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Abstract

FS-rules provide a powerful monotonic extension for Horn clauses that supports monotonic

aggregates in recursion by reasoning on the multiplicity of occurrences satisfying existential

goals. The least fixpoint semantics, and its equivalent least model semantics, hold for logic

programs with FS-rules; moreover, generalized notions of stratification and stable models are

easily derived when negated goals are allowed. Finally, the generalization of techniques such

as seminaive fixpoint and magic sets, make possible the efficient implementation of DatalogFS ,

i.e., Datalog with rules with Frequency Support (FS-rules) and stratified negation. A large

number of applications that could not be supported efficiently, or could not be expressed at

all in stratified Datalog can now be easily expressed and efficiently supported in DatalogFS

and a powerful DatalogFS system is now being developed at UCLA.

KEYWORDS: horn clauses, datalog, monotonic aggregates, stable models

1 Introduction

We are currently experiencing a resurgence of interest in Datalog in areas such as

parallel and distributed programming (Hellerstein 2010; Abiteboul et al. 2011) and

Description Logic for ontological queries (Gottlob et al. 2011). Other lines of work

include execution of recursive queries in the MapReduce framework (Afrati et al.

2011) and Data Stream Management Systems (Zaniolo 2011). This renaissance

(Barceló and Pichler 2012) and the demands of new applications underscore the

need to tackle and solve crucial Datalog problems that have remained open for

a long time, and in particular the challenge of aggregates in recursion that has

been the focus of much previous work (Mumick et al. 1990; Kolaitis 1991; Mumick

and Shmueli 1995; Ross and Sagiv 1997; Zaniolo et al. 1997; Greco and Zaniolo

2001). The problem is challenging since traditional aggregates, such as those of SQL
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or XQuery, violate the requirement of monotonicity on which the least fixpoint

semantics of Datalog and declarative logic-based languages is based.

In the next section, we introduce DatalogFS via examples. Then, in Section 3

we define the least-fixpoint semantics of DatalogFS programs. Then, In Section 4

we discuss negation-stratified programs and stable models. In Section 5, we present

DatalogFSqueries that could not be expressed in Datalog with stratified negation.

In Section 6 we consider optimization issues, the use of floating-point numbers in

DatalogFS and new applications made possible by these extensions. More complex

examples, and the generalization of the magic-set method to DatalogFS programs

are given in the appendix.

2 A monotonic extension for horn clauses

There is a big party on campus, and every student is likely to attend the party if at

least one of his/her friends will attend. This can be expressed by the following rule:

attend(Y)← student(Y), attend(X), friend(Y, X).

A logical equivalent of this rule is

∀Y(attend(Y)← student(Y), ∃X[attend(X), friend(Y, X)].)

and thus we say that Y is the global universal variable and X is the local existential

one.

But say that, because of finals, the campus mood has turned less festive, and now

our student requires that 3 friends attend the party before he or she joins in. Then,

we could expand the bracketed expression above into: [attend(X), friend(X, Y1),

friend(X, Y2), friend(X, Y3), Y1 �=Y2, Y2 �=Y3, Y3 �=Y1]. However, such an expansion

becomes unwieldy when the number of required friends increases, and much more

complex expansions will actually be required if, instead of a constant value such as

3, we want to have a variable. Therefore, we introduce the following notation:

attend(Y)← student(Y), 3 : [attend(X), friend(Y, X)].

Thus, 3 : [attend(X), friend(Y, X)] means that there are at least three distinct

occurrences of the local variable X that make the expression in the brackets true.

Following (Mazuran et al. 2012), we refer to the conjunct in the brackets as the

b-expression, to "3:” as the FS-term, and the whole 3 : [attend(X), friend(Y, X)]

is the Running FS-goal. We refer to rules such as that above as FS-rules, i.e., rules

with Frequency Support.

The formal semantics of programs with these new constructs is given in the next

section, and here we consider a couple of examples that illustrate natural applications

of the new construct. The first is our campus-party example.

Example 1

The party organizers always attend. The other students join in when they learn that

three or more friends are attending.
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organizer(tom). organizer(sue). organizer(pat).

friend(marc, sue). friend(marc, tom). friend(marc, pat).

friend(ann, tom). friend(ann, pat). friend(ann, marc).

student(marc). student(ann).

attend(X)← organizer(X).

attend(Y)← student(Y), 3 : [attend(X), friend(Y, X)].

