]. To evaluate group fairness for the real-world datasets,
we use the test statistical parity (SP) of the models, defined as |P(Z = 1|S = Q)−P(Z = 1|S = R)|
(disparity in positive outcome rate for the groups) [78], and test equalized odds (EO), defined as
|P(Z = 1|S = Q,Y = 1)− P(Z = 1|S = R, Y = 1)| (disparity in accuracy of predicting positive
outcome for the groups) [87].

B.5 Contraction coefficient

As we analyzed, Figures 2 to 12 show that, for SBM: 1) a low unknown feature rate for both groups or
disparate unknown feature rates across the groups increases α and the discrimination risk (Figures 2,
5, 8, 11); 2) group size alone does not affect α or the discrimination risk (Figures 3, 6, 9, 12); 3) a
lower inter-link to intra-link ratio increases α and the discrimination risk (Figures 4, 7, 10).
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Figure 2: Heatmap of discrimination risks and maximum α (over all channels) of Feature Propagation
for 36 combinations of unknown feature rates for each group in SBM. We use 0.5 relative group sizes
and 0.5 inter- and intra-link rates.
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Figure 3: Plots of discrimination risk and maximum α (over all channels) of Feature Propagation vs.
relative size of group Q in SBM. We use 0.5 unknown feature rates for both groups and 0.5 inter- and
intra-link rates.

Table 5: equalized odds (EO) averaged over all 25 combinations of unknown feature rates of
{0.1, 0.3, 0.5, 0.7, 0.9} for each group in German credit.

Method EOlinear ↓ EOmlp ↓ EOgcn ↓
0.0-Fair GM 0.037± 0.01 0.029± 0.004 0.009± 0.008
0.025-Fair GM 0.031± 0.007 0.029± 0.008 0.018± 0.021
0.05-Fair GM 0.026± 0.003 0.03± 0.003 0.013± 0.005
Regular GM 0.033± 0.008 0.023± 0.003 0.006± 0.005

0.0-Fair NM 0.038± 0.009 0.037± 0.006 0.007± 0.006
0.025-Fair NM 0.035± 0.008 0.038± 0.007 0.013± 0.012
0.05-Fair NM 0.04± 0.006 0.035± 0.006 0.009± 0.003
Regular NM 0.038± 0.012 0.032± 0.006 0.012± 0.006

0.0-Fair FP 0.01± 0.011 0.034± 0.018 0.024± 0.041
0.025-Fair FP 0.028± 0.031 0.031± 0.018 0.023± 0.051
0.05-Fair FP 0.043± 0.07 0.029± 0.028 0± 0
Regular FP 0.042± 0.046 0.038± 0.02 0.004± 0.006

0.0-Fair GR 0.029± 0.012 0.022± 0.003 0.005± 0.006
0.025-Fair GR 0.031± 0.011 0.024± 0.005 0.007± 0.007
0.05-Fair GR 0.027± 0.007 0.024± 0.006 0.004± 0.004
Regular GR 0.032± 0.01 0.025± 0.007 0.009± 0.01
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Figure 4: Plots of discrimination risk and maximum α (over all channels) of Feature Propagation
vs. ratio of inter-link rate to intra-link rate in SBM. We use 0.5 relative group sizes and 0.5 unknown
feature rates for both groups.

Table 6: Test accuracy (Acc) and statistical parity (SP) of all models averaged over all 25 combina-
tions of unknown feature rates of {0.1, 0.3, 0.5, 0.7, 0.9} for each group in Credit defaulter.

Method Acclinear ↑ Accmlp ↑ Accgcn ↑ SPlinear ↓ SPmlp ↓ SPgcn ↓
0.0-Fair GM 0.781± 0.002 0.764± 0.012 0.771± 0.007 0.063± 0.015 0.08± 0.024 0.016± 0.009
0.025-Fair GM 0.78± 0.006 0.757± 0.008 0.774± 0.002 0.059± 0.021 0.083± 0.012 0.015± 0.004
0.05-Fair GM 0.78± 0.003 0.759± 0.013 0.775± 0.002 0.076± 0.015 0.08± 0.017 0.015± 0.003
Regular GM 0.782± 0.006 0.76± 0.018 0.775± 0.006 0.055± 0.031 0.056± 0.012 0.005± 0.006

