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ABSTRACT
Temporal datasets, in which data evolves continuously, exist
in a wide variety of applications, and identifying anomalous
or outlying objects from temporal datasets is an important
and challenging task. Different from traditional outlier de-
tection, which detects objects that have quite different be-
havior compared with the other objects, temporal outlier
detection tries to identify objects that have different evo-
lutionary behavior compared with other objects. Usually
objects form multiple communities, and most of the objects
belonging to the same community follow similar patterns of
evolution. However, there are some objects which evolve
in a very different way relative to other community mem-
bers, and we define such objects as evolutionary community
outliers. This definition represents a novel type of outliers
considering both temporal dimension and community pat-
terns. We investigate the problem of identifying evolution-
ary community outliers given the discovered communities
from two snapshots of an evolving dataset. To tackle the
challenges of community evolution and outlier detection, we
propose an integrated optimization framework which con-
ducts outlier-aware community matching across snapshots
and identification of evolutionary outliers in a tightly cou-
pled way. A coordinate descent algorithm is proposed to
improve community matching and outlier detection perfor-
mance iteratively. Experimental results on both synthetic
and real datasets show that the proposed approach is highly
effective in discovering interesting evolutionary community
outliers.

Categories and Subject Descriptors
H.1.0 [Information Systems]: Models and Principles; H.4.m
[Information Systems Applications]: Miscellaneous

General Terms
Algorithms, Experimentation

Keywords
community matching, evolutionary community outliers, anomaly
detection, ECOutlier, temporal outliers
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1. INTRODUCTION
For a large number of applications, systems can be mod-

eled as temporal datasets. Each snapshot in such a tem-
poral dataset could describe the attributes of a collection
of objects or a network of connected objects. For exam-
ple, consider a database of employees in a company. Each
employee can be associated with a large number of tempo-
ral attributes like salary, address, telephone number, des-
ignation, etc. As another example, consider co-authorship
networks like DBLP where each author node is associated
with temporal data and links. In daily life, various kinds
of records like credit, personnel, financial, judicial, medi-
cal, etc. are all temporal. Given a snapshot of such a tem-
poral dataset, analysts often perform clustering of objects
with the goal of determining intrinsic grouping of objects
in an unsupervised manner. We can refer to each group as
a community. By analyzing a pair of snapshots from such
a temporal dataset, we can observe that these communities
evolve, often contracting, expanding, splitting or merging
with each other. Most of the objects within a community
follow similar evolution trends and their average defines the
evolution trend of the community. However, evolutionary
behavior of certain objects is quite different from the aver-
age evolutionary behavior of its community. Our goal is to
detect such anomalous objects as Evolutionary Community
Outliers (or ECOutliers) given a pair of snapshots from a
temporal dataset.
ECOutlier Examples

ECOutliers are interesting because they evolve against the
trend, and often times they prove to be trend-setters. Inter-
esting examples of ECOutliers can be commonly observed
in real-life scenarios. We list a few below.

• A stockbroker who suddenly changes his portfolio and
starts investing in another sector against his histori-
cal investments even when other similar stockbrokers
continue to invest in the same old sector.

• Conglomerate diversification, e.g.,“Walt Disney”moved
from producing animated movies to construction of
theme parks and vacation properties.

Case Studies
Now let us study two specific cases in detail.
Computer Science Research Evolution. An ECOutlier au-

thor may change his research area across time while others
in his community continue to research in the same area. For
example, consider the two snapshots 1997 and 1998 when
Soumen Chakrabarti changed his research area from“Paral-
lel Systems”(characterized by work in ICALP, PLDI, SPAA)
to “Data and Information Systems” (characterized by work



in VLDB, SIGMOD). In a bibliographic network, a confer-
ence may change the sub-topics it deals with while other
conferences in the area continue to focus on the same sub-
topics. For example, in 2010, there were 13 papers in CIKM
about personalization, while none of the other IR confer-
ences like WWW, WSDM, SIGIR or ECIR focused so much
on personalization in that year.
Employee Promotion. Suppose we have collected the com-

munication frequencies among employees in a company. Also,
each employee has temporal attributes like salary, designa-
tion, location, etc. We can identify the natural communities
based on their attribute values and communication links.
Across two snapshots of this small company, say only one
employee E gets promoted from a developer two levels up
to a team lead. Also, E’s salary increases, and his commu-
nication pattern changes because he starts communicating
more with managers. Due to change in links and the asso-
ciated data, the community membership of E changes too.
As E has behavior (community membership) changes much
different from other members in his original community, he
can be considered as an ECOutlier. E can be detected by
identifying and comparing the communities of the two snap-
shots.
Existing Work
Here we briefly mention the difference between this work

and existing outlier detection techniques. More discussions
can be found in Section 2. (1) Single-snapshot outlier de-
tection: Distance-based [22, 30] and density-based [7, 24]
methods have been proposed but they work on only single
snapshot data and hence cannot detect temporal changes.
(2) Temporal outlier detection: Traditional time series liter-
ature [13] defines two types of outliers (Type I/additive and
Type II/innovative) based on the data associated with an in-
dividual object across time, ignoring the community aspect
completely. (3) Stream outlier detection: Recent work on
outlier detection on data streams has focused on distance-
based local outliers [29] or on graph outliers [4], while we
focus on outliers in the community context. In general, ex-
isting work ignores time or community information in out-
lier detection, and thus the outliers detected traditionally
are not evolutionary community outliers as proposed in this
paper.
Integrated Framework
Evolutionary community outliers are objects that do not

follow the evolutionary trend compared with other objects in
the same community. Therefore, one natural way to identify
such ECOutliers is to detect objects which change their com-
munity belongingness against the trend across time. How-
ever, community discovery is an unsupervised procedure,
so communities discovered at different snapshots may not
match with each other. Moreover, communities evolve too,
and thus communities must be matched across snapshots.
ECOutliers can be detected with high accuracy if the com-
munity matching across two snapshots is of high quality.
However, community matching suffers from the presence of
ECOutliers itself. Outliers are objects that defy the trend,
and the trend must be obtained from community match-
ing. Therefore, community matching and outlier detection
cannot be separated. This motivates us to present an inte-
grated framework which models outlier detection and com-
munity matching as a joint optimization problem. As we will
show in Section 5, such an integrated approach is much more
effective compared to a two-stage approach, which detects
outliers after community matching is done.