Thus, tom, pat and sue will attend the party they organize. Also marc is a student

who is a friend of the three of them, so he will attend too, as per the first application

of the recursive rule. Then ann, who views tom pat and marc as her friends, also

joins the party.

Transitive Closure of Functional Dependencies (FDs). The design of relational

database schemas is based on the computation of their FDs minimal covers.

We assume, without loss of generality, that FDs only have one attribute in

their right-hand side, and represent them as shown in Example 2: given the FD

fj : A1, . . . An → B, where A . . . An and B are the attributes of the relation (i.e., constant

strings), its left side is lsd(fj, A), . . . , lsd(fj, An) and its right side is rsd(fj, B, n),

where n is the number of arguments of the left side.

Example 2

Representing FDs as facts

A→ B lsd(f1, "A"). rsd(f1,"B", 1).

B→ A lsd(f2, "B"). rsd(f2,"A", 1).

A→ D lsd(f3, "A"). rsd(f3,"D", 1).

A, C→ E lsd(f4, "A"). lsd(f4,"C"). rsd(f4,"E", 2).

B, C→ E lsd(f5, "B"). lsd(f5,"C"). rsd(f5,"E", 2).

The FS-rules in Example 3 can be used to detect which of the given FDs is

redundant, i.e. it can be inferred from the other FDs using their formal properties.

Whether an FD is redundant is determined by: (a) entering all attributes from its

left-side in the closure set (first rule in Example 3), and (b) adding to the closure set

the right-side of each FD iff all its left-side attributes are in the current closure set.

This is checked by the FS-goal in the recursive rule , where the condition F �= Fd

ensures that the FD being checked for redundancy is not used in the derivation.

The last rule in Example 3 checks if the right side of the FD being checked is in the

closure set, in which case the FD is redundant.

Example 3

Find FDs derivable from the others.

closure(Fd, Y)← lsd(Fd, Y).

closure(Fd, Z)← closure(Fd, Y), lsd(F, Y), F �= Fd, rsd(F, Z, K),

K : [closure(F, Y1), lsd(F, Y1)].

redundant(Fd) ← rsd(Fd, X, ), closure(Fd, X).
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Here, we have represented each FD as a multi-source/single-sink node of a

directed hypergraph; thus, the first two rules in our example solve the node-

reachability problem for hypergraphs. Similar representations and computations

based on hypergraphs have many applications, that can be expressed using FS-rules

akin to those in Example 3.

The Apriori Algorithm. This important algorithm has inspired the “frequency sup-

port” terminology used in this paper. Apriori (Agrawal and Srikant 1994) computes

frequent itemsets in a collection of market baskets. An itemset is considered frequent

if its supports, i.e., the number of market baskets containing it, is greater than or

equal to a given threshold. The first step of the algorithm finds the frequent items.

Then, the algorithm combines these frequent items into a list containing pairs, and

counts the frequency of these pairs. From step N=3 on, candidate frequent sets of

cardinality N are produced as follows: each candidate set S is obtained by (i) taking

the union of two frequent sets of size N-1 sharing N-2 elements, and (ii) verifying

that all the N subsets of S of size N-1 are in fact frequent (otherwise S cannot

be frequent because of the anti-monotonicity property of frequent itemsets). In the

following program, we set the minimum frequency threshold to 35 and assume that

a market basket is represented by basket(BID, Itemlist), where BID is the ID of

the basket and Itemlist is the ordered list of its items.