0.0-Fair NM 0.781± 0.002 0.765± 0.006 0.771± 0.007 0.063± 0.017 0.085± 0.013 0.015± 0.013
0.025-Fair NM 0.78± 0.005 0.766± 0.005 0.774± 0.002 0.057± 0.025 0.088± 0.008 0.015± 0.005
0.05-Fair GM 0.781± 0.003 0.769± 0.01 0.775± 0.002 0.082± 0.011 0.082± 0.018 0.016± 0.003
Regular GM 0.781± 0.007 0.762± 0.014 0.773± 0.008 0.054± 0.031 0.061± 0.011 0.005± 0.007

0.0-Fair FP 0.779± 0.005 0.757± 0.022 0.77± 0.008 0.06± 0.022 0.085± 0.014 0.016± 0.014
0.025-Fair FP 0.78± 0.002 0.764± 0.004 0.774± 0.002 0.056± 0.027 0.092± 0.008 0.016± 0.005
0.05-Fair FP 0.78± 0.001 0.768± 0.008 0.774± 0.002 0.076± 0.005 0.084± 0.014 0.017± 0.004
Regular FP 0.781± 0.005 0.764± 0.01 0.775± 0.006 0.051± 0.029 0.075± 0.011 0.005± 0.006

0.0-Fair GR 0.773± 0.009 0.796± 0.006 0.771± 0.011 0.072± 0.044 0.098± 0.032 0.011± 0.012
0.025-Fair GR 0.779± 0.005 0.792± 0.007 0.772± 0.003 0.052± 0.032 0.091± 0.02 0.017± 0.012
0.05-Fair GR 0.78± 0.003 0.792± 0.007 0.773± 0.004 0.078± 0.0314 0.094± 0.028 0.023± 0.01
Regular GR 0.781± 0.005 0.785± 0.004 0.773± 0.008 0.049± 0.043 0.073± 0.038 0.008± 0.01

29



0.0 0.1 0.3 0.5 0.7 0.9
Q Missing Feature Rate

0.
0

0.
1

0.
3

0.
5

0.
7

0.
9

R 
M

iss
in

g 
Fe

at
ur

e 
Ra

te

0.046
± 0.027

0.037
± 0.019

0.030
± 0.016

0.028
± 0.019

0.020
± 0.016

0.014
± 0.008

0.035
± 0.028

0.029
± 0.020

0.024
± 0.018

0.031
± 0.025

0.016
± 0.011

0.014
± 0.008

0.038
± 0.027

0.032
± 0.030

0.035
± 0.026

0.026
± 0.023

0.018
± 0.010

0.010
± 0.003

0.036
± 0.018

0.031
± 0.013

0.028
± 0.021

0.022
± 0.032

0.023
± 0.024

0.016
± 0.010

0.009
± 0.005

0.018
± 0.009

0.019
± 0.013

0.012
± 0.005

0.021
± 0.011

0.020
± 0.013

0.021
± 0.018

0.023
± 0.017

0.015
± 0.018

0.019
± 0.023

0.018
± 0.013

0.013
± 0.011

Regular Graph Regularization

0.0 0.1 0.3 0.5 0.7 0.9
Q Missing Feature Rate

0.
0

0.
1

0.
3

0.
5

0.
7

0.
9

R 
M

iss
in

g 
Fe

at
ur

e 
Ra

te

0.750
± 0.000

0.728
± 0.004

0.658
± 0.006

0.584
± 0.009

0.508
± 0.009

0.428
± 0.012

0.723
± 0.005

0.697
± 0.010

0.625
± 0.005

0.551
± 0.009

0.476
± 0.009

0.396
± 0.012

0.652
± 0.008

0.625
± 0.010

0.552
± 0.008

0.476
± 0.008

0.403
± 0.008

0.322
± 0.012

0.581
± 0.013

0.552
± 0.014

0.481
± 0.017

0.407
± 0.010

0.329
± 0.012

0.254
± 0.010

0.502
± 0.014

0.473
± 0.018

0.403
± 0.019

0.325
± 0.014

0.252
± 0.013

0.175
± 0.010

0.419
± 0.011

0.391
± 0.010

0.320
± 0.010

0.247
± 0.009

0.172
± 0.008

0.091
± 0.007

Max Alpha of Graph Regularization

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 5: Heatmap of discrimination risks and maximum α (over all channels) of Graph Regulariza-
tion for 36 combinations of unknown feature rates for each group in SBM. We use 0.5 relative group
sizes and 0.5 inter- and intra-link rates.
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Figure 6: Plots of discrimination risk and maximum α (over all channels) of Graph Regularization vs.
relative size of group Q in SBM. We use 0.5 unknown feature rates for both groups and 0.5 inter- and
intra-link rates.