Brief Overview of ECOutlier Detection
Consider a temporal dataset represented by the snapshot

series X1, X2, . . ., XT . In this paper, we focus on the prob-
lem of detecting evolutionary outliers from any of the two
snapshots Xi and Xj . Given community detection results
on all pairs of snapshots, evolutionary outliers across mul-
tiple snapshots can be easily defined based on simple post-
processing. For the sake of simplicity, let us denote the pair
of snapshots as X1 and X2. Latent community discovery on
X1 (or X2) leads to a matrix P (or Q). Each element of P
(or Q) denotes the probability with which a particular ob-
ject belongs to a particular community in snapshot X1 (or
X2). Next, one needs to match a particular community in
X1 to one or more communities in X2. Note that commu-
nity mismatch happens due to permutation of community
labels and community evolution. Such matching should try
to minimize the distance between the matrices P and Q.
To ignore the effect of ECOutliers from such an optimiza-
tion, the distance function should appropriately discount the
matrix entries ((object, community) pairs) corresponding to
outliers, thereby also learning an outlierness score for every
(object, community) pair. Hence, we formulate the prob-
lem as an optimization problem over both outlierness degree
and community correspondence. Community matching and
outlier detection are improved through iterative updating
procedures, and upon convergence, meaningful outliers are
output.
Summary

We make the following contributions in this paper:

• We introduce the notion of Evolutionary Community
Outliers ECOutliers. To the best of our knowledge,
this is the first work on detecting evolutionary outliers
considering both time and community information.

• We formulate the problem using an integrated opti-
mization framework and develop an iterative algorithm
that performs community matching and evolutionary
outlier detection simultaneously.

• We show the interesting and meaningful outliers de-
tected from multiple real and synthetic datasets.

Our paper is organized as follows. We discuss related work
in Section 2. In Section 3, we define the ECOutlier detec-
tion problem, and present the optimization framework and
solution. In Section 4, we present analysis and discussions
related to the algorithm. We discuss experimental setup
and results with detailed insights in Section 5. The paper is
summarized in Section 6.

2. RELATED WORK
Our work is related to the areas of community matching

and outlier detection.
Community Matching: The problem of community

matching appears mainly when multiple different cluster-
ings need to be integrated into a single clustering. Com-
munity mismatch happens because of ‘label switching’ or
‘genuine multimodularity’ [20]. Community matching (con-
sensus clustering) can be done in a hard or a soft way. Hard
community matching can be performed by selecting the best
matching pair of communities one by one, avoiding conflict
with already selected pairs [10, 11] or using greedy algo-
rithms like CLUMPP [20]. Soft community matching can be
done so as to minimize the distance between the two matri-
ces [27]. In computer vision, community matching has been



Notation Meaning

o Index for objects
i Index for a community in X1

j Index for a community in X2

N Number of objects
K1 Number of communities in X1

K2 Number of communities in X2

PN×K1 = [poi] Belongingness matrix for snapshot X1

QN×K2 = [qoj ] Belongingness matrix for snapshot X2

SK1×K2 = [sij ] Correspondence matrix

AN×K2 = [aoj ] Outlierness matrix
µ Estimated sum of outlierness

Table 1: Table of Notations

done by using cluster features like position, intensity, shape
and average gray-scale difference [23], and degree of match
between surrounding clusters [28]. Words-based communi-
ties could be matched using TF-IDF similarity [9]. Differ-
ent from these studies, we introduce a new soft community
matching technique which is evolutionary-outlier-aware.
Outlier Detection: Outlier (or anomaly) detection is

a very broad field and has been studied in the context of a
large number of application domains. Chandola et al. [8] and
Hodge et al. [18] provide extensive overview of outlier detec-
tion techniques. Four main types of outliers studied in litera-
ture are point outliers, contextual outliers, collective outliers
and evolutionary outliers. A variety of supervised, semi-
supervised and unsupervised techniques have been used for
outlier detection. These include mixture of models [12], neu-
ral networks, stat profiling using histograms, SVMs [19], rule
based systems, parametric stat modeling, non-parametric
stat modeling, bayesian networks, etc. The problem stud-
ied in this paper has connections with distance-based out-
lier detection algorithms [21] in the sense that we are try-
ing to search outliers in a space with community change
trends as dimensions. Outliers have been discovered in high-
dimensional data [2], uncertain data [3], stream data [4],
network data [15] and time series data [13]. Recently, there
has been significant interest in detecting outliers in evolving
datasets [16, 17], but none of them explores the outliers with
respect to communities in a general evolving dataset.
Trajectory outlier detection and community tracking meth-

ods [5, 26] (1) usually work well for longer time series (unlike
two timestamps in our setting), (2) and need crisp correspon-
dence among clusters across timestamps. Also, often such
methods cannot model link dependencies between objects
(e.g. in networks) in the same timestamp. Such techniques
usually use Markov models, which could lead to expensive
computation or approximate solutions; our method provides
high accuracy in time linear in the number of objects.