Example 4

The apriori computation of item sets with frequency support 35.

freq(1, [Itno])← 35 : [basket(BID, List), subset([Itno], List)].

cand(2, [A, B])← freq(1, [A]), freq(1, [B]), A < B.

cand(N1, ML)← freq(N, [A|L]), freq(N, [B|L]), A < B,

ML = [A|[B|L]], N1 = N+1, N1 : [freq(N, L1), subset(L1, ML)].

freq(N1, ML)← cand(N1, ML), 35 : [basket(BID, List), subset(ML, List)].

subset([ ], L).

subset([A|L], [A|List])← subset(L, List).

subset([B|L], [A|List])← A < B, subset([B|L], List).
The first rule creates a list with all frequent 1-itemsets (i.e. itemsets containing

only one item that appears at least 35 times in the baskets). The second rule

generates the candidate 2-itemsets by combining the frequent 1-itemsets (note that

the lists representing frequent itemsets are ordered). Then, the third rule generates

all candidate itemsets ML of length N+1, by including both heads of two lists sharing

the same tail of length N−2 (a computation that, for clarity of explanation is shown

via an equality goal). The goal N1 : [freq(N, L1), subset(L1, ML)] in the third rule

guarantees that all N + 1 = N1 itemsets of length N, that are subsets of ML, are

frequent. Finally, the fourth rule selects itemsets of any length that appear at least

35 times in the baskets. The last three rules are used to verify that a list is a subset

of another list.

These examples illustrate that we have extended the traditional rules of logic

programs by allowing goals of the form K : [b−expression], where b−expression
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is a conjunct of one or more atoms, in the body of the rules. The new goals are called

running-FS goals; the new rules are called FS-rules, and an FS-program P is simply

a finite set of FS-rules. We will now define the formal semantics of FS-programs

along the lines used for Definite Clause programs (DC-programs) (van Emden and

Kowalski 1976; Lloyd 1987).

3 Formal semantics

For both DC-programs, and FS-programs, let CP and FP denote, respectively,

the constants and the function symbols of our program P . Then, the Herbrand

universe for P is denoted by HP and defined as the set of all possible ground terms

recursively constructed by taking constants and function symbols from CP and FP .

These notions apply to both DC-programs and FS-programs but for the latter we

must include the positive integers in CP , since these are used in FS-terms. A simpler

approach consists in including a ‘1’ constant in CP and a successor function symbols

s in FP , whereby the natural numbers are represented by s(1), s(s(1)), . . . as per

Datalog1S (Chomicki and Imielinski 1988). We adopt this second representation

under which the universe of an FS-program P is the same as that of a DC-program

that happens to contain the term s(1). Then, with P either a DC-program or an

FS-program, the Herbrand Base of P is the set of all possible ground atoms whose

predicate symbols occur in P and whose arguments are elements from HP . Every

subset of BP is called an interpretation for P .

Let P be a DC-program. A ground instantiation of a rule r in P denotes any

rule obtained by uniformly replacing every universally quantified variable in r by

a ground term in HP . The set of the ground instantiations of the rules in P is

denoted by ground(P ). A model of P is an interpretation for which all the rules in

ground(P ) are true. These definitions also apply when P is an FS-program. However,

there is a major difference, since in DC-programs all variables are universally

quantified, whereas in FS-rules the local variables in the b-expressions are considered

existentially quantified: therefore these variables are not instantiated, i.e. ground(P )

for an FS-program P is only partially instantiated. Given an FS-program, P , we

will next define when a rule r ∈ ground(P ) is true in a given interpretation of P ,

denoted IP . Our rule r is true if its head is in IP or some of its goals are not true.

FS-rules have two kinds of goals. The first kind are traditional goals, (i.e., atoms

as in DC-rules) which are true if they are in IP . The second kind are the running

FS-goals. Each such goal has form K : [b−expr(X)], where X denotes the vector of

its existentially quantified local variables which have not been instantiated (whereas

K is instantiated since, when a variable, it is a universally quantified global variable).

Then, K : [b−expr(X)] is true in IP if (i) K is a positive integer and (ii) there are at

least K distinct instances of X that make b−expr(X) true. (b−expr(X) is a conjunct

of one or more atoms, and thus it is true if every of its atoms instantiated according

to X is in IP ; also two instances of the variable vector X are distinct if they differ in

some component.) So, our running FS-goal is true whenever both (i) and (ii) hold.

We can now state important properties of FS-programs: their proofs are similar to

those of DC programs and is given in Appendix B.
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Theorem 1

If M1 and M2 are two models of an FS-program P , their intersection M1 ∩M2 is

also a model for P .

Least Model Semantics: Thus every FS-program P has the model intersection

property, and therefore P has a unique minimal model denoted by M(P ). M(P )

defines the formal semantics of a given FS-program P .

