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Abstract Supporting aggregates in recursive logic rules
represents a very important problem for Datalog. To solve this
problem, we propose a simple extension, called DatalogF S

(Datalog extended with frequency support goals), that sup-
ports queries and reasoning about the number of distinct vari-
able assignments satisfying given goals, or conjunctions of
goals, in rules. This monotonic extension greatly enhances
the power of Datalog, while preserving (i) its declarative
semantics and (ii) its amenability to efficient implemen-
tation via differential fixpoint and other optimization tech-
niques presented in the paper. Thus, DatalogF S enables the
efficient formulation of queries that could not be expressed
efficiently or could not be expressed at all in Datalog with
stratified negation and aggregates. In fact, using a general-
ized notion of multiplicity called frequency, we show that
diffusion models and page rank computations can be easily
expressed and efficiently implemented using DatalogF S.

Keywords Query languages · Logic programming ·
Graph algorithms

1 Introduction

Due to the emergence of many important application areas,
we are now experiencing a major resurgence of interest in
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Datalog [1–3]. A first such research area focuses on the use
of logic-based declarative specifications and design of Inter-
net protocols and services [4]. More ambitious approaches
are now being proposed that seek to develop Datalog-based
foundations for parallel and distributed programming lan-
guages [1]. On the Semantic Web front, a novelty of great
interest is represented by the introduction of languages,
such as Linear Datalog, that support efficiently subsets of
Description Logic for reasoning in ontological queries [5].
Yet another very important development is represented by the
use of Datalog in program analysis [3]. Furthermore, other
lines of work exploring the execution of Datalog queries
in new computational environments have studied the opti-
mization of recursive queries in the MapReduce frame-
work [6], and the declarative and operational semantics of
continuous Datalog queries in Data Stream Management
Systems [7].

This torrent of new applications underscores the need to
tackle and solve important Datalog problems that were recog-
nized more than 20 years ago but still remain unsolved and
restrict the range of practical effectiveness of this elegant
declarative-programming paradigm. For database applica-
tions in particular, the most vexing of these problems is
represented by the constraints placed upon aggregates in
recursive Datalog programs. Indeed, with the introduction of
OLAP functions and massive analytics for decision support
and web mining, the usage of aggregates in modern infor-
mation systems and web applications has grown by leaps
and bounds—making limitations upon aggregates increas-
ingly undesirable. Therefore, Datalog extensions that can
improve its ability to deal with aggregates would represent a
big step forward. Technically, however, the problem is very
challenging since basic aggregates violate the requirement
of monotonicity on which the least fixpoint semantics of
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Datalog is based.1 Therefore, the many solutions proposed
in the past were too complex or not general enough and have
not gained wide acceptance.

In this paper, we propose DatalogF S that extends Datalog
by introducing frequency support goals that allow to count
the distinct occurrences satisfying given goals or conjunction
of goals in rules.

Consider a database of facts whose predicates areperson
and son, for example person(tom). son(tom,adam).
The following rule defines fathers with at least two sons:

twosons(X) ← person(X),son(X,Y1),son(X,Y2),

Y2 �= Y1.

DatalogF S allows the following equivalent expression for our
twosons rule:

twosons(X)← person(X), 2 : [son(X,Y)].
The goal,I:[b-expression], will be called a frequency
support goal (an FS Goal for short), and “I:” where I is a
positive integer, will be called its Running-FS term. Also,
the expression in the bracket is called its bracket-expression
(b-expression for short) and can either consist of a single
positive predicate or the conjunction of positive predicates.

The convenience of FS goals becomes clear if we want to
find people who have a large number of sons. For instance:

sixsons(X)← person(X), 6 : [son(X,Y)].
will retrieve all persons who have at least six sons (i.e., 6 is the
frequency support required for the predicates or conjunction
of predicate within brackets).

Naturally, an equivalent rule can be expressed using
the �= operator. Indeed, we can start as follows:

sixsons(X)← person(X),son(X,Y1),

5 : [son(X,Y2),Y2 �= Y1].
and then proceed inductively and obtain a rule containing
six goals son(X,Yj) with j = 1, . . . ,6, and also 6 × 5
goals specifying that every Y must be different from (i.e., �=)
every other Y. Of course, the approach based on �= becomes
totally impractical when, instead of paternity between peo-
ple, we have links between web pages, which can easily be in
number of thousands. The count aggregate might instead be
used in Datalog for these applications. However, aggregates
bring in the course of non-monotonicity whereby recursion
becomes a problem. Our DatalogF S rules with FS goals can
instead be viewed as standard Horn clauses (although long
and impractical ones) whereby the standard monotonicity-
based semantics of negation-free Datalog is preserved. More-
over, the well-known implementation techniques used for

1 A good example of this problem due to Ross and Sagiv [8] is given
at the end of Sect. 2—see Example 3.

Datalog can also be extended to DatalogF S and, in combina-
tion with others introduced in Sect. 6, entail a very efficient
implementation.

The next two examples clarify the meaning and the
scope of variables in DatalogF S. We will use the predicate
friend(X,Y) to denote that the person with nameX views
the person with name Y as his/her friend (thus, the conjunct
friend(X,Y), friend(Y,X) denotes that X and Y are
mutual friends).

Example 1 Pairs of mutual friends X, Y, where X has three
friends and Y also has three friends.

popularpair(X,Y)← friend(X,Y),friend(Y,X),

3 : [friend(X,V1)],3 : [friend(Y,V2)].
��

Now, Example 2, below, requires thatX and Y have at least
three friends in common (unlike the previous example where
X and Y are not required to have friends in common):

Example 2 Pairs of mutual friends (X, Y) who have at
least three friends in common.

sharethree(X,Y)← friend(X,Y),friend(Y,X)

3 : [friend(X,V),friend(Y,V)].
��

Thus, there are two kinds of variables in rules with FS
goals. The first are those, such as X and Y in Example 2,
that appear in the head of the rule or in goals outside the
b-expressions (i.e., outside the brackets). These will be called
global variables. Global variables are basically the univer-
sally qualified variables of the standard Horn Clauses and
have the whole rule as their scope. Thus the variables X and
Y are global in the rule of Example 1, and in that of Example 2
as well.

The remaining variables are those that only appear in
b-expressions and their scope is local to the b-expression
where they appear. For instance V1 and V2 in Example 1,
andV in Example 2, are local variables. Local variables in the
b-expression of K:[b-expression] can be naturally
viewed as existential variables with the following minimum
frequency support constraint: There exist at least K distinct
occurrences of the b-expression. For instance, Example 2
states that there exist at least 3 distinct V occurrences each
denoting a person who is viewed as friend by both X and Y.

It is also important to remember that the scope of such
existential variables is local to the b-expression where they
appear: thus, for Example 1 replacing both V1 and V2 with
V would not change its meaning.

The simple examples shown so far do not use recursion and
thus can also be expressed using the count aggregate. How-
ever, in the paper, we will introduce more complex exam-
ples that use FS goals in recursion. Indeed, the meaning and
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efficient implementation, of Datalog programs with recur-
sive rules, are based on their least fixpoint semantics,2 which
is only guaranteed to exist when the program rules define
monotonic mappings. The solution of this problem proposed
by Ross and Sagiv [8] exploits a partial ordering that is dif-
ferent from the set-containment ordering used in the stan-
dard definition of the semantics of Datalog and other logic
programs. While several interesting programs with aggre-
gates are in fact monotonic in the partial order used in [8],
many others are not, and it is unclear how a compiler can
decide which is which [10]. As we shall see next, the stan-
dard notion of monotonicity w.r.t set-containment ordering
is instead used for DatalogF S programs, whereby the basic
properties and techniques of deductive databases (e.g., strat-
ification and differential fixpoint) remain valid.

We will show that DatalogF S is very effective at express-
ing a broad range of new applications requiring count-based
aggregates, such as Bill of materials, social networks, and
Markov Chains. Concepts such as stratification and, in gen-
eral, all the techniques and methods that provide the enabling
technology for traditional Datalog remain valid and effec-
tive for DatalogF S, paving the way for a faster adoption and
deployment of this powerful extension.

This paper is organized as follows. In the next section,
we introduce the preliminary definitions, then in Sect. 3,
we give the syntax and semantics of DatalogF S. Then in
Sect. 4, we present several examples of applications of strat-
ified DatalogF S and in Sect. 5, we characterize the expres-
sive power of this language. Then, in Sect. 6, we proceed
on a more practical vein and provide a simple plan and var-
ious optimization techniques that produce a very efficient
implementation for DatalogF S programs that also include
arithmetic operators. In Sect. 7, we introduce the notion of
scaling which allows us to reason with frequencies that are
decimal numbers rather than integers. Then, in Sect. 8, we
review some important new applications, such as social net-
works and Markov chains, that follow from these extensions.
Finally, in Sect. 9 we review the related work.

2 Preliminary definitions

Although we expect that our readers are quite familiar
with logic programs [9] and Datalog [11,12], we will now
present a short review to clarify the formal basis upon which
DatalogF S is being defined.