3. ECOUTLIER DETECTION APPROACH
In this section, we will present our integrated framework

for ECOutlier detection. Let us start by first introducing
the notations. We represent a matrix using the notation B.

We use
→

bi· and
→

b·j to represent the ith row and jth column
of B respectively. We will represent the (i, j)th element of

the matrix B using bij . Given two vectors
→
a and

→

b , we will

use
→
a ·

→

b to denote their dot product. Table 1 shows the
important notations that we use in this paper. Next, we use
these notations to define our problem.

3.1 Problem Definition
We start with an introduction to some basic concepts.

Community

A community is a probabilistic collection of similar ob-
jects, such that similarity between objects within the com-
munity is higher than the similarity between objects in dif-
ferent communities. For example, a research area is a com-
munity in a co-authorship network. We will use K1 and K2

to denote the number of communities in the two snapshots
respectively.
Belongingness Matrix

Each entry in the belongingness matrix corresponds to the
probability with which an object o belongs to a community
i. The rows of the matrix correspond to objects while the
columns correspond to communities. Let us denote the be-
longingness matrices for the N objects in X1 and X2 by P

and Q respectively. Thus, P ∈ [0, 1]N×K1 , Q ∈ [0, 1]N×K2 ,
∑K1

i=1 poi = 1 and
∑K2

j=1 qoj = 1 for every object o.
Correspondence Matrix

We propose to use a soft matching of communities across
snapshots. Soft correspondence means that a community
of a given clustering corresponds to every community in an-
other clustering with different weights. Hence, the match be-
tween two clusterings may be formulated as a matrix called
as the correspondence matrix SK1×K2 . Also,

∑K2
j=1 sij = 1

(∀i = 1 . . .K1).
Outlierness Matrix

We denote the outlierness matrix by AN×K2 . aoj repre-
sents the outlierness score for the (object, community) entry
(o, j).
Evolutionary Community Outlier

An (object, community) pair (o, j) is an ECOutlier if
change in poi to qoj is quite different from the average change
trend for community i in X1 and j in X2. An object can be
considered as an outlier if the change in its probability dis-
tribution with respect to community belongingness is quite
different from that of its X1 community members.
Evolutionary Community Outlier Detection Problem

Given two snapshots (P and Q), our problem is to esti-
mate S and A and thereby derive ECOutliers with respect
to the two snapshots.

To perform community matching between the matrices
P and Q, one needs to estimate a correspondence matrix
SK1×K2 such that the distance (sum of entrywise squared
differences) between the matrices Q and P × S is mini-
mized. However, such an approach will perform biased com-
munity matching if we take into account the contribution
from outlier entries too, when estimating the correpondence
matrix S. For higher quality matching, one needs to ignore
evolutionary outlier entries. Hence, we need to incorporate
the outlierness score matrix A into community matching. In
the remainder of this section, we will develop an integrated
approach to compute S and A.

3.2 Integrated Framework
Let µ be the estimated sum of outlierness in the snapshot.

Then, we can incorporate the outlierness score into the com-
munity matching formulation as shown in Eqs. 1 to 5. We
will discuss the estimation of µ in Section 3.5.

In the objective function (Eq. 1), S and A are the vari-

ables to be learned. (qoj−
→
po· ·

→
s·j)

2 denotes the squared

error incurred in community matching and log
(

1
aoj

)

deter-

mines the outlier weight associated with the (o, j)th entry.
Note that even if there were no outliers, there would still
be some matching error, because each object evolves some-
what differently from the community averages. However,



outliers that evolve very differently from community aver-

ages are penalized using a higher aoj value. Using log
(

1
aoj

)

in the objective function allows us to smooth out outlierness
values. The log function makes sure that the weights for in-
dividual entry matching across snapshots lie within a small
range. The more anomalous a particular (object, commu-
nity) entry (o, j) is, the higher will be the value of aoj and so

log
(

1
aoj

)

will be lower. This would mean that lower weight

will be associated with the (o, j)th outlier entry when per-
forming community matching. While there could be other
ways of formulating the objective function, we use this par-
ticular formulation for ease of computation.

min
S,A

N
∑

o=1

K2
∑

j=1

log

(

1

aoj

)

(qoj−
→
po· ·

→
s·j)

2
(1)

subject to the following conditions

sij ≥ 0 ∀i = 1 . . . K1, ∀j = 1 . . . K2 (2)

K2
∑

j=1

sij = 1 ∀i = 1 . . . K1 (3)

1 ≥ aoj ≥ 0 ∀o = 1 . . . N, ∀j = 1 . . . K2 (4)

N
∑

o=1

K2
∑

j=1

aoj ≤ µ (5)

Total Amount of Outlierness
If the total amount of outlierness is unbounded, one can

simply mark all entries as outliers and then there will be no
useful community matching. This corresponds to the trivial
solution of setting all A elements to very high values, for the
optimization (Eq. 1). Hence, we need to put in a constraint
based on how many outliers we expect. Note that normal
entries have small aoj values, while outlier entries have large
aoj values. Thus, we would like to bound the total sum of
all aoj values to be within a maximum level of outlierness
we expect in the snapshot. This can be achieved using the
constraint