Let P be an FS-program and I an interpretation for P : the immediate consequence

operator TP (I) is the set of heads of all rules in ground(P ) whose body is made true

by I . Now, TP (I) is monotonic and continuous in the lattice of set-containment and

thus the following two important properties hold for every FS-program P :

A: There always exists a least fixpoint for TP , denoted lfp(TP ).

B: Iterating on Tp starting from the empty set provides an equivalent operational

semantics: lfp(TP ) = T
↑ω
P (∅).

Moreover the least fixpoint and least model semantics are equivalent:

Theorem 2

Let P be an FS-program with immediate consequence operator TP and least model

M(P ). Then lfp(TP ) = M(P ).

The proof of this theorem is also given in Appendix B where we briefly present

reasons to believe that an equivalent proof-theoretic semantics exists for FS-

programs. However a discussion of SLD-resolution for FS-programs would take

us beyond the limited scope of this paper, where we focus on T
↑ω
P (∅) rather than

SLD-resolution for the efficient implementation of our DatalogFS programs.

In summary, the key properties of logic programs are preserved in this significant

extension that allows us to write simple declarative logic programs for a host of new

and interesting applications, such as those of Examples 1, 3, 4. Also these declarative

programs are amenable to very efficient implementation using the optimization

techniques which will be discussed later. Before that, we would like to stress the

naturalness of this extension, by showing that it also dovetails with key non-

monotonic extension widely used for logic programs.

4 Negation and stable models

Support for negation and other non-monotonic constructs is critical and much

research has focused on providing (i) formal semantics and (ii) efficient implementa-

tions for programs containing negated goals. As for (i) the concept of stable models

entails a simple and very powerful semantics which encompasses many applications

of interest (Gelfond and Lifschitz 1988). We next discuss its generalization to

FS-programs. As for (ii) only restricted subfamilies of programs that have stable

model semantics are amenable to efficient implementation. Therefore, many Datalog

systems only support programs that are stratified with respect to negation, which are

simpler to understand and implement efficiently. Stratified negation for DatalogFS

programs is discussed in Section 5.
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The critical point in extending the notion of stable models to FS-programs is on

how to treat negated FS-goals, such as in Example 5.

Example 5

Sociable people join parties not attended by two or more people they shun.

att(X)← soc(X),¬ 2 : [att(Y), shun(X, Y)].

soc(tom). soc(sue). soc(ann). soc(eve).

shun(sue, tom). shun(sue, ann). shun(tom, sue). shun(tom, eve).

In order to define the formal semantics for these programs we start with the

definition of stability transformation:

Definition 1

Stability Transformation. Let IP be an interpretation of an FS-program P . Then

groundM(P ) denotes the program obtained from ground(P ) by the following trans-

formation:

(1) remove every rule where some negated goal evaluates to false, and

(2) remove all negated goals from the remaining rules.

For a standard atom g, ¬g is false whenever g ∈ IP , whereas ¬K : [b−expr(X)] with

X the vector of its local variables, is false whenever b−expr(X) is true for at least

K different instances of X. The stability transformation produces a negation-free

FS-program. Thus the following definition of stability, for two-valued logic, provides

a straightforward generalization of the original one (Gelfond and Lifschitz 1988).

Definition 2

Stable Models: Let P be a program with model M. M is said to be a stable model

for P , when M is the least model of groundM(P ).

For instance, the ground version of the program in Example 5 contains all the

facts listed in the example and the following partially instantiated rules1:

r1 : att(tom)← soc(tom),¬2 : [att(Y), shun(tom, Y)].

r2 : att(sue)← soc(sue),¬2 : [att(Y), shun(sue, Y)].

r3 : att(ann)← soc(ann),¬2 : [att(Y), shun(ann, Y)].

r4 : att(eve)← soc(eve),¬2 : [att(Y), shun(eve, Y)].

Consider the first interpretation I1 containing the facts in Example 5 and: att(tom),

att(sue), att(ann), att(eve). For this interpretation, the stability transformation

eliminates rules r1 (tom shuns sue and eve) and r2 (sue shuns tom and ann); also,

the negated goals in r3 and r4 are removed. The minimal model of the program so

produced no longer contains tom and sue. Thus I1 is not a stable model.