A logic program (or, simply, a program) P is a finite set of
rules. Each rule of P has the form A← A1, . . . , Am , where A
is an atom (the head of the rule) and A1, . . . , Am are literals
(the body of the rule). Each literal can be either a positive

2 Naturally, by “least fixpoint” of a program, we mean “least fixpoint
of its immediate consequence operator” [9].

atom (Ai ) or a negated atom (¬Ai ). Each atom is in the form
p(t1, . . . , tn) where p is the predicate and t1, . . . , tn are terms
which can be constants, variables or functions. A rule with
an empty body is called a fact.

Given a logic program P, the Herbrand universe for P,
denoted HP , is the set of all possible ground terms recur-
sively constructed by taking constants and function symbols
occurring in P. The Herbrand Base of P, denoted BP , is the set
of all possible ground atoms whose predicate symbols occur
in P and whose arguments are elements from its Herbrand
universe. A ground instance of a rule r in P is a rule obtained
from r by replacing every variable X in r by a ground term in
HP . The set of ground instances of r is denoted by ground(r);
accordingly, ground(P) denotes

⋃
r∈P ground(r). An inter-

pretation I of P is a subset of BP . A ground positive literal
A (resp. negative literal ¬A) is true w.r.t. an interpretation I
if A ∈ I (resp. A �∈ I ). A conjunction of literals is true in
an interpretation I if all literals are true in I. A ground rule is
true in I if either the body conjunction is false or the head is
true in I. A (Herbrand) model M of P is an interpretation that
makes each ground instance of each rule in P true. A model
M for P is minimal if there is no model N for P such that
N ⊂ M .

Let I be an interpretation for a program P. The immediate
consequence operator TP (I ) is defined as the set containing
the heads of each rule r ∈ ground(P) s.t. the body of r is
true in I. The semantics of a logic program P is given by
its unique minimal model; this minimum model coincides
with the least fixpoint T∞P (∅) of TP [9] since the immediate
consequence operator TP (I ) is monotonic and continuous.

The abstract semantics of logic program given above pro-
vides the formal basis for a wide spectrum of logic-based
languages, including the many versions of Prolog and Data-
log described in the literature. However, as discussed in more
details next, Datalog systems tend to differ from Prolog in
their (i) treatment of negation, (ii) specific constructs added
to or banned from the language and (iii) execution models.

In particular, negated goals in the rules represent an impor-
tant extension for both Prolog and Datalog; however, there
are important differences since only stratified logic programs
are normally allowed in Datalog. Now, a logic program P is
said to be negation-stratified when all its predicates are par-
titioned in strata, such that the following property holds for
each rule r of P: the head predicate of r belongs to a stra-
tum that (i) is higher than the stratum of every goal in r,
and (ii) strictly higher than the stratum of every negated goal
in r. Stratified logic programs have a unique stable model
[13], which defines their canonical semantics, and can be
computed by (i) partitioning the program into an ordered
number of suitable subprograms (called strata) and then (ii)
computing the fixpoint of every stratum starting from the
bottom and moving up to higher strata [14,15]. Another
important difference is that many Datalog systems although
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not all, disallow function symbols and lists. In the rest of
the paper, we will use the term negation-stratified Data-
log programs to denote negation-stratified logic programs
where function symbols are disallowed. In reality, the expres-
sive power of negation-stratified Datalog programs is very
limited, and therefore, arithmetic and comparison operators
are also supported in many Datalog systems. This is made
possible by the fact that these programs have (a) a formal
semantics since arithmetic predicates can be re-expressed
as recursive logic programs with functions symbols and
(b) efficient implementations that bypass (a) and implement
arithmetic directly. Now, for DatalogF S, we will operate in
a similar way: we will extend negation-stratified Datalog
(Datalog¬s for short) with new FS constructs, and the pro-
ceed by (a) showing that we can re-express our programs
with the new constructs as negation-stratified logic programs,
thus inheriting their formal semantics, and then (b) forgetting
about (a) completely to devise efficient direct implementa-
tions for our DatalogF S programs. Our implementation fol-
lows the standard bottom-up execution-model used by most
Datalog systems. Therefore, differential (a.k.a. semi-naive)
fixpoint improvement is used, to avoid the computation of
T∞P (∅) redundant generation of atoms produced at previous
iteration. The differential fixpoint method uses a rewriting
of the original program in which, for each Intensional predi-
cate (i.e predicates that are involved in the recursion), a new
δ predicate is introduced. Each atom with δ predicate was
derived only at the previous step.

Let us now show the example from [8], which we had
promised in the introduction, to illustrate the problems
caused by the use of traditional aggregates in recursion.

Example 3 Non-monotonic aggregates

p(b). q(b).

p(a)← 1 = count : q(X).

q(a)← 1 = count : p(X).

According to the syntax of [8], the body of the third (resp. the
fourth) rule in our Example 3 is true whenever only one occur-
rence of q(X) (resp. p(X)) is true. Now {p(a),p(b),q(b)}
is a minimal model for this program, and also a fixpoint for its
immediate consequence operator—and the same is true for
{q(a),p(b),q(b)}. Thus there is neither a unique minimal
fixpoint nor a least model. Therefore, the formal semantics
of logic programs no longer holds when aggregates are used
in non-stratified programs (see Section 3.4).3 ��
3 This example illustrates that these problems are caused by the non-
monontonic nature of count. In fact, the following program where
count is replaced by our running-FS operator has as unique minimal
model {p(a),q(a),p(b),q(b)}:
p(b). q(b).

p(a)← 1 : [q(X)].
q(a)← 1 : [p(X)].

3 DatalogFS syntax and semantics

DatalogF S extends Datalog by adding the following three
constructs: (1) Running-FS goals, (2) multioccurring predi-
cates, and (3) Final-FS goals. In this section, we first define
the syntax of DatalogF S programs and then the semantics
of all three constructs by their rewriting into stratified logic
programs with arithmetics and comparisons operators.

3.1 DatalogF S syntax

We define DatalogF S as an extension of Datalog without
arithmetics and comparison operators (at the end of Sect. 5,
we will introduce a version with these operators).

As shown in Sect. 2, a Datalog program is a set of rules.
Similarly, a DatalogF S program also consists of a set of rules
where the head literal can either be an atom or an FS-assert
statement. An FS-assert statement describes multi-occurring
predicates and is an atom followed by :K, where K is either a
constant or a variable. The body literals of DatalogF S can be
either atoms or negated atoms as in Datalog, or they can be
FS goals. Now FS goals come in the following two forms:

– Kj : [exprj] for a Running-FS goal, and
– Kj =![exprj] for a Final-FS goal.

where exprj is a conjunction of positive atoms, and Kj can
either be constant or a variable not contained in exprj.

We will next define the semantics of Running-FS goals and
multi-occurring predicates by their rewriting into logic pro-
grams. Final-FS constructs are discussed in Sect. 3.4, where
we also define the notion of stratified programs for this non-
monotonic construct and negation.

3.2 Semantics of running-FS constructs

In Sect. 1, we have shown an example of rewriting of
twosons and sixsons rules. These rewritings are cor-
rect, but assume that the integer in the running-FS term is a
constant. We next specify a rewriting that does not depend
on this assumption.

The formal semantics of a running-FS goal is defined
by means of its rewriting into positive logic programs, with
the help of lists and arithmetic sum operator. However, this
list-based formulation will not be used in the actual imple-
mentation, which uses the more direct and efficient approach
described in Sect. 6.

Now, each running-FS goal will be rewritten separately.
Thus, let the j th such goal be

Kj : [exprj(Xj,Yj)]
where Xj and Yj are two vectors, denoting respectively
the global variables and the local ones. Therefore, our
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rewriting replaces Kj : [exprj(Xj,Yj)] in the rule by
conj(Kj,Xj, _), where conj is defined as follows:4

conj(1,Xj, [Yj])← exprj(Xj,Yj).

conj(N1,Xj, [Yj|T])← exprj(Xj,Yj),conj(N,Xj,T),

notin(Yj,T),N1 = N+ 1.

where notin is defined without using negation, as follows:

notin(Z, [ ]).
notin(Z, [V|T])← Z �= V,notin(Z,T).

For a real-life example, let us consider the often used
guideline that an assistant professor to be advanced to asso-
ciate professor should have an H-index [17] of 13 or higher.
This can be expressed in DatalogF S as shown in Example 4,
below.

Example 4 Our candidate must have authored at least 13
papers each of which has been referenced at least 13
times. The database table author(Author, Pno) lists
all papers (co-)authored by a person, while the atom
refer(PnFrom,PnTo) denotes that paper PnFrom con-
tains a reference to paper PnTo.

atleast13(PnTo)← 13 : [refer(PnFrom,PnTo)].
hindex13(Author)← 13 : [author(Author,Pno),

atleast13(Pno)].
the first rule finds all papers that have been cited at least
13 times while the second rule finds all authors that have
authored at least 13 of those papers. ��

Following the rewriting of running-FS goals, the second
rule in Example 4 becomes:

hindex13(Author)← con2(13,Author, _).

where con2 is defined as follows:

con2(1,Author, [Pno])← author(Author,Pno),

atleast13(Pno).

con2(N1,Author, [Pno|T])← author(Author,Pno),

atleast13(Pno),

con2(N,Author,T),

notin(Pno,T),

N1 = N+ 1.