∑N

o=1

∑K2
j=1 aoj ≤ µ (Eq. 5). We replace it by

an equality constraint to simplify computation. In fact, the
semantic meanings of outlierness scores will not change by
this action because we only care about the relative ranking
of the scores. Essentially the equality claims that there is a
certain level of outlierness in the entire snapshot. We will
show later how we can estimate µ.
The objective function can be minimized (local minimum)

by alternately optimizing one of S and A while fixing the
other. Next, we will derive iterative update rules for the
correspondence entry (sij) and the outlierness scores (aoj).
Using the method of Lagrangian Multipliers, we can rewrite
the problem as follows. Here, βi and γ are Lagrangian vari-
ables.

min
S,A

f =
N
∑

o=1

K2
∑

j=1

log

(

1

aoj

)

(qoj−
→
po· ·

→
s·j)

2

+

K1
∑

i=1

βi





K2
∑

j=1

sij − 1



+ γ





N
∑

o=1

K2
∑

j=1

aoj − µ



 (6)

subject to the following conditions

sij ≥ 0 ∀i = 1 . . . K1, ∀j = 1 . . . K2 (7)

1 ≥ aoj ≥ 0 ∀o = 1 . . . N, ∀j = 1 . . . K2 (8)

3.3 Derivation of Update Rules
Taking the partial derivative of Eq. 6 with respect to a

particular aoj and setting it to 0, we obtain the following.

aoj =
(qoj−

→
po· ·

→
s·j)

2

γ
and

N
∑

o=1

K2
∑

j=1

(qoj−
→
po· ·

→
s·j)

2

µ
= γ (9)

This gives us the update rule for aoj as follows.

aoj =
(qoj−

→
po· ·

→
s·j)

2µ
∑

N
o′=1

∑K2
j′=1

(qo′j′−
→
po′· ·

→
s·j′ )

2
(10)

The numerator (qoj−
→
po· ·

→
s·j)

2 represents the squared er-
ror for the (o, j)th entry, which represents the error incurred
by matching the community detection results between two
snapshots on the oth object with respect to the j-th commu-
nity in Q. The denominator in Eq. 10 represents the overall
error across all the entries in matrix Q, given a particular
S, which serves as a normalization factor. Intuitively, we
assign a higher outlierness score to objects and communities
that incur higher community matching error, while objects
that are matched well with respect to certain communities
across two snapshots are considered normal and thus receive
lower outlierness score.

Now, we will obtain the update rule for sij . Taking partial
derivative of f with respect to sij , we obtain the following.

N
∑

o′=1

[

2 log

(

1

ao′j

)

(qo′j−
→
po′· ·

→
s·j)(−po′i)

]

+ βi = 0 (11)

After some algebraic simplifications, we obtain the follow-
ing update rule for sij .

sij =

N
∑

o′=1

2 log

(

1
a
o′j

)

po′i






qo′j −

K1
∑

k=1
k 6=i

po′kskj






− βi

N
∑

o′=1

2 log

(

1
a
o′j

)

p2
o′i

(12)

The intuition behind Eq. 12 is as follows. Our goal is
to compute sij when other elements of the matrix S are
fixed. sij involves matching of all objects with respect to
the ith column of P and the jth column of Q. Contributions

from each object o′ are weighted by log
(

1
ao′j

)

such that

highly outlying objects contribute little to matching. Fixing

other elements of S,



qo′j −
K1
∑

k=1
k 6=i

po′kskj



 represents the part

of qo′j that needs to be explained by po′isij . βi and the
denominator of Eq. 12 are used to make sure that

∑

j
sij =

1. βi’s can now be computed easily using Eq. 12 and the
constraints

∑K2
j=1 sij = 1 (∀i = 1 . . .K1). This value of βi

can then be substituted back in Eq. 12 to obtain the update
rule for sij .

3.4 Interpretation of S and A

S captures the average evolution trend for the communi-
ties in the two snapshots. It also captures the permutation
effect when matching two clusterings. sij represents the de-
gree to which the community i in snapshot X1 contributes
to the community j in snapshot X2. Thus, sij averages the
evolution/match across all the objects belonging to i in X1

and j in X2. If a community i splits into two parts j1 and
j2, sij1 and sij2 will have non-zero values. Similar to this
split case, sij can be used to represent community merges,
community expansion, community shrinking and a mix of
such scenarios. Apart, a community i may die out with all
sij ’s set to 0. Similarly, S can also capture birth of new
communities.

Now, if there are evolutionary outliers, they will possess
values quite different from the average. For example, when



Algorithm 1 OneStageµ Outlier Detection Algorithm

Input: P , Q
Output: Estimates of S and A
1: Initialize µ to 1
2: Initialize all sij ⇐ 1

K2
and all aoj ⇐ 1

NK2
.

3: while NOT converged do
4: Update A using Eq. 10 (Outlier Detection Step).
5: Update S using Eq. 12 (Community Matching Step).
6: end while

7: µ ⇐

∑N
o′=1

∑K2
j′=1

(q
o′j′

−
→

p
o′·

·
→

s
·j′

)2

max
o,j

(q2
oj

)

8: Repeat Steps 2 to 6.

sij=1, community i in X1 gets merged with, or is renamed
as community j in X2. However, an outlier will have most
of its mass moving from community i in X1 to communities
other than j in X2. Presence of such outliers can affect the
computation of sij itself because outliers can lead to signifi-
cantly different average values. In our formulation, a weight
is given to an object o when computing the community evo-
lution values for community j, which is a function of aoj .
For normal (object, community), aoj should be low, while
for outlying (object, community), aoj should be high. A is
designed to capture such evolutionary outlierness.