1 The ground version of this program also contains (i) the rules obtained by replacing, say, tom with
arbitrary positive integers and (ii) the rules that generate the positive integers as successors of 1, but
also the successors of tom, sue, ann (see Footnote 2) and eve. Rules (i) will be eliminated by the stability
transformation, while (ii) are preserved, and the minimal model of our reduct remains the same.
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Consider now interpretation I2 containing the facts above and att(sue), att(ann),

att(eve). The stability transformation eliminates r1 since tom shuns sue and eve

who are attending. The remaining rules remain without their negated goals that

were removed by the stability transformation. We obtain a negation-free program

having as unique minimal model I2, which is thus a stable model. Symmetrically, an

interpretation I3 that contains the facts above and att(tom), att(ann), att(eve) is

also a stable model.

The stable model semantics of FS-programs is general and elegant. To guarantee

efficient computation, negation can be restricted in syntacticly ways. The most

popular is stratified negation (with respect to predicates) that we will use in the rest

of the paper.

5 FS-assert and final FS-goals

In the previous examples, the FS-values generated by the running FS-goals were

only used in the bodies of the rules, but many applications demand that they be

included in the head predicate. The FS-assert construct discussed next answers to

this need.

For instance, to state that tom has five friends without stating their names we

use the following fact: friends(tom) : 5 and view this notation as a shorthand for

friends(tom, 1) . . . friends(tom, 5). Then, a rule to invite to the party students with

more than four friends, could be as follows:

invite(Y)← student(Y), 4 : [friends(Y)].

that will actually be re-written and evaluated as:

invite(Y)← student(Y), 4 : [ friends(Y, J)].

Thus, the formal semantics of programs P with frequency assert terms is defined

by expanding it into its P̄ equivalent, which is obtained as follows:

(1) Each rule in P with head q(X1, . . . , Xn) :K and with body Body is replaced by

q(X1, . . . , Xn, J)← lessthan(J, K), Body.

where J does not occur in Body and lesseq(J, K) is a distinguished predicate

used to generate all positive integers up to K, included.2

(2) Each occurrence of q(X1, . . . , Xn) in the body of rules of P so obtained is

replaced by: q(X1, . . . , Xn, J) where J is a new variable in the rule.

According to these definitions, the assertion of a fact friends(tom) :K subsumes

every fact friends(tom) :N with N < K, whereby the computation of the maximum

is performed implicitly. The importance of this observation becomes clear when we

2 In Datalog1S lessthan can be defined as folllows
(pint defines the positive integer a la’ Peano):

lessthan(K, K)← pint(K).
lessthan(J, K)← lessthan(s(J), K).
pint(1).
pint(s(J))← pint(J).
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use it in recursive rules, as in the following Bill-Of-Materials (BOM) example. Here,

our database contains a set of facts assbl(Part, Subpart, Qty) which, for each part

number, gives the immediate subparts used in its assembly and the quantity in which

they are used. For instance, a bicycle has one frame and two wheels as immediate

subparts. At the bottom of the Bill-Of-Material (BOM) graph (a DAG), we find the

basic parts that are purchased from external suppliers and provide the raw materials

for our assembly. Basic parts are described by basic(Pno, Days) denoting the days

needed to obtain that basic part.

The time needed to deliver a bicycle can be computed as the maximum of

the number of days that the various basic parts require to arrive. Thus, we have

Example 6, below.

Example 6

More than 10 Days for delivery

delivery(Pno) :Days ← basic(Pno, Days).

delivery(Part) :Days ← assbl(Part, Sub, ), Days : [delivery(Sub)].

late(Part)← CDays : [delivery(Part)], CDays > 10.

The first rule establishes that for each basic part the number Days required for

its delivery becomes its FS-value. The recursive rule propagates Days from the

sub-parts. The last rule retains only the Parts that need more than 10 days to be

delivered.

Stratifed Negation and Final-FS goals. All examples presented in this section and in

Section 2 are monotonic. Non-monotonicity is however required in many real-life

applications, and in the rest of the paper we will focus on the many applications

that can be expressed using stratified negation for which efficient implementation

techniques are known. Thus, we are requiring our programs to be stratified with

respect to negation. In the presence of FS-goals the definition of stratified programs

is as follows:

Definition 3

A DatalogFS program P with negated goals is stratified when for each rule r ∈ P

the head of r belongs to a stratum higher than all (i) the negated predicates in the

body of r and (ii) every predicate appearing in the b−expression of a negated

FS-goal in r.