Two similar rules define con1 that re-expresses the first rule
of Example 4. Although different pairs of rules are needed
for each running-FS term, all these rules can use the same
notin predicate, since its definition is generic.

In Example 4, we only have one local variable and one
global variable. However, generalizing to the case where we

4 Observe that while N+1 can be viewed as a call to an arithmetic
functions, we can stay in the framework of pure logic programs and
view it as the postfix functor +1 applied to N, as in Datalog1S [16]; this
also supports comparison between positive integers without assuming
a totally ordered universe.

have an arbitrary number of global variables and local vari-
ables is straightforward, since we can arrange them into lists
of local variables and global variables (as shown above by
conj rule in the generic rewriting). In Example 5, we show
a rewriting with two local variables and one global variable.

Example 5 Each person that has at least 10 grandsons can
be defined as follows:

grandson10(X)← person(X),10 : [son(X,Y),son(Y,Z)].
Its rewriting is defined by using lists as shown below:

grandson10(X)← person(X),con3(10,X, _).

con3(1,X, [[Y,Z]])← son(X,Y),son(Y,Z).

con3(N1,X, [[Y,Z]|T])← son(X,Y),son(Y,Z),

con3(N,X,T),

notin([Y,Z],T),N1=N+1.

��
Another example of this rewriting is given in Appendix A.

The definition of notin uses goals such as Z �= V denoting
inequality between single variables. In general, we might
have several local variables which can be organized in lists
(or other complex objects). Then the inequality condition
between two lists can simply express the fact that not all the
corresponding elements in the list are equal.

This rewriting of DatalogF S into a pure logic program
proves that our running-FS construct is monotonic and can
thus be freely used in recursion while preserving the formal
(model-theoretic, proof-theoretic and least fixpoint) seman-
tics of logic programs. Also observe that this definition
does not assume any total order among the elements being
counted: in other words, it satisfies the important principle
of query genericity [18].

However, this list-based formulation of the running-FS
construct is too inefficient to be used in the actual imple-
mentation. Later in Sect. 6, we will propose an implemen-
tation approach that takes us directly from DatalogF S into
an efficient implementation which is not based on the use
of lists. Likewise, we expect that DatalogF S programmers
will use these running-FS constructs without ever think-
ing about lists and the abstract semantics discussed in this
section.

3.3 Multi-occurring predicates

In all the examples considered so far, base predicates and
derived predicates were always counted as providing sup-
port of one. But we will now introduce the concept of
multi-occurring predicates, that is, predicates that provide
a support greater than one. To explain this concept, suppose
we want to keep track of the number of citations received
by papers, using the base predicate ref. For instance,
ref(“MousaviZ11”) indicates that the paper with DBLP
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identifier “MousaviZ11” has received one citation, and we
say that ref(“MousaviZ11”) has support one. Now, if
the paper has, say, six citations we could consider storing in
our fact base six occurrences of ref(“MousaviZ11”),
but that would be of no logical consequence since idempo-
tence is assumed in the semantics of logic programs. There-
fore, to account for these six identical facts, we will instead
add one more attribute to the predicate ref and assume that
our database contains the facts: ref(“MousaviZ11”,
1), …, ref(“MousaviZ11”,6). Each of these six
facts contributes with support one, and thus we will say that
ref(“MousaviZ11”) has support 6 and represent this
information by the following notation:

ref("MousaviZ11") : 6.

This denotes that the paper with DBLP identifier
“MousaviZ11” is currently cited in six papers, whereby
Pno=“MousaviZ11” now contributes with a count of six
to the b-expression of the rule in Example 6, below:

Example 6 Total reference count for an author.

tref(Authr) : N← N : [author(Authr,Pno),ref(Pno)].

where the occurrences of tref(Authr) are the sum of
occurrences of all papers by Authr. ��

The terms “:6” and “:N”, respectively, used in the
ref fact above, and the head of the rule of Example 6 will
be called FS-assert terms. The FS-assert construct provides
a very useful extension, since there are numerous examples,
such as those presented in [19], where it is desirable to count
certain predicates as providing a support level greater than
one.5

The formal semantics of programs P with frequency assert
terms is defined by expanding it into its P̄ equivalent, which
is obtained as follows:

1. Each rule in P with head q(X1, . . . ,Xn) : K and with
body Body is replaced by

q̄(X1, . . . ,Xn,J)← lessthan(J,K),Body.

where J cannot occur in Body and lessthan(J, K)
is a distinguished predicate used to generate all positive
integers up to K, included, since:

lessthan(1,K)← K ≥ 1.

lessthan(J1,K)←lessthan(J,K),K>J,J1 = J+ 1.

5 This discussion suggests that the formal semantics of DatalogF S can
also be defined without using lists–that is, in terms of Herbrand bases
and interpretations that only use the constants and predicates in the
programs and no function symbols. This interesting topic is left for
future research.

2. Each occurrence ofq(X1, …, Xn) in the body of rules
of the program so obtained is replaced by:
q̄(X1, . . . ,Xn,J) where J is required not to appear else-
where.

Thus, the meaning of our program,

ref("MousaviZ11") :6.

tref(Authr) :N← N : [author(Authr,Pno),ref(Pno)].

is defined by its expansion into the following program:

ref("MousaviZ11",J)← lessthan(J,6).

tref(Authr,J)← lessthan(J,N),

N : [author(Authr,Pno),ref(Pno,J1)].

wherelessthan is defined as shown in point 1, above. Also
observe here that, in this special case where multiplicity is
generated by a running-FS, the rewriting can be simplified
into:

tref(Authr,N)← N : [author(Authr,Pno),ref(Pno,J1)].

This does only hold if the running-FS term is not constant.
Moreover, as we will show in Sect. 3.4, the same considera-
tion does not hold if a final-FS goal is present in the body of
the rule because its semantics does not imply thelessthan
predicate which thus cannot be removed.

As a result of the presented expansion, we have that, in
Example 6, ref("MousaviZ11"): 6 contributes with
six to the reference count of each author of that paper.

An important property of frequency statements is that,
when multiple statements hold for the same fact (base fact
or derived fact) only the largest value is significant, the oth-
ers are subsumed and ignored. Thus, if the following two
predicates are derived,

ref("MousaviZ11") :6.

ref("MousaviZ11") : 4.

the second fact carries no additional information and can be
simply dropped. This property is useful in many applications
that require maxima, as discussed in Sect. 9. However, if
instead of the maximum frequency, we would like to take
the sum of frequencies, we can simply add an additional
argument. Indeed, the following two facts that also show the
source of the citations imply a total count of 10:

ref("MousaviZ11",journals) : 6.

ref("MousaviZ11", others) : 4.

3.4 Final-FS goals

The rewriting rules defined in the previous section make it
possible to use variables rather than constants in the speci-
fication of FS goals. This is useful in many situations. For
instance, to find the actual number of sons that a person has,
we can use the DatalogF S program in Example 7, below.
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Example 7 How many sons does a person have?

csons(PName,N)← person(PName),

N =![son(PName,Sname)].
where the goal N=![son(PName, Sname )] allows to
retrieve the exact numberNof distinct assignments to variable
Sname that make son(PName, Sname) true. ��

Now the semantics of Example 7 above is defined by using
running-FS goals, as follows:

csons(PName,N)← person(PName),

N : [son(PName,Sname)],
¬morethan(PName,N).

morethan(PName,N)← N1 : [son(PName, _)],N1 > N.

while the final-FS construct does not increase expressive
power, it allows us to express queries in a more compact
and intuitive form and is also useful for compilation, as we
will see later. In general, a Final-FS goal has the form,

Kj =![exprj(Xj,Yj)]
where exprj(Xj, Yj) is a b-expression, with the same
syntax as that used for Running-FS goals. Thus, Xj and Yj
respectively denotes its global variables and the local vari-
ables. The formal semantics of this Final-FS goal is defined
by rewriting it into the conjunction:

Kj : [exprj(Xj,Yj)],¬morethan(Xj,K)

where:

morethan(Xj,K)← K1 : [exprj(Xj, _)],K1 > K.

Obviously, the rewriting in logic programming is obtained by
substituting the Running-FS goal with its rewriting. More-
over, the rewritten program must be stratified with respect to
negation. Thus we have the following definition:

Definition 1 A DatalogF S program is stratified if its rewrit-
ing into a logic program is negation-stratified.

The question of whether a DatalogF S program P is strati-
fied can be answered by simply inspecting the given program
and ensuring the following condition holds. Basically each
rule of P can contain two kinds of goals:

(a) the normal goals of standard Datalog programs and
(b) Running-FS and Final-FS goals, K : [b-expression],

or K=![b-expression], where b-expression is
the conjunct of one or more predicates.