3.5 Estimation of Overall Outliernessµ
Note that µ indicates the total sum of outlier scores (in

Eq. 5). If we set µ to 1, aoj is expected to be quite small for
most of the (o, j) entries. There are N objects and K2 com-
munities, and thus the matching error of one entry is much
smaller than the total squared sum of errors. The conse-
quence is that the difference between aoj is also small and it
is hard to judge whether an object is an outlier or not based
on aoj . Techniques that transform and interpret outlierness
scores [25] might help solve this problem. However, another
problem is that a small µ causes overfitting of S to the out-
lier entries, when performing community matching. Hence,
we would like to have µ as high as possible without vio-
lating constraints in the optimization. µ is upper-bounded
by the combination of Eq. 10 and the constraint aoj ≤ 1.
Therefore, we propose the following two-pass procedure to
set µ. In the first pass, the overall snapshot outlierness µ is
initialized to 1. After the first pass, µ is estimated as the
ratio of overall error to the maximum entry value, as shown
in Line 7 of Algorithm 1. The algorithm then uses this esti-
mated µ for the second pass. Since µ increases compared to
the first pass, aoj values are relatively large. This reduces
the overfitting of S to the outlier entries. Hence, matching
for non-outlier entries improves, and so outlier detection im-
proves too. Also, due to relaxation in matching, the overall
error, i.e., the denominator in Eq. 10 is higher than the over-
all error in the first pass, and thus the value of aoj remains
≤ 1, ensuring that the constraint is not violated.
Algorithm 1 summarizes the proposed ECOutlier detec-

tion algorithm. We name it OneStageµ to distinguish it from
several baselines we evaluated, which will be discussed in
detail in Section 5. “OneStage” indicates that the proposed
method conducts outlier detection and community matching
together, and µ is used to represent the two-pass procedure
that estimates µ. As can be seen, the proposed method iter-
atively learns both parameters representing the outlierness
scores (aoj) and the community correspondence values (sij).
At every iteration, aoj values are first updated assuming all
sij are fixed, and then sij values are sequentially updated
based on the values of all aoj and sij from other entries.

The algorithm terminates when the change in the value of
the objective function is less than a threshold ǫ.

4. ANALYSIS AND DISCUSSIONS
In this section, we analyze the convergence property and

time complexity of the proposed ECOutlier detection method.
We also discuss several important issues in implementing the
method.
Convergence

Lemma 4.1. Algorithm 1 converges and the final solution
is a stationary point of the optimization problem presented
in Eqs. 1 to 5.

Proof. As stated in [6, p. 267-271], a block coordinate
descent algorithm converges to a stationary point if the func-
tion achieves minimum at each step with respect to the set
of working variables when the values of other variables are
fixed. To prove this, we first check the convexity of the
function. We notice that the constraints (Eqs. 2 to 5) are
all linear. When we consider S as constant, the optimiza-
tion function is a linear combination of negative log of aoj ’s.
As log( 1

aoj
) is convex, its linear combination is also convex.

When A is fixed and sij ’s are updated sequentially, the ob-
jective function can be written as a quadratic function in sij .
Since pij are all positive, it can be derived that the function
is convex in each sij . As the function to be minimized is
convex at each step, setting derivatives with respect to the
working variables to zero will give unique minimum. Hence,
Algorithm 1 is guaranteed to converge.

Computational Complexity
Recall that N is the number of objects, K1 and K2 are the

number of communities in the two snapshots respectively.
Sum of all error values in Eq. 10 can be computed once for
all aoj ’s in O(NK1K2) time. Then, computation of each aoj

takes O(K1) time. S consists of K1K2 entries. When com-
puting S, at every iteration, for each sij , one needs to use
Eq. 12 which is O(NK1) itself. Thus, computational com-
plexity of the OneStageµ Algorithm is O(NK2

1K2I) where
I is the number of iterations. As can be seen, the running
time is linear with respect to the number of objects. Usually
the number of communities is small, and thus the proposed
method scales well to large data sets.
Identifying Outliers

Algorithm 1 allows us to obtain outlierness scores for every
(object, community) pair, given two snapshots of a tempo-
ral dataset. These scores are useful to identify interesting
objects that are outliers with respect to a particular com-
munity. One could also aggregate such outlierness scores in
a variety of ways to obtain the outlierness score for an ob-
ject across all communities. Different aggregation functions
could be used; weighted sum of scores or maximum (object,
community) entry corresponding to an object may be a good
choice, depending on the application. Also, when reporting
top outlier objects in the snapshot one may want to consider
the overall activity of the object along with its outlierness
score. For example, an author publishing 50 papers in a
snapshot with a relatively lower level of outlierness may still
be more interesting than an author publishing only 5 papers
but with a relatively higher level of outlierness.
Initialization

We initialize all aoj values to 1
NK2

, i.e., we begin by con-

sidering all entries to be equally anomalous. We initialize



all sij entries to 1
K2

, i.e., we assume that each community in

snapshot X2 evolves equally from each of the communities
in snapshot X1.
Series of Snapshots
In this paper, we focused on finding ECOutliers given a

pair of snapshots. However, it is quite natural to extend
our approach given a series of snapshots. We can perform
community matching and outlier detection across every pair
of consecutive snapshots, using the proposed module. Also,
when the evolution is gentle, one can smooth out community
matching over several consecutive snapshots. This can help
in improving the community matching accuracy, thereby
also improving the outlier detection.