For instance, to find the actual number of days required for delivery we can use

the following two rules in conjunction with those in Example 6:

Example 7

Exact Count of Days for delivery

actual(P, Days)← Days : [delivery(P)],¬morethan(P, Days).
morethan(P, N)← N1 : [delivery(P)], N1 > N.

For a more concise expression of exact count K we introduce a new exact-count

construct denoted by ‘=!’. Thus, the rule in the previous example simplifies into:

actual(P, Days)← Days=![delivery(P)].
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The ‘=!’ is called Final-FS construct and its semantics is defined through the

rewriting3 that expanded this last rule into the two of Example 7. Now, a program is

stratified with respect to the final-FS construct whenever its expansion is stratified.

We can generalize Definition 3 by changing the second requirement into: (ii) every

predicate appearing in the b−expression of a Final-FS goal or a negated FS-goal

in r. It is easy to show that this is consistent with the rewriting of the rules from

Example 7 into the single rule shown above. In fact, a program P is stratified with

respect to Final-FS rules if the rewriting of these rules produces a program that is

stratified w.r.t. negation.

Another important application is the Summarized Part Explosion query, which

counts the number of copies of component Sub needed to construct one copy of

Part. This query that cannot be expressed in Datalog with stratified aggregates

(Mumick and Shmueli 1995) can be easily expressed in DatalogFS , as shown in

Example 8.

Example 8

Summarized Part Explosion

cassb(Part, Sub) :Qty ← assbl(Part, Sub, Qty).

need(Sub, Sub) :1← assbl( , Sub, ).

need(Part, Sub) :K← K : [cassb(Part, P1), need(P1, Sub)].

total(Part, Sub, K)← K =![need(Part, Sub)].

The first two rules establish that, to construct a Part we need Qty copies of

its immediate subpart Sub and to construct Sub we need only 1 copy of it. The

recursive rule adds up the number of copies of Sub needed to construct all subparts

(immediate and non immediate) of Part. The final rule retains the exact count, that

is, the maximum value of the counts.

In the next section we introduce optimization techniques that can be used to

efficiently compute the products expressed by FS-goal (such as the one in the third

rule).

6 Optimization and support for floating point numbers

The significance of stratified DatalogFS is underscored by the fact that (i) it

is amenable to efficient implementation, and (ii) it can also express naturally

and efficiently computations requiring the use of rational-number or real-number

arithmetic.

Efficient implementations of DatalogFS can rely on the fact that the classical

optimization techniques of Datalog, including magic sets and differential fixpoint

3 In general, an arbitrary Final-FS goal j has the form Kj =![exprj(Xj, Yj)], where exprj(Xj, Yj) is a
b-expression, with the same syntax as that used for Running-FS goals. Thus, Xj and Yj respectively
denotes its global variables and the local variables. Now, the formal semantics of the Final-FS goal
Kj =![exprj(Xj, Yj)] is defined by rewriting it into the conjunction Kj : [exprj(Xj, Yj)],¬morethanj
(Xj,Kj ) where: morethanj(Xj, K)← K1 : [exprj(Xj, )], lesseq(s(K), K1).

(Where lesseq was defined in the previous footnote.)
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(a.k.a. seminaive computation), can be generalized to DatalogFS (Mazuran et al.

2012). Since most of our readers are already familiar with those techniques, we

postpone discussing their generalization to DatalogFS till the Appendix, and focus

here instead on the new optimization technique, called max-optimization, that was

introduced specifically for DatalogFS (Mazuran et al. 2012).