For (a) the stratification conditions have not changed: the
head of the rule must belong to a stratum that is not lower
than that of every goal, and strictly higher than that of every
negated goal.

For (b) the head of the rule must belong to a stratum
that is (i) not lower than that of every predicate in the
b-expression of K : [b − expression] and (ii) strictly
higher than that of every predicate in the b-expression of
K=![b-expression].

4 Stratified DatalogFS by example

In the previous sections, we have illustrated the semantics
of DatalogF S with the help of simple examples. We will
now introduce more complex examples to illustrate the many
applications of stratified DatalogF S using FS goals in recur-
sive rules, which make use of positive integers but do not use
function symbols or arithmetic.

Consider Example 8, below, that is based on an example
by Ross and Sagiv [8].

Example 8 Some people will come to the party for sure. Oth-
ers will also come once they learn that three or more of their
friends will come.

willcome(X)← sure(X).

willcome(Y)← 3 : [friend(Y,X),willcome(X)].
where sure denotes people who will come even if none of
their friends will. ��

We extend Example 8 considering that one person might
be more timid than another, and different people could require
a different number of friends before they also join the party.
This scenario is described by Example 9, below.

Example 9 A person will join the party if a sufficient number
of friends join.

join(X)← sure(X).

join(Y)← requires(Y,K),K : [friend(Y,X),join(X)].
whererequires(person, number) denotes the num-
ber of friends required by a person, and number must be a
positive integer. ��

The reachability problem in directed hypergraphs calls
for a strategy, similar that used in Example 9, inasmuch as
several nodes must be reached before we can reach the next
node.

A directed hypergraph H is a pair H = (X, E) where
X denotes the nodes, and E denotes the hyperedges. Each
hyperedge is a pair 〈L ,vL〉, where L is a non-empty set of
nodes (the source nodes) and vL is a node not belonging
to L (the sink node). Hypergraph reachability is modeled
by the following recursive definition: (i) a node X is always
reachable from itself and (ii) a node Y is reachable from X
if there is a hyperedge such that its sink is Y and each of its
sources is reachable from X. Thus the program presented in
Example 10 is the reachability query for hypergraphs.
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Example 10 Let the nodes of a hypergraph be represented by
the monadic predicate node, while its edges are represented
with two dyadic predicates source and sink. Thus, the
edge I D = 〈L ,vL〉 is represented by the factsink(ID,vL),
and a fact source(ID,X) for each X ∈ L. Then the reach-
ability query for hypergraphs is:

reach(X,X)← node(X).

reach(X,Y)← node(X),K =![source(ID, _)],
K : [source(ID,Z),reach(X,Z)],
sink(ID,Y).

the first rule states that each node X is reachable from
itself. The second rule says that a node Y can be reached
from X if there is a hyperedge ID whose sink is Y
and each source Z of ID is reachable from X (imposed
by the conjunction of goals K=![source(ID, _)],
K:[ source(ID, Z),reach(X,Z)]). Thus, when all
the source nodes of a given edge ID have been reached, the
sink node of ID is reached as well. ��

Let us now introduce some examples using multi-
occurring predicates. If staff(Lab, Name) describes
the current staff in each laboratory, the following rule can
be used to determine the total number of references pointing
to (papers by researchers in) each laboratory.

labref(Lab) : Tot← Tot : [staff(Lab,Name),

tref(Name)].
We next show some examples that use multi-occurring

predicates in recursive rules. Bill-of-materials (BOM) appli-
cations represent a well-known example of the need for
recursive queries. For instance, our database might contain
records such as assbl(Part, Subpart, Qty) whi-
ch, for each part number, give the immediate subparts used
in its assembly and the quantity in which they are used. For
instance, a bicycle has one frame and two wheels as immedi-
ate subparts. At the bottom of the Bill-of-material DAG, we
find the basic parts that are purchased from external suppliers
and provide the raw materials for our assembly. Basic parts
are described by basic(Pno, Days) denoting the days
needed to obtain that basic part. Several interesting BOM
applications are naturally expressed by combining aggre-
gates and recursion, as the one in Example 11.

Example 11 How many basic parts does an assembled part
contain?
cassb(Part,Sub) : Qty← assbl(Part,Sub,Qty).

cbasic(Pno) : 1← basic(Pno, _).

cbasic(Part) : K← K : [cassb(Part,Sub),cbasic(Sub)].
cntbasic(Prt,C)← C =![cbasic(Prt)].

For each assembled part, we count the number of basic parts
as a recursive sum, using goal K:[cassb(Part, Sub),
cbasic(Sub)]. Basic parts have occurrence 1, as stated by
the second rule. The multi-occurring predicates cassb and

cbasic in the running-FS goal allow to sum, in a recursive
manner, the occurrences of each subpart of an assembled
part. ��

Of course, the total count of basic parts used by a part
(which is derived using the last rule in Example 11), such
as wheel, should not be retrieved using a goal such as N :
[cbasic(wheel)] since this returns all the positive integers
up to the max N value for which the running-FS goal holds.
A goal such as N=! [cbasic(wheel)] should be used
instead inasmuch as this returns the exact count of the basic
subparts for wheel. Similar observations hold also for the
third rule in Example 12.

Simple assemblies, such as bicycles, can be put together
the very same day in which the last basic part arrives. Thus,
the time needed to delivery a bicycle to the customer can be
computed as the maximum of the number of days that the var-
ious basic parts require to arrive. Thus we have Example 12,
below.

Example 12 How many days until delivery?

delivery(Pno) : Days ← basic(Pno,Days).

delivery(Part) : Days ← assbl(Part,Sub, _),

Days : [delivery(Sub)].
actualDays(Part,CDays)← CDays =![delivery(Part)].

For each assembled part, we find each basic subpart along
with the number of days this takes to arrive. By using
the multi-occuring predicate delivery inside the FS-goal
Days : [delivery(Sub)] we find, for a given Part, the
maximum among the delivery times of its subparts. ��

Another interesting application of DatalogF S is the one
proposed by Mumick, Pirahesh and Ramakrishnan [19] and
presented in Example 13, below.

Example 13 Companies can purchase shares of other com-
panies; in addition to its directly owned shares, a company A
controls the shares controlled by a company B when A has
a controlling majority (50 %) of B’s shares (in other words,
when A bought B). The shares of each company are subdi-
vided into 100 equal-size lots.

cshares(C2,C3,dirct) : P← owned_shares(C2,C3,P).

cshares(C1,C3,indirct) : P← P : [bought(C1,C2),

cshares(C2,C3, _)].
bought(C1,C2)← C1 �= C2, 50 : [cshares(C1,C2, _)].

where dirct and indirct are constants. ��

These examples show that stratified DatalogF S allows us to
express various useful applications that were used in the past
to illustrate the limitations of negation-stratified Datalog. In
the next section, we present a formal investigation of the
expressivity properties of stratified DatalogF S.
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5 Expressive power of DatalogFS

Our previous examples illustrate that DatalogF S is a very
powerful language. In fact, we will show that (i) stratified
DatalogF S is more expressive than Datalog with stratified
negation and aggregates and (ii) many queries for which only
inefficient formulations are possible with Datalog can now be
expressed and supported by optimal algorithms in stratified
DatalogF S. In this section, we focus on (i) and analyze the
impact upon expressive power of the new constructs. We will
return to (ii) in next sections, where we study implementation
and optimization issues.

5.1 Comparison with negation-stratified datalog

In this section, we will compare stratified DatalogF S with
negation-stratified Datalog.

We recall that in negation-stratified Datalog, arithmetic
expressions and aggregates are not allowed and ordering of
the domain is not given a priori (thus, there are no comparison
operators). We have the following theorem:

Theorem 1 Datalog¬s � stratified DatalogF S

Proof The containment of Datalog¬s by stratified
DatalogF S is trivial because stratified DatalogF S is an exten-
sion of Datalog¬s . The fact that stratified DatalogF S is
strictly more expressive than Datalog¬s follows from
Kolaitis’ result [20] that the game query cannot be expressed
in Datalog¬s , whereas Example 14 shows the game query
expressed in stratified DatalogF S. ��

The Game Query. A two player game can be described by a
graph G = (V, V0, V1, E), with a partitioning V = V0 ∪ V1

of nodes into positions where player 0 moves and position
where player 1 moves. The possible moves are described by
the edge relation E ⊆ V × V .

A game is strictly alternating if every move of player 0
is followed by a move by player 1, and vice versa, that is
E ⊆ V0 × V1 ∪ V1 × V0. Consider now player 0; by the
following recursive definition, we can establish whether, in
a strictly alternating game, v ∈ V0 is a winning position for
player 0:

– if player 1 cannot move, that is �u ∈ V1 : (v, u) ∈ E , or
– for each move of player 1, there is a move of player 0,

which leads to a winning state, that is ∀u ∈ V1 such
that (v, u) ∈ E , there exists a position h ∈ V0 such that
(u, h) ∈ E and h is winning.

A game query defines the winning position of player 0 in a
strictly alternating game. Extending a result by Dalhaus [21],
Kolaitis proved the following result [20]:

Theorem 2 (Dahlhaus and Kolaitis) Datalog¬s cannot
express the game query.