5. EXPERIMENTS
Evaluation of outlier detection algorithms is quite diffi-

cult due to lack of ground truth. We perform experiments
on multiple synthetic datasets, each of which simulates real
scenarios. We will evaluate outlier detection accuracy of the
proposed algorithm based on outliers injected in synthetic
datasets. We evaluate the results on real datasets using case
studies. We perform comprehensive analysis of objects to
justify the top few outliers returned by the proposed algo-
rithm. The code and the data sets are available at: http://
blitzprecision.cs.uiuc.edu/ECOutlier

5.1 Baselines
We compare the proposed algorithm with three baseline

methods: OneStage (1S), TwoStage (2S) and NearestNeigh-
bor (NN). As discussed, our method is named as OneStageµ
(1Sµ) because it integrates outlier detection and community
matching, and µ is estimated using a two-pass procedure.
The baseline methods are explained as follows.
OneStage (1S): 1S is the one pass version of 1Sµ (Steps
1 to 6 of Algorithm 1), in which total outlier score µ is set
to 1. Thus, comparison with 1S will help us understand
improvement in accuracy by improved estimation of µ.
TwoStage (2S): Outliers are obtained by looking at the
top values in Q−P ×S where S is computed by matching
P and Q. Comparison with 2S will help us understand
which method is better – performing outlier detection after
community matching (2S) or doing them in an integrated
way (1Sµ).
NearestNeighbor (NN): For every object o, we find its
k-Nearest Neighbors set, NNX1(o), in P using the KDTree
implementation in Java-ML [1]. Recall that P and Q are
the belongingness matrices for snapshots X1 and X2. We
exclude the object o from NNX1(o). The outlierness score
for (object, community) pairs (o, j) can then be computed as

aoj =

∣

∣

∣

∣

qoj −

∑

o′∈NNX1
(o) qo′j

|NNX1
(o)|

∣

∣

∣

∣

. Note that this means that an

outlier entry (o, j) has a high score if qo,j (i.e., belongingness
of object o to community j in the second snapshot) is quite
different from the average belongingness of its X1 nearest
neighbors to the same community j in X2. NN seems to
follow the exact definition of ECOutliers and so one would
expect it to get high accuracy but we will discuss later on
why it fails to perform better than other methods.

5.2 Synthetic Datasets
Dataset Generation
We generate a variety of synthetic datasets to capture

different spatial cases of evolution (Figs. 1 and 2). For
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Figure 2: SynMix Dataset (X1 and X2)

each dataset, the figures show two snapshots. In each snap-
shot, we generate multiple clusters, each of which represents
a community. Each cluster is modeled using a 2D Gaus-
sian distribution, and evolution is modeled by changing the
means and the variances of the Gaussians. For example, to
model contraction (expansion) of a cluster, we reduce (in-
crease) the standard deviation of the corresponding cluster
(the first two plots in Fig. 1). NoEvolution is represented
by Plots 3 and 4 in Fig. 1. Plots 5 and 6 in Fig. 1 show
the case of Merge where top four clusters merge to form one
big cluster, and Split is shown in the last two plots in Fig. 1
where the upper cluster splits into four small clusters. We
model a mix of cluster evolution in Fig. 2, which consists of
cluster expansion, contraction, merging and splitting. Thus,
we try to incorporate all forms of possible cluster evolution
in our synthetic datasets. The circles represent 2σ boundary
for the cluster Gaussian. For each cluster, we generate a set
of N/K1 points, each of which is sampled from the cluster
Gaussian. For each of the N points, we obtain poj and qoj
as the probability with which the point can be generated
from its cluster’s Gaussian distribution. Using P and Q, we
obtain S as the community matching matrix in absence of
any outlierness. S captures evolution without the effect of
outliers.

Next, we inject outliers as follows. First we set an out-
lierness factor Ψ and choose a random set of objects, R
with N × Ψ objects. For each object o in R, we swap
the qojmin

and qojmax values where jmin and jmax are the
communities with the min and the max qoj values. Thus,
we inject two outliers per object in R. Finally, we set

aoj = (qoj−
→
po· ·

→
s·j)

2. For each of the datasets, for X2,
we show the top three outliers (using different black filled
shapes) discovered by OneStageµ. We show their original
positions in X1 and their new positions in X2.
Results on Synthetic Datasets

We experiment using a variety of different settings. For
each setting, we perform 100 experiments and report the
mean values. We fix the threshold ǫ for convergence to
10−6. We vary the number of objects as 1000, 5000 and
10000. We vary the percentage of outliers injected into the
dataset as 1%, 2%, 5% and 10%. Using these settings, we
compare the actual outlier objects with the top outliers re-
turned by various algorithms. For each algorithm, we show
the precision of outlier detection with respect to the ranking
of outliers. The results of the three baselines and the pro-
posed method are shown in Fig. 3 for SynMix dataset (10000
objects, Ψ=10%). Note that the proposed algorithm (1Sµ)
outperforms the others in finding the top few outliers most
precisely. The area under this curve (AUC) is a good mea-
sure of the effectiveness of the algorithm in identifying the
outliers. We report the AUC values in Table 2 (Average vari-
ances are .0012 for NN, .0021 for 2S, .0017 for 1S, and .0005

http://blitzprecision.cs.uiuc.edu/ECOutlier
http://blitzprecision.cs.uiuc.edu/ECOutlier


!