Table 7: equalized odds (EO) of all models averaged over all 25 combinations of unknown feature
rates of {0.1, 0.3, 0.5, 0.7, 0.9} for each group in Credit defaulter.

Method EOlinear ↓ EOmlp ↓ EOgcn ↓
0.0-Fair GM 0.039± 0.008 0.056± 0.019 0.013± 0.007
0.025-Fair GM 0.035± 0.014 0.058± 0.009 0.012± 0.003
0.05-Fair GM 0.048± 0.010 0.057± 0.016 0.012± 0.002
Regular GM 0.031± 0.017 0.038± 0.011 0.004± 0.005

0.0-Fair NM 0.039± 0.01 0.06± 0.009 0.013± 0.007
0.025-Fair NM 0.033± 0.015 0.06± 0.007 0.011± 0.004
0.05-Fair NM 0.05± 0.007 0.057± 0.014 0.012± 0.002
Regular NM 0.031± 0.018 0.041± 0.007 0.005± 0.006

0.0-Fair FP 0.035± 0.013 0.059± 0.013 0.013± 0.008
0.025-Fair FP 0.031± 0.016 0.062± 0.007 0.013± 0.004
0.05-Fair FP 0.043± 0.005 0.057± 0.011 0.014± 0.002
Regular FP 0.028± 0.016 0.05± 0.01 0.004± 0.005

0.0-Fair GR 0.051± 0.036 0.07± 0.029 0.008± 0.011
0.025-Fair GR 0.03± 0.02 0.06± 0.025 0.012± 0.011
0.05-Fair GR 0.048± 0.03 0.067± 0.025 0.015± 0.009
Regular GR 0.03± 0.038 0.051± 0.038 0.007± 0.007
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Figure 7: Plots of discrimination risk and maximum α (over all channels) of Graph Regularization
vs. ratio of inter-link rate to intra-link rate in SBM. We use 0.5 relative group sizes and 0.5 unknown
feature rates for both groups.
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Figure 8: Heatmap of discrimination risks and maximum α (over all channels) of Neighbor Mean for
36 combinations of unknown feature rates for each group in SBM. We use 0.5 relative group sizes and
0.5 inter- and intra-link rates.

33



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Q Group Size

0.00

0.05

Di
sc

rim
in

at
io

n 
Ri

sk

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Q Group Size

0.55

0.60

0.65

M
ax

 A
lp

ha

Figure 9: Plots of discrimination risk and maximum α (over all channels) of Neighbor Mean vs.
relative size of group Q in SBM. We use 0.5 unknown feature rates for both groups and 0.5 inter- and
intra-link rates.
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Figure 10: Plots of discrimination risk and maximum α (over all channels) of Neighbor Mean vs.
ratio of inter-link rate to intra-link rate in SBM. We use 0.5 relative group sizes and 0.5 unknown
feature rates for both groups.
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Figure 11: Heatmap of discrimination risks and maximum α (over all channels) of Global Mean for
36 combinations of unknown feature rates for each group in SBM. We use 0.5 relative group sizes.
Note: Global Mean is not affected by graph structure.
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Figure 12: Plots of discrimination risk and maximum α (over all channels) of Global Mean vs.
relative size of group Q in SBM. We use 0.5 unknown feature rates for both groups. Note: Global
Mean is not affected by graph structure.

37


	Introduction
	Related work
	Discrimination risk and model unfairness
	Graph feature imputation
	Discrimination risk of mean aggregation feature imputation
	Analysis of Theorem 2

	Fairer graph feature imputation
	Experimental results and discussion
	Conclusion
	Proofs
	Proof of Lemma 1 (special case of total variation distance)
	Proof of Theorem 1
	Example mean aggregation imputation algorithms
	Proof of Theorem 2
	Extending Theorem 2
	Proof of Theorem 3
	Theorem 4

	Additional experimental results
	Datasets
	Imputation algorithms
	Models and training
	Performance Evaluation
	Contraction coefficient