The Example 14 express the game query in stratified
DatalogF S.

Example 14 Let e(x,y) be the facts that represent E, and
let v0(x) be the facts that represent V0, the game query in
stratified DatalogF S is the following:

w(X)← v0(X),¬e(X, _).

w(X)← v0(X),e(X,Y),K =![e(Y,Z)],K : [e(Y,Z),w(Z)].
The first rule derives each state where player 1 cannot move.
The second recursive rule derives the state where, for each
move of player 1, there is a move of player 0 that leads to a
winning state. In the second rule, K =![e(Y,Z)] counts the
number of Z positions and K : [e(Y,Z),w(Z)] verifies that
each Z position is a winning state. ��

5.2 Comparison with aggregate-stratified datalog

Our FS goals are monotonic, but this is not true in general for
all types of aggregates. In order to deal with non-monotonic
aggregates, the concept of stratified aggregates has been
introduced. In [22], Mumick and Shmueli describe Da , that
is, Datalog with stratified aggregates as an extension of Dat-
alog that allows basic arithmetic functions (+,−, ∗, . . .) as
built-in and “Groupby” predicates of the form

GROUPBY(r(t), [Y1,Y2, . . . ,Ym],
Z1 = A1(E1(t)), . . . ,Zn = An(En(t)))

to appear as subgoals in Datalog body rules. The “Groupby”
predicate takes as arguments: a predicate r with its attribute
list t, a grouping list [Y1,Y2,...,Ym] contained in t and a
set of aggregation terms Z1 = A1(E1), . . . ,Zn = An(En).
For each aggregation term Zi = Ai(Ei(t)),Zi is a new
variable, Ei(t) is an arithmetic expression that uses the vari-
ables t and Ai is an aggregate operator, for example sum,
count, max, min and avg. Stratification means that if
a derived relation r1 is defined by applying aggregation on
a derived relation r2, then r2’s definition does not depend,
syntactically, on relation r1.

The expressive power of Da was studied in [22]: when no
function symbols or arithmetic are present, then the addition
of stratified count adds more power to the language than
the addition of stratified negation (the latter can be expressed
using the former but not vice versa). However, there remain
many queries that are not expressible in Da : in particular the
Summarized Part Explosion query, which counts the number
of copies of component Sub needed to construct one copy
of Part, cannot be expressed in Da [22]. Now, this query
can be easily expressed in stratified DatalogF S as shown in
Example 15.
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Example 15 Summarized Part Explosion

cassb(Part,Sub) : Qty← subpart(Part,Sub,Qty).

need(Sub,Sub) : 1← subpart(_,Sub, _).

need(Part,Sub) : K← K : [cassb(Part,P1),need(P1,Sub)].
total(Part,Sub,K)← K =![need(Part,Sub)].

��
Therefore, we have the following theorem:

Theorem 3 Stratified DatalogF S � Da

In the Appendix C, we prove that, by adding arithmetic and
comparison operators to stratified DatalogF S it can express
all queries expressible in Da . Thus, it contains Da .

5.3 Expressive power on ordered domains

We now compare stratified DatalogF S with D¬+ which is
Datalog¬s with the addition of the built-in operator +. In [22],
it is proved that D¬+ can express all computable functions on
ordered domains. We recall that the built-in function X+Y=Z
used in [22] assumes that there is a binding for X and Y that
implies a binding for Z.

Then the following stratified DatalogF S program in Exam-
ple 16 can be used to express the same function for non-
negative integers:

Example 16 Expressing integer sum.

adding(X,Y,0) : K← K = X.

adding(X,Y,1) : K← K = Y.

sum(0,0,0).

sum(X,Y,Z)← Z =![adding(X,Y, _)].
The first two rules derive, for the two addends X and Y, a
multi-occurring predicate having the same occurrence as the
value of X and Y respectively. The final-FS goal in the last
rule finds the exact sum of the two addends and returns its
value. ��

It is important to observe that the final-FS construct
belongs to a stratum that is lower than sum, which can there-
fore be used in recursive rules (and the program in Exam-
ple 16 can be executed in a top-down fashion to avoid the
enumeration of all possible derivations). Thus, we have the
following result:

Theorem 4 D¬+ ⊆ stratified DatalogF S.

Now, since D¬+ can express all computable queries on
ordered domains so does stratified DatalogF S.

5.4 Final considerations

The results in the previous sections show that the additional
expressive power gained by stratified DatalogF S is due to
the running-FS construct. In fact, in Appendix B, we give a

formal proof that is sufficient to use such construct, without
arithmetic or comparator operators, to express the Final-FS
and FS-assert.

While the FS-assert term does not contribute to the expres-
sive power of stratified DatalogF S, it plays a very useful prac-
tical role since it (i) simplifies the writing of programs and
(ii) also simplifies their compilation and implementation, as
discussed in detail in the next section. In the same vein, while
the final-FS construct can also be expressed using stratified
negation on running-FS goals, we will disallow this combi-
nation in our actual FS-programs and instead insist on the
direct usage of Final-FS constructs (in programs stratified
with respect to this construct) for the very reasons (i) and (ii)
outlined above.

We actually conjecture that, besides the two examples
given here for which we have formal proofs, there are many
other interesting queries that can be expressed in stratified
DatalogF S but cannot be expressed in Datalog¬s nor Da .
For instance, a query similar to the Summarized Part Explo-
sion query in Example 15 is one that counts the number of
paths between each pair of node in an acyclic graph, pre-
sented in Example 17.

Example 17 Consider an acyclic graph represented by the
facts edge(x,y) that represent the edges of the graph. To
count the number of paths between every node-pair, we write:

path(X,Y) : 1← edge(X,Y).

path(X,Y) : K← K : [edge(X,Z),path(Z,Y)].
countpaths(X,Y,K)← K =![path(X,Y)].
The first rule assigns occurrence 1 to each direct edge. The
second rule assigns, to each pair of nodesX andY, the number
of paths between them by summing, for each node Z, that is
reached from X in one edge, the number of paths between Z
and Y. Finally, the last rule returns, for each pair of nodes,
only the maximum found occurrence. ��

Also the reachability query on directed hypergraphs of
Example 10 is very difficult to formulate in Datalog¬s ,
because of the recursive pattern for universal quantification
which is similar to that of the game query in Example 14.
In summary, it appears that the expressive power of strati-
fied DatalogF S is significantly above that of Datalog¬s and
Da , whereby it is now meaningful to ask what is the upper
bound for stratified DatalogF S power. If we assume that our
domain is totally ordered (a reasonable assumption in most
real-life situations), then the result is given by Theorem 4
that implies that all computable queries on ordered domain
can be expressed in stratified DatalogF S.

This important result suggests that stratified DatalogF S has
reached the ultimate level of expressive power, where its use-
fulness no longer depends on its ability of expressing the
desired queries, instead it depends on the performance with
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which those queries are implemented. Thus, in the next sec-
tion, we turn our focus on performance issues. Indeed, one
of the historical limitations of Datalog is that, while many
queries can be expressed by programs using stratified aggre-
gates or negation, these programs cannot be compiled into
implementations that achieve the optimal complexity that is
delivered by procedural programs. The compilation and opti-
mization techniques discussed in the next section go a long
way toward solving these problems.

In as much as we will now focus on practical issues, the
ability of stratified DatalogF S to express integer arithmetic is
only of theoretical interest, insofar as we need builtins that
allow us to implement these functions very efficiently. Thus,
from now on, we assume that these are part of our language
and discuss the powerful queries and compilation issues they
bring about.

For instance, in the examples presented in Sect. 3, the
frequency assigned to the head has the same value as the
running-FS term in the body, but this need not always be
the case. For instance, if we estimate that, on the average,
every paper authored by A in a particular laboratory is co-
authored by another person in the same lab, then a better
estimate for the number of papers published by a laboratory
is Tot÷ 2. Thus a better estimate of a pseudo H-factor for
each laboratory could be the one expressed by the following
program:

labref(Lab) : H← Tot : [staff(Lab,A),tref(A)],
H = Tot÷ 2.

6 Compilation and optimization

The significant gain in expressive power realized by strati-
fied DatalogF S can have a significant practical impact only
if combined with a very efficient implementation. Because
of its declarative semantics, alternative implementation
approaches are possible, including the top-down methods of
Prolog; however, in this paper, we focus on bottom-up execu-
tion and leave top-down methods for later papers (including
those that emulate top-down methods, such as magic-sets that
are briefly discussed in [23]).

The efficient bottom-up computation of DatalogF S

programs is achieved through:

– Differential fixpoint optimization—that is, the exten-
sion of the seminaive fixpoint optimization to recursive
DatalogF S rules.

– Max-based optimization. This is a new technique intro-
duced for DatalogF S whereby the computation over the
successive integers produced by running-FS constructs
is avoided and replaced by a computation on their upper
bounds.