N Ψ SynContractExpand SynNoEvolution SynMerge SynSplit SynMix
(%) NN 2S 1S 1Sµ NN 2S 1S 1Sµ NN 2S 1S 1Sµ NN 2S 1S 1Sµ NN 2S 1S 1Sµ

1000

1 .755 .947 .966 .966 .832 .791 .853 .965 .720 .774 .835 .926 .786 .918 .929 .931 .606 .891 .904 .925
2 .729 .920 .948 .957 .812 .733 .789 .961 .702 .715 .781 .908 .779 .865 .920 .924 .675 .823 .860 .915
5 .710 .853 .913 .956 .726 .712 .752 .928 .645 .654 .719 .849 .697 .799 .891 .920 .631 .770 .817 .920
10 .619 .766 .833 .960 .657 .684 .706 .881 .580 .617 .656 .801 .630 .749 .832 .918 .594 .730 .776 .917

5000

1 .778 .945 .970 .970 .938 .793 .848 .971 .713 .762 .801 .928 .796 .913 .942 .942 .691 .881 .895 .918
2 .756 .930 .947 .961 .864 .772 .815 .962 .677 .752 .791 .903 .768 .885 .938 .940 .646 .862 .876 .919
5 .689 .901 .929 .964 .742 .750 .779 .941 .626 .698 .749 .827 .689 .806 .913 .924 .608 .831 .860 .921
10 .622 .778 .829 .964 .656 .730 .747 .912 .579 .643 .679 .795 .624 .762 .834 .929 .593 .783 .824 .919

10000

1 .769 .949 .973 .974 .926 .807 .856 .974 .707 .788 .817 .933 .789 .938 .955 .960 .665 .882 .897 .921
2 .752 .937 .949 .963 .851 .788 .828 .964 .681 .762 .796 .898 .758 .898 .948 .951 .670 .869 .881 .916
5 .695 .900 .930 .964 .738 .763 .788 .951 .627 .719 .756 .826 .683 .807 .914 .922 .604 .847 .871 .919
10 .622 .771 .825 .965 .660 .753 .769 .926 .583 .645 .681 .795 .621 .769 .827 .934 .584 .812 .845 .917

Table 2: Syn Dataset AUC (NN=NearestNeighbor, 2S=TwoStage, 1S=OneStage, 1Sµ=OneStageµ)
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Algorithm

for 1Sµ). For NearestNeighbors, we tried k=5, 10, 50 and
100. We found the best AUC at k=10 and hence report the
values for k=10. As the table shows, the proposed algorithm
outperforms all the other algorithms for all the settings by
a wide margin (sometimes as high as 30% better than the
TwoStage method). NearestNeighbors performs fairly well
for SynNoEvolution but not for other datasets. This is be-
cause it does not consider evolution and assumes that the set
of nearest neighbors does not change across the snapshots.
In contrast, the proposed algorithm detects outliers in the
context of community evolution.

5.3 Real Datasets
Dataset Generation
We perform experiments using three real datasets: IMDB,

DBLP and Four Area (subset of DBLP). We use iTopic-
Model [31] to perform community detection on the dataset
since it uses both data and link information. It outputs the
belongingness matrix PN×K1 (QN×K2) for the snapshot X1

(X2).
IMDB : We consider the co-starring graph (edge weight =
co-starring frequency) created using actors who acted in at
least 5 movies per snapshot. The two snapshots correspond
to the years ’06-’07 (15337 actors) and ’08-’09 (13142 actors).
Sets of genres of movies in which the actor acted constitutes
the data associated with an actor. After community de-
tection, we retain only those actors (6609) that are present

in both snapshots. We consider number of communities as
K1 = K2 = 5.
DBLP : We consider the co-authorship graph (edge weight
= co-authorship frequency) created using publications in the
top 1500 conferences by authors, each of which published
≥ 10 papers per snapshot. The two snapshots correspond to
the years ’06-’07 (4784 authors) and ’08-’09 (5633 authors).
Sets of related conferences constitute the data associated
with an author. After community detection, we retain only
those authors (2666) that are present in both snapshots. We
consider number of communities asK1 = K2 = 5. Similar to
the author network, we also create a network of conferences
(edge weight = #authors publishing at both conferences)
where the words in paper titles constitute the data associ-
ated with each conference. 920 conferences are present in
both snapshots and again, we set K1 = K2 = 5.
Four Area: This is a subset of DBLP for the four ar-
eas of data mining (DM), databases (DB), information re-
trieval (IR) and machine learning (ML). It consists of pa-
pers from 20 conferences (5 per area). For details, read [14].
We obtain two snapshots corresponding to the years ’01-
’04 (601 authors) and ’05-’08 (1206 authors). We build
the co-authorship network similar to the one for DBLP.
K1 = K2 = 4, and 374 authors are present in both snap-
shots.
Results on Real Datasets

Here, we discuss case studies obtained from these datasets.



Conference Sim 1 Sim 2 Sim 3 Sim 4

ANTS 0.55 0.16 0.14 0.08
TLCA 0.60 0.53 0.14 0.08
INFOS 0.83 0.75 0.10 0.22
Sigite Conf. 0.66 0.33 0.11 0.27
Gil Jahrestagung 0.77 0.81 0.08 0.31

Table 3: Analysis of Top Outlier Conferences (1Sµ)

IMDB : Top two outlier actors returned by OneStageµ are
discussed below.
1. Kelly Carlson (I): In X1, she did many Sport, Thriller

and Action movies, while in X2 she switched to Drama, Mu-
sic, Reality-TV. Most of her top ten closest collaborators in
X1 still do Documentary, Thriller, Action in X2. Few of her
co-stars collaborate with her in the second time snapshot.
Also, her X1 neighbors used to do Sport, Comedy, Docu-
mentary, Action while her X2 neighbors do Drama, Doc-
umentary, Thriller, Music. Thus, clearly she changed her
community from Sports, Thriller, Action genres to Drama,
Music genres.
2. Josh Brolin: In X1, he did a lot of Thriller, Drama,