The max-based optimization is applied after the magic-set method and the

differential fixpoint transformation have taken place, and we have an iterative

program that applies the differential version of the rules until no new element can

be added. We can now apply optimizations that preserve the operational semantics

of those rules, and discover that the computation needs only to be performed on

each maximum (max for short) produced by the running FS-goals. A first class

of programs where the max-based optimization is applicable is exemplified by

Example 8 where we have (1) a Final FS-goal, and (2) an FS-assert in the head that

just copies, without any constraint, the FS value obtained in the body. Now, at the

end of the fixpoint iteration, the Final-FS goal selects the max integer produced by

the rules. Also at each step of the iteration, we have (a) the max integer value, let us

call it max, and (b) all the other integers between 1 and max. However, we do not

even need to produce the integers in (b), since they are all � than the max value.,

and this property propagate from the last iteration to the previous ones, as long as

the FS-values in the head are computed from those in the body via a function that

is monotonic on positive values. In our examples so far, the trivial identity function

was used to transfer FS-values to the head, but arbitrary arithmetic functions can

be used, provided that they are monotonically increasing in the domain of positive

numbers. For instance in Example 6, we might want to add to the days required for

delivery an additional day for each step of processing and use the following rule:

delivery(P) :D2← assbl(P, Sub, ), D : [delivery(Sub)], D2 = D + 1.

DatalogFS programs that only use monotonic arithmetic and boolean expressions

on conditions on FS-values (i.e., if the expression is true on positive value X then it

is also true on every value > X) will be called normal.4

A second class of normal programs is that of Examples 1, 3 and 4 where the

values generated by the running-FS goal are not passed to the heads, but are

instead tested against conditions in the bodies of the rules. Here too, as long as the

functions and the conditions applied upon the FS-values are monotonic, the rules

are satisfied if and only if they are satisfied for the maximal values satisfying by

the running FS-goals. Observe that DatalogFS programs, other than normal ones,

still have a least-fixpoint semantics, but can be very inefficient since they require

the computation of the rules to be repeated for each value between one and the

max. Moreover all the practical algorithms we have considered only require the

use of normal DatalogFS programs. Thus practical systems, e.g., the one developed

4 The fact that a program is normal is easily checked by the compiler, when the program contains only
arithmetic and simple functions, such as addition, multiplication and log, known to be monotonic on
positive numbers. User-defined functions, imported with an explicit declaration of monotonicity, should
also be allowed.
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at UCLA, should only be required to support normal programs. As we shall see

next, normal programs also include those where the FS-values are arbitrary positive

numbers, not just integers.

6.1 From integers to floating-point numbers

The max-based optimization allows us to use very large integers for FS-values,

without having to repeat this computation for every integer starting from 1 and up

to the max. This is of great practical significance, since it entails support for rational

numbers and floating-point numbers. Indeed, computations on rational numbers can

be approximated by assuming that all numbers share a very large denominator D

whereby all computations can be approximated by arithmetic on their numerators.

For instance, given two numbers N1/D and N2/D their sum is (N1 + N2)/D).

Moreover their product is ((N1 ×N2)÷ D)/D, where the integer division can cause

a round-off error. However, round-offs are monotonic functions and thus do not

jeopardize the max-based computation of our normal programs. Of course, large

denominators are needed in order to obtain precise approximation and floating-point

numbers achieve that and are supported very efficiently by modern hardware. For

decimal floating points, the smallest value of exponent supported is −95 (or smaller),

whereby every number can be viewed as the numerator over the denominator

D = 1095. But the precision of such representation is also limited by the fact that the

mantissa is also of limited length, and this can cause additional roundoff errors. But

again round-offs are monotonic in the domain of positive numbers, and the problem

they can cause are not different from those that can occur in any other computations

and users have learned to cope with via double precision and/or numerical analysis

techniques. Therefore, positive floating-point numbers can be used freely in normal

DatalogFS programs, which have formal semantics, and provide a very efficient

implementation through floating-point arithmetic.5 Using floating-point numbers

and real arithmetic, DatalogFS can express a cornucopia of interesting applications.

6.2 Examples

Say that arc(a, b):0.66 denotes that a trip started at point a will take us to point

b in 66% of the cases. Then, the following program computes the probability of

completing a trip from a to Y along the maximum-probability path:

Example 9

Maximum Probability path in a directed Graph

reach(a) :1.00.

reach(Y) :V ← reach(X), V : [reach(X), arc(X, Y)].

maxprob(Y, V) ← V =![reach(Y)].