6.1 Differential fixpoint

The differential fixpoint (a.k.a., the seminaive fixpoint)
method, which represents the cornerstone of the bottom-up
implementation for Datalog programs [24], is also applica-
ble and effective for DatalogF S programs. However, some
nontrivial modification are required as discussed next.

The seminaive computation involves the rewriting of the
recursive rule bodies to avoid redundant computation. The
standard rewriting produces a new delta rule for each recur-
sive goal in the rule. Now, a recursive DatalogF S rule defining
predicate p could contain a goal such as 100 : [p(X, Y )]. Then
a naive implementation of the differential fixpoint could start
by rewriting this goal into a conjunct of 100 similar goals and
then differentiate that into 100 rules. Fortunately, one single
differential rule is all that is needed, as it is shown next.

Toward that, let us start with the differentiation of
2:[p(X, Y )], where X and Y respectively denote the global
variables and the local variables (or vectors thereof) in our
b-expression. Now since

2 : [p(X, Y )] = p(X, Y1), p(X, Y2), Y1 �= Y2

its differentiation yields:

δp(X, Y1), p(X, Y2), Y1 �= Y2 ∪ p(X, Y1), δp(X, Y2), Y1 �= Y2

Thus we are here taking the union of two expressions that
are identical except for the renaming of the local variables
whose names are immaterial. In other words, either conjunct
can be dropped or our symbolic differentiation can be sim-
plified into:

δp(X, Y1), p(X, Y2), Y1 �= Y2

The generalization of this differentiation rule to the case
where K > 2 can now be proven by induction. Thus in
the following, we will prove that in order to differentiate
an FS-goal, it is sufficient to differentiate only once the
b-expression.

Consider the differentiation of
(
K+1 : [expr(X, Y )]). We

will now use the following rewriting of this FS-expression,
which we call a strict factorization:

K + 1 : [expr(X, Y )] = expr(X, Y ),

K : [expr(X, Y1), Y1 �= Y ]
Now, the symbolic differentiation of the two sides of equality
(where the right-hand side is a quadratic expression) yields:

δ
(
K + 1 : [expr(X, Y )])

= δ
(
expr(X, Y )

)
, K : [expr(X, Y1), Y1 �= Y ] (1)

∪
expr(X, Y ), δ

(
K : [expr(X, Y1), Y1 �= Y ]) (2)
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But, by the inductive assumption, we have that our
δ-rewriting is correct up to K , included. Thus,

δ
(
K : [expr(X, Y1), Y1 �= Y ]) = δ

(
expr(X, Y1), Y1 �= Y,

K−1 : [expr(X, Y2), Y2 �= Y, Y2 �= Y1]
)

Therefore (2) becomes:

expr(X, Y ), δ
(
expr(X, Y1)

)
, Y1 �= Y,

K−1 : [expr(X, Y2), Y2 �= Y, Y2 �= Y1]
We can now merge the first goal into the b-expression,

whereby the old condition Y �= Y1 is subsumed by Y2 �= Y1 in
the new b-expression, and can thus be eliminated. Therefore,
(2) reduces to (3) below:

δ(expr(X, Y1)), K : [expr(X, Y2), Y2 �= Y1] (3)

Now (3) is identical to (1), modulo variable renaming; thus
either (1) or (2) can be omitted.

Thus we obtain the following formula that is valid for
K > 0 and is called a strict differentiation template.

δ
(
K + 1 : [expr(X, Y )]) = δ(expr(X, Y1)),

K : [expr(X, Y2), Y2 �= Y1] (4)

Relaxed Differentiation and Factorization. The general form
of relaxed differentiation is as follows:

δ
(
K + 1 : [expr(X, Y )]) = δ(expr(X, Y1)),

K + 1 : [expr(X, Y2)] (5)

For K > 0, this formula is equivalent to (4). We have that
the first atom, δ(expr(X, Y1)), is the same for both. As for the
second: in (4) we require that K : [expr(X, Y2), Y2 �= Y1] (K
assignments of Y2 and each has to be different than Y1, that is
we require at least K +1 assignments of Y in total) and in (5)
we require that K +1 : [expr(X, Y2)]without the inequality
condition, thus we are still imposing at least K + 1 assign-
ments of Y. This is true because, by applying the differential
fixpoint method, we have that δ(expr(X, Y1)) contains only
the facts derived at the last step while expr(X, Y1) contains
the facts derived at all the previous steps (thus also those in
δ(expr(X, Y1))).

Moreover, the formula in (5) is also valid for K = 0, thus
it holds for every positive integer K.

Furthermore, consider the following relaxed factorization
equality:

K : [expr(X, Y )] = expr(X, Y1), K : [expr(X, Y2)] (6)

Now, by observing the relationship between (5) and (6),
we conclude that the differentiation of a b-expression can be
performed as follows: (i) apply the relaxed factorization to the
b-expression and (ii) differentiate the goals outside the brack-
ets and leave the b-expression unchanged. This observation

allows us to formulate a canonical differentiation procedure
that consists of the following three steps:

1. Relaxed Factorization: all the goals of the b-expressions
are rewritten by applying the relaxed factorization trans-
formation described above.

2. Reduction: The relaxed factorization process often gen-
erates multiple occurrences of equivalent goals (i.e., goals
that are identical except for a possible renaming of vari-
ables). These repeated equivalent goals are here removed
from the rules.

3. Reduced Differentiation: The rules produced by the
reduction step are differentiated with the b-expression
treated as constants (i.e., as if the predicates in the brack-
ets were not recursive or mutually recursive with those
for which the delta rules are being generated).

Therefore, after the simple transformations of the first two
steps, the third step of the canonical differential process dif-
ferentiates DatalogF S rules as they were traditional Datalog
rules. The simplicity and amenability to efficient implemen-
tation of canonical differentiation can be appreciated from a
few examples.

Take for instance the recursive rule of Example 12:

delivery(Part) : Days ← assbl(Part,Sub, _),

Days : [delivery(Sub)].

This can be factorized as follows (Sub is a global variable):

delivery(Part) : Days ← assbl(Part,Sub, _),

delivery(Sub),

Days : [delivery(Sub)].

No repeated goals have been produced here, thus we can
move to the reduced differentiation step that yields:

δdelivery(Part) : Days ← assbl(Part,Sub, _),

δdelivery(Sub),

Days : [delivery(Sub)].

For a second example, consider now the following recursive
rule (from Example 19 to be discussed later):

reach(Y) : V← reach(X),V : [reach(X),arc(X,Y)].
There are no local variables in the b-expression of this rule;
thus the expansion step produces:

reach(Y) : V← reach(X),reach(X),arc(X,Y),

V : [reach(X),arc(X,Y)].
Thus the reduction step yields:

reach(Y) : V← reach(X),arc(X,Y),

V : [reach(X),arc(X,Y)].
Now the reduced differentiation step treats the b-expression
as a constant whereby we obtain the following delta rules:
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δreach(Y) : V← δreach(X),arc(X,Y),

V : [reach(X),arc(X,Y)].
For a more complex example, consider the following rule
from Example 20:

fpath(X,Z) : C← node(Y),C1 : [fpath(X,Y)],
C2 : [fpath(Y,Z)],C = 1/(1/C1+ 1/C2).

The relaxed factorization yields:

fpath(X,Z) : C← node(Y),fpath(X,Y),fpath(Y,Z),

C1 : [fpath(X,Y)],C2 : [fpath(Y,Z)],
C = 1/(1/C1+ 1/C2).

No redundant goals can be eliminated here, whereby we
move the standard differentiation that yields:

δfpath(X,Z) : C← node(Y), δfpath(X,Y),fpath(Y,Z),

C1 : [fpath(X,Y)],C2 : [fpath(Y,Z)],
C = 1/(1/C1+ 1/C2).

δfpath(X,Z) : C← node(Y),fpath(X,Y), δfpath(Y,Z),

C1 : [fpath(X,Y)],C2 : [fpath(Y,Z)],
C = 1/(1/C1+ 1/C2).

Thus, we have now reduced the differential fixpoint opti-
mization for DatalogF S to that of standard Datalog, whereby
we can use its well-understood and widely tested optimiza-
tion techniques. For instance, a further optimization that is
supported by many Datalog compilers [25] avoids having
to repeat the computation of δfpath(X,Y),δfpath(Y,Z)

in both rules. This improvement is thus applicable to
DatalogF S as well.

6.2 Max-based optimization

Therefore, as result of the differential fixpoint, our declarative
program has been replaced by an operational program that
iterates over the operational equivalent of the rules generated
in the previous section. Therefore, we can now apply opti-
mizations that preserve the operational semantics of those
rules. Then, we will find out that the computation needs only
to be performed on the max values produced by the running-
FS term since all arithmetic and Boolean functions in our
examples are monotonic.

The recursive computations specified in DatalogF S

programs are of two kinds. The computation of the first kind
is specified by a final-FS construct that is applied to the val-
ues returned by the running-FS and FS-assert constructs in
the underlying rules. Programs in this first kind are those in
Examples 7, 11, 12, and 20.