Crime and Mystery movies. In X2, he acted in a lot of
Documentary, Comedy, History, Music movies. Not only
did he change his genres completely, but also not many other
actors show such a change in the type of their movies. This
is why, in X2, his genres are quite different from that of his
X1 nearest neighbors. Hence, clearly he is an outlier.
DBLP (Authors Network): We will discuss about the
top two authors which are detected as evolutionary commu-
nity outliers.
1. Georgios B. Giannakis. In X1, his publications were

mainly in CISS, ICC, GLOBECOM, INFOCOM. In X2,
he published in completely different conferences: ICASSP,
ICRA. We looked at the conferences at which his X1 com-
munity members published in X2. This set of conferences
(GLOBECOM, ICC, CISS, INFOCOM) is completely dif-
ferent from the set of conferences at which he published in
X2, but much similar to his own published venues in X1.
2. Vassilios Peristeras. InX1, his publications were mainly

in HICSS, ICEGOV, IEEE SCC, EDOCW, CSREA, etc. In
X2, he published in completely different conferences: WSKS,
ICSC, OTM, ICDIM, SAC. We looked at the conferences at
which his X1 community members published in X2. This
set of conferences (HICSS, ISI, ICEGOV, etc.) is completely
different from the set of conferences at which he published
in X2, but much similar to his own conferences in X1. This
clearly justifies him to be a community outlier.
DBLP (Conf Network): Table 3 shows the top five con-
ferences returned as outliers by OneStageµ. We performed
some analysis and hence list four measures in Table 3: sim-
ilarity between top 20 words (we removed most frequent
100 words from dataset) for the conference across the snap-
shots, similarity in top 20 words between the conference at
X2 and its ten closest X1 community members, similarity in
neighbor conferences across the two snapshots, similarity in
the words shared by the neighbors in the first snapshot and
neighbors in the second snapshot.
As the table shows, each of the conferences have very low

similarity for at least one of the measures, justifying their
detection as ECOutliers. For comparison with the baseline,
we present the top five conferences returned as outliers re-
turned by TwoStage in Table 4. As one can clearly see, the
similarity values in Table 4 are much higher compared to
Table 3. Thus, the outliers returned by TwoStage are not
as good as the outliers returned by the proposed algorithm.

Conference Sim 1 Sim 2 Sim 3 Sim 4

ESEC SIGSOFT FSE 0.26 0.71 0.72 0.70
ISORC 0.64 0.66 0.75 0.74
Communications in Computing 0.16 0.57 0.58 0.70
ICDE Workshops 0.27 0.65 0.74 0.78
HICSS 0.78 0.60 0.83 0.79

Table 4: Analysis of Top Outlier Conferences (2S)

Four Area (Authors Network): In this dataset, we ob-
serve a trend of people moving from ML community to DM
community. Also, many authors often publish in both DB
and IR. For this dataset, we will discuss two outliers re-
turned by OneStageµ, who behave quite different from these
trends.

1. Jérôme Lang. For this author, most of his community
members moved from logical reasoning and related areas to
other areas like DM and IR but he stays in AI field. He pub-
lished 5 and 11 papers in the two snapshots respectively.
Words in the titles of his papers are mainly “logic, plan-
ning, representation, action, uncertainty, propositional”. We
looked at the words which hisX1 community members (other
authors having similar word distributions) use in X2. The
top words were “data, retrieval, xml, web, learning, min-
ing”. This clearly shows that his community members moved
from logical reasoning to other areas while Jérôme decided to
stay in the area, opposed to the trend. While he continued
to publish in pure ML and AI conferences, his community
members publish in a lot of IR and DM conferences in X2.

2. Georg Gottlob. Generally the observed trend is that
ML authors move to other related areas like DM and IR.
Sometimes, some DM authors publish in ML conferences.
But Georg has been a DB author inX1, who started publish-
ing in ML community in X2. In X1, he published frequently
in PODS, VLDB, ICDE. In X2, apart from PODS, he pub-
lished heavily in IJCAI and AAAI. His set of collaborators
also changed by a large extent across the two snapshots. A
lot of his X2 collaborators publish in ML conferences.

5.4 Running Time and Convergence
The experiments were run on a Linux machine with 4 Intel

Xeon CPUs with 2.67GHz each. The code was implemented
in Java. Fig. 4 shows the execution time for OneStageµ on
different synthetic datasets in ms. Note that the algorithm
is linear in the number of objects. These times are averaged
across 100 runs of the algorithm. On an average OneStageµ
needed ∼13 iterations per pass to converge on both real and
synthetic datasets. Fig. 5 shows the change in the objective
function value with iterations for the SynMix dataset for
different number of objects, using a log-linear plot. The
figure shows that OneStageµ converges fairly quickly.

6. CONCLUSIONS
We introduced the notion of evolutionary outliers with re-

spect to latent evolving communities, i.e., ECOutliers. Such
outliers represent the objects which disobey the common
evolutionary trend among the majority of the objects in a
community. The challenge is that both community evolu-
tion patterns and outliers are unknown. Outliers should be
derived based on community matching across different snap-
shots, but need to be ignored when conducting community
matching. We proposed an optimization framework which
integrates community matching and outlier detection. The
objective function is to minimize community matching error,
in which the contributions from outlier objects are weighed
lower. An iterative algorithm OneStageµ is developed to



solve the optimization problem, which improves community
matching and ECOutlier detection gradually. Experiments
on a series of synthetic data show the proposed algorithm’s
capability of detecting outliers under various types of com-
munity evolution. Case studies on DBLP, IMDB and Four
Area datasets reveal some interesting and meaningful evolu-
tionary outliers. Although the proposed algorithm focuses
on two snapshots, it can detect both short-term and long-
term trends and outliers, as snapshots can consist of short
or long intervals. Moreover, it can be extended to handle
multiple snapshots.
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