The source a is reachable with probability 1. Then, the probability of reaching Y via

an arc from X is the product of the probability of being in X, times the probability

5 For simplicity, we have used a decimal base, but the same conclusions hold for other bases.
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that the segment from X to Y can be completed. This product is computed with the

goal V : [reach(X), arc(X, Y)] in the first rule. Finally, in the head of the last rule, we

only retain the maximum V—i.e., the largest probability to succeed. �

Shortest Path in a Directed Graph. The shortest path computation in a directed

graph can be expressed in several ways in DatalogFS . The program in Example 10,

already proposed in (Mazuran et al. 2012), finds the shortest path in a directed graph

by implementing a Floyd-like algorithm that uses quadratic rules. While subtraction

and division are antimonotonic w.r.t. their second arguments (i.e., if these becomes

larger the results become smaller), the program takes advantage of the fact that the

composition of two antimonotonic functions is monotonic. This provides a simple

way to express shortest-path algorithms. Rather than using the arc-distance D, we

use its conductance: 1/D. Therefore the celebrated Floyd–Warshall algorithm can be

expressed as shown in Example 10.

Example 10

The Floyd–Warshall Algorithm

fpath(X, Y) :C← arc(X, Y, D), C = 1/D.

fpath(X, Z) :C← node(Y), C1 : [fpath(X, Y)], C2 : [fpath(Y, Z)],

C = 1/(1/C1 + 1/C2).

shortestpath(X, Z, D)← C =![fpath(X, Z)], D = 1/C

where arc(X, Y, D) denotes the weight D of the arc between node X and node Y. Then,

the first rule converts these weights into conductances and the second rule computes

the maximum conductance of a path from X to Z. Finally, the third rule converts

this value into a weight (which thus corresponds to the minimum weight). �

So, 1/C1 and 1/C2 are antimonotonic, and so is their sum, whose reciprocal is

therefore monotonic. Thus the last rule, selecting the highest conductance path, in

fact produces the shortest path.

We now propose a formulation of the need to find the shortest path in a directed

graph inspired by a situation where the arcs between nodes describe toll roads

between cities. A traveller who is starting from source node a, with pockets full of

cash, would like to reach each other node of the graph while retaining as much of

that cash as possible in his pocket, i.e., following the lowest-cost path to the nodes.

So let the arcs in our graph have the form edge(X, Y, K), where 〈X, Y〉 is the edge and

K is its weight. Also, let upperb be an upper bound for the estimated lengths of the

paths in our graph (for instance the sum of the weights for all arcs in the graph,

or the product of an upper bound for the weights of its edges times its estimated

diameter.) Then we have the following program:

Example 11

Shortest Path in a Directed Graph

spc(a) :upperb.

spc(Y) :K← K1 : [spc(X)], edge(X, Y, K2), K = K1− K2.

sp(X, K)← K1 =![spc(X)], K = upperb− K1.
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The first rule states that we need to cover all edges to reach a. In the second rule,

for each node Y, we subtract the weights of the edges that make Y reachable from

a. Finally, we subtract from max the maximum value we have found to obtain the

shortest path. �

Therefore, DatalogFS provides several alternative ways to express the shortest

path and similar computations in graphs. Other interesting applications discussed in

(Mazuran et al. 2012) and (Mazuran et al. 2013) include Page Rank, Social Networks,

Similarity Measures, Subsequence detection, Hidden Markov chains, and reachability

in generalized hypergraphs. Yet, other algorithms, including many greedy algorithms,

remain beyond the reach of DatalogFS for reasons that are briefly discussed in the

appendix.

7 Conclusion

DatalogFS introduces a simple declarative extension for deductive databases that

greatly enhances their effectiveness in a wide range of applications. The generaliza-

tion of Horn Clauses provided by DatalogFS , preserves monotonicity, continuity, and

declarative semantics (based on least-fixpoint / minimal model equivalence). It also

dovetails with non-monotonic extensions such as stable models and stratification.

Thus DatalogFS programs with stratified negation can support applications that

could not be expressed at all in standard Datalog, or could only be expressed

via very inefficient programs. Furthermore, DatalogFS programs can be efficiently

implemented extending Datalog bottom-up implementation technology through

generalized seminaive fixpoint and magic-set method, and the newly introduced

max-optimization method. A first DatalogFS prototype, called DeAL (Deductive

Application Language), is undergoing testing at UCLA (Shkapsky et al. 2013).
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