The programs of the second kind do not pass the values
generated by the running-FS goal to the head of their rules,
but instead they test such values against conditions in the
very bodies of the rules containing the running-FS goals.
Examples 13, 10, and 14. In order to unify the implemen-
tation of the queries in this second group with those of the
first group, we will replace equality conditions on values pro-
duced by running-FS goals with the≥ condition on the value

produced by final-FS goals or constants. Thus, the condi-
tion 3 : [friend(X,V1)] in Example 1 will be replaced by
K : [friend(X,V1)],K ≥ 3, while K : [source(ID,Z)] in
Example 10 is replaced by K1 : [source(ID,Z)],K1 ≥ K
(since here K =![source(ID, _)] is defined w.r.t. a lower
stratum and it is thus viewed here as a constant). This imple-
mentation approach is obviously correct, inasmuch as it
preserves the operational semantics of the rules used in
the seminaive fixpoint computation (and the nonmonotonic-
ity of the final-FS construct is not an issue for operational
semantics).

Now, the max-based implementation of a DatalogF S

program is performed in the following two steps:

Step 1: Compute the max value produced by the running-
FS, and evaluate the rules for this max value, Max,
and then

Step 2: Repeat the rule evaluation for all positive integers
other than Max.

So, let us now discuss the implementation of the constructs
FS-assert, running-FS and final-FS in Step 1.

FS-assert: We will store only one fact with the Max value
as its new additional argument (rather than one fact for each
value between 1 and Max). Therefore, in the differential fix-
point, only atoms with max multiplicity are kept (thus updates
in-place will be performed on atoms of smaller multiplicities
that were already present).

Running-FS and Final-FS. In Step 1, where we are only
interested in the Max values, both constructs are computed as
final-FS goals. For regular predicates (i.e., they are not among
those defined as multi-occurring via FS-assert terms), we will
need to count the occurrences of local variables grouped by
the global ones.

Thus, in the first rule of Examples 4, we will count
PnFrom for each PnTo—that is, count PnFrom grouped
by PnTo in SQL parlance. For instance, in the second rule
of Example 4, we have a conjunct where Author is the
global (i.e., group-by) variable, and Pno is the local variable
whose occurrences will be counted: when the resulting count
is ≥ 13, then Author is returned to the head. In the recur-
sive rule of Example 8, we must instead count occurrences
of (X, Y) grouped by Y.

The sum aggregate is instead used for b-expressions
containing one or more multi-occurring predicates. Take
for instance Example 11: both cassb and cbasic are
multiple-occurring predicates, Part is the global variable
and Sub is the local one in the recursive rule. Moreover,
each tuple in cassb has a multiplicity Qty and each tuple
in cbasic has multiplicity K. Thus for each Part, we must
sum up the products Qty × K over all Sub values that sat-
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isfy the join condition and transfer the resulting sums to
the head.6 Likewise, in the first rule of Example 4, we will
inspect refer and count the occurrences of the local vari-
able PnFrom grouped by the global one Pno.7

Step 2 and Monotonic Arithmetic. In Step 1, we let the FS-
count goals produce their Max values and evaluated our rules
on those values. We can now proceed and repeat the evalu-
ation of the rules on all the values between 1 and Max. But
in all examples discussed in this paper, the execution of this
step will add no new results to those obtained in Step 1. This
is obvious in situations, such as those of Examples 7, 8, 9, 10,
13, 14, where the values produced by running-FS goals are
simply tested against some monotonic Boolean conditions:
these conditions evaluate to true iff they are true for the Max
values. The other pattern is that of Examples 11, 12, and 20
where the values generated by the running-FS term are then
fed to the FS-final term which disregards all the values but
the Max ones. In fact, it is easy to realize that this conclusion
holds for situations more complex than those: in fact, Step 2
can be omitted for situations where the values produced by
running-FS terms, possibly transformed via monotonic arith-
metic functions, are fed to monotonic boolean functions8 or
FS-final goals.

To illustrate this point, let us modify our Example 12 to
compute the numbers of hours till the assembled product is
assembled. Thus besides the days required for delivery (each
day adding 24 h), we will now add 2 h needed to assemble a
part after its subparts have arrived:

Example 18 Hours required till Pno is assembled.

ready(Pno) : Hours ← basic(Pno,Days),

Hours = 24 ∗ Days
ready(Part) : Hours ← assbl(Part,Sub, _),

H : [delivery(Sub)],
Hours = H+ 2.

ActualHours(Part,CH)← CH =![ready(Part)].
��

Here the H value is transferred to the head of the rule
by the monotonic arithmetic function H+2. Since monotonic

6 If this information was stored in SQL tables, then the head of the rule
would be updated using the following information:

select cassb.Part, sum(cassb.Qty ∗ cbasic.K)

fromcassb, cbasicwherecassb.Sub = cbasic.Sub

groupbycbasic.Sub

.
7 Determining local and global variables is already part of the binding
passing analysis performed by current Datalog compilers [24].
8 A boolean function B(T) is monotonic w.r.t. the integer values T when-
ever B(T ) evaluating to true implies that B(T ′) is true for every T ′ > T .

functions map maxima to maxima there is no need to consider
any value but the maximum value. Therefore, we will require
that all functions used to transfer FS values from the body to
the head be monotonic.

Discussion. Thus, in addition to being quite expressive,
DatalogF S is amenable to very efficient implementation via
the two optimization techniques presented in this paper. The
first is a generalization of the differential fixpoint, and the sec-
ond is the Max-based optimization where running-FS goals
(the cornerstone of declarative semantics) were evaluated
via final-FS constructs (the cornerstone of the operational
semantics).

While the differential fixpoint optimization is applicable
to every valid DatalogF S program, the FS-based optimiza-
tion is not: there are two kinds of valid DatalogF S programs
to which it is not applicable. The first kind occurs when the
values produced by the running-FS goals, rather than being
used to test a condition or to determine final-FS values, are
used in traditional Datalog rules, or are returned as answers
to the query. The second situation is when (i) the arithmetic
functions that return the FS values to the final-FS aggregates
are not monotonic or (ii) the boolean conditions applied to
these values are not monotonic. Implementation techniques
for these programs could be devised, but it is far from clear
that we should do so. In fact, there are indications that this
generalization might not lead to many useful applications,
and it is actually counter-productive. Indeed, all the applica-
tions presented in this paper, and the many others we have
considered, are all conducive to Max-based optimization, and
programs that do not have this property are hard to find and
they are very contrived. For instance, to select all parts that
take 7 days or more to arrive, a user will find quite natural to
use conditions such as K : [delivery(Part)],K ≥ 7, in
the rules of Example 12, or 18. However, to find the parts
that will arrive in less than 7 days, the user cannot write
K : [delivery(Part)],K < 7. Because of the semantics
of the running-FS, this query will in fact deliver every part
(including the parts returned by the previous query). To find
only the parts that are delivered in less than 7 days, the user
will have instead to write K =![delivery(Part)],K < 7,
which is conducive to Max-based optimization. The gen-
eralization of DatalogF S discussed in the next section pro-
vides yet another reason for which a compiler should disal-
low DatalogF S programs that are not Max-optimizable.

7 Positive rational numbers

The abstract semantics of DatalogF S is based on counting the
repeated occurrences of predicates and then applying integer
arithmetic on such counts. However, inferences and computa-
tions on positive rational numbers can be easily re-expressed
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as computations on integers, and positive numbers contain-
ing decimal digits can also be managed in a similar fashion.

For instance, returning to our party example, we might
want to say that our level of confidence in John coming to
the party is 82 %. Thus we write:
confidence(“John”): 0.82, and similar confi-

dence rankings can be assigned to every person who could
possibly attend the party. Then our program becomes:

confidence("John") : 0.82.

%. . .the rest o f the f acts….

willcome(X) : C← C : [confidence(X)].
willcome(Y) : 1← 3 : [friend(X,Y),willcome(X)].

Assuming that the confidence rankings are less than one, we
will need to have four or more people coming to the party
before we cross the threshold of three.

Decimal numbers in rules can be viewed as fractions,
where their denominators can all be set to the same large
number, that we will call the scale-up factor. Also, the inte-
gers in these rules can be multiplied by the same scale-up
factor and viewed as fractions over the common denomi-
nator. With all the denominators set to the scale-up factor,
it is now simple to derive DatalogF S rules that operate on
the numerators of those scaled-up numbers: these rules are
equivalent to the original ones since they produce integer
results that divided by the scale-up factor are equal to those
produced by computation of the original rules with decimal
numbers. For instance, with a scale-up factor of 100, the pro-
gram equivalent to the original program is:

confidence("John") : 82.

%. . .the rest o f the f acts….

willcome(X) : C ← C : [confidence(X)].
willcome(Y) : 100← 300 : [friend(X,Y),willcome(X)].

This program was obtained from the previous one by multi-
plying numbers by the scaleup factor of 100. Moreover this
is a DatalogF S program that has a least fixpoint solution.
Thus the original program also has a least fixpoint, which is
computed from this by dividing its integers by the scale-up
factor.

Thus by assuming scaling, we can allow and support pos-
itive decimal numbers in our programs. This significantly
expands the application range of DatalogF S. For instance,
say thatarc(a,b):0.66 denotes that a trip started at point
a will actually take us to point b in 66 % of the cases. Then,
the following program computes the probability of com-
pleting a trip from a to Y along the maximum-probability
path:

Example 19 Maximizing the probability of reaching various
nodes of the graph if we start from node a.

reach(a) : 1.00.
reach(Y) : V ← reach(X), V : [reach(X),arc(X,Y)].
maxprob(Y,V) ← V =![reach(Y)].

The source a is reachable with probability 1. Then, the prob-
ability of reaching Y via an arc from X is the product of the
probability of being in X times the probability that the seg-
ment fromX toY can be completed. This product is computed
with the goalV:[reach(X),arc(X,Y)] in the first rule.
Since the goal contains two multi-occurring predicates, the
product V is computed as for integer values and then divided
N-1 times by the scale-up factor, where N is the number of
multi-occurring predicates in the b-expression (in this exam-
ple we have 2 multi-occurring predicates thus we divide V
only once by the scale-up factor). Finally, in the head of the
last rule, we only retain the maximum V—that is, we only
retain the path with largest probability to succeed. ��

In terms of implementation, it is clear that the approach
and compilation techniques we used to implement DatalogF S

when FS values are positive integers remain valid and can
now be used when FS values are arbitrary positive num-
bers (however sum rather than count will be used in the
running-FS terms). This follows directly from the fact that,
as we have described in the last section, we avoid expansions
in DatalogF S implementation. This also makes the semantics
of our programs independent from the scale-up factor used
—modulo some round-off issues discussed next.

Consider the program equivalent to that of Example 19
above, obtained using a scale-up factor of 100. This scale-up
multiplies by 100 both the reach and arc, for a combined
scaling of 100×100. Therefore, we must normalize back the
resulting sums by dividing the results by 100.

Thus the equivalent DatalogF S program for a scale-up fac-
tor of 100 is:

reach(a) : 100.

reach(Y) : W ← reach(X), V : [reach(X),arc(X,Y)],
W = V÷ 100,W �= 0.

This example also illustrates that an implicit round-off effect
is connected with the scale-up factor. For instance if V =
0.0048, for a scale-up factor of 100, we obtain W = 0, which
is rejected because we only allow positive multiplicities,
whereas with scale-up factor of 10,000, we obtain W = 48.
Therefore there is a round-off dependency connected with
the round-off factor, and this dependency can be minimized
by selecting higher scale-up factors. Thus we will assume
that our DatalogF S implementation can use the max scale-up
factor that can be efficiently supported by the target hard-
ware (32-bit or 64-bit). With that, round-off issues will not
occur in most applications, but in the few situation where
they are cause for concern, users can address them by “dou-
ble precision” declarations and the numeric approximation
techniques of scientific computing.

As discussed in the last section, explicit arithmetic expres-
sions are also allowed, provided that they are monotonic in
their FS-arguments. In Example 18, only one frequency vari-
able was used in the expression. For a query containing a
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monotonic expression on two variables, consider the follow-
ing equivalent formulation for the query in Example 19, that
computes the maximum probability of reaching other nodes
in the graph, starting from node a:

reach(a) : 1.00.

reach(Y) : V ← reach(X),V1 : [reach(X)],
V2 : [arc(X,Y)],V = V1 ∗ V2.

In the domain of positive numbers, sum and multiplication
are monotonic. However, subtraction and division are anti-
monotonic w.r.t. their second arguments (i.e., if these become
larger, the results become smaller). However, the compo-
sition of two antimonotonic functions is monotonic. This
provides a simple way to express shortest-path algorithms.
Rather than using the arc-distance D, we use its conduc-
tance: 1/D. Therefore the celebrated Floyd’s algorithm can
be expressed as shown in Example 20.

Example 20 Floyd’s algorithm:

fpath(X,Y) : C← arc(X,Y,D),C = 1/D.
fpath(X,Z) : C← node(Y),C1 : [fpath(X,Y)],

C2 : [fpath(Y,Z)],
C = 1/(1/C1+ 1/C2).

shortestpath(X,Z,D)← C =![fpath(X,Z)],D = 1/C

where arc(X,Y,D) denotes the weight D of the arc between
node X and node Y. Then, the first rule converts these weights
into conductances, and the second rule computes the maxi-
mum conductance of a path fromX toZ. Finally, the third rule
converts this value into a weight (which thus corresponds to
the minimum weight). ��

So, 1/C1 and 1/C2 are antimonotonic, and so is their
sum, whose reciprocal is therefore monotonic. Thus the last
rule, selecting the highest conductance path, in fact produces
the shortest path (and establishes this as a Max-optimizable
program). Indeed, (i) paths of lower conductance, and thus all
cycles, are automatically discarded during the computation,
(ii) the max-based optimization ignores all values, but the
max values, and (iii) the differential fixpoint computation
produces the two δ-rules shown at the end of Sect. 6.1: in
each of the two rules, the max-paths produced in the last step
are joined with the max-paths produced in previous steps.
Therefore we have that, after the max-based optimization,
the differential fixpoint program obtained from Example 20
performs the same computation steps as a procedural ver-
sion of Floyd’s algorithm. Therefore, the compiled version
of Example 20 achieves the well-known optimality properties
of Floyd’s algorithm on all-pairs shortest path computation.

8 Advanced graph applications

Many graph query languages were designed specifically
for this application area [26], including some which were

shown to have strong connections to Datalog [27–29]. Unlike
those languages that were designed for graphs, DatalogF S is
designed as a general–purpose extension of Datalog. How-
ever, its powerful new constructs entail a concise formulation
and efficient support for several graph-oriented applications
that were beyond the reach of traditional Datalog. In this sec-
tion, we discuss web-oriented applications, including social
networks and page rank.

8.1 Diffusion models with DatalogF S

The Jackson-Yariv Diffusion Model (JYDM) [30] provides
a very powerful abstraction on how social structures influ-
ence the spread of a behavior and trends in Social Net-
works. Typical applications include diffusion of innovations,
behaviors, information and political movements. An elegant
logic-based formalization of the JYDM model was given
in [31], whereby diffusion-related goals and optimization
problems can then be formulated as queries on this model.
Due to the need to ground probability annotations, how-
ever, the approach proposed in [31] can lead to inefficient
computations.

We will now show that JYDM can be expressed as com-
pact DatalogF S programs, that are conducive to very efficient
implementation. In JYDM, a graph G = 〈V, E〉 represents
the set V of agents and the set E of edges that are the relation-
ships between the agents. Each agent has a default behavior
(A) and a new behavior (B). An agent i decides on whether
to adopt behavior B depending on:

(i) A constant bci which quantifies the extent to which
agent i is susceptible to make a change (typically,
bci measures the reward/cost tradeoffs of making the
change).

(ii) The percentage of the neighbors of the agent that took
action B (e.g., the percentage of partners of the twitter
user who forwarded this tweet).

(iii) A function g : {1, . . . , |V |} → [0, 1] that modifies
criterion (ii) to take into account, in addition to per-
centage of neighbors who took action B, their number.9

Observe that g does not directly depend on the node, it
only depends on the number of its neighbors; however,
g and bc combined provide JYDM with much power
and flexibility in characterizing the response w.r.t. both
the numbers and percentages of neighbors agents who
took action B.

9 For instance, this function can be used to express the fact that an agent
who sees, say, all his 89 partners switching to B experiences a much
stronger push than another twitter user who sees his only partner moving
to B (although percentage-wise the two situations are the same).
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u1

u4

u2 u3

followed

followedfollowed

followed

Fig. 1 A diffusion model for twitter

Now, if Bi denotes the social pressure experienced by
agent i to adopt behavior B, then the Jackson-Yariv diffusion
model is expressed by the following equation:

Bi = bci ∗ g(Γi ) ∗ 1

Γi
∗

∑

( j,i)∈E

B j , ∀i ∈ V (7)

where Γi denotes the count of edges with end-node i
When a Bi crosses a threshold, then agent i switches

from behavior A to behavior B. Given that bci can be scaled
up/down to match the application requirements, the threshold
can be, and typically is, set to 1.

The JYDM-based diffusion of retweets can easily be
expressed in DatalogF S. We represent the twitter network
using atom followed(X,Y) to indicate that user X is fol-
lowed by user Y. Moreover, in order to apply the diffusion
model, we introduce the following facts:

– bc(X,K) means that K is the coefficient of node X.
– g(N,K) means that the function g(N) returns value K.

The default behavior A means that a user will not retweet,
while behavior B means that the user will retweet. Now, the
predicate b(X) represents the fact that X has retweeted. We
assume that there is an agent source(X) who first posts
the tweet and starts its diffusion.

Thus, Eq. 7 is modeled by the program in Example 21.

Example 21 Equation 7 in DatalogF S.

coeff(X,C)← K2 =![followed(Y,X)],bc(X,V1),

g(K2,V3),C = V1 ∗ V3/K2.

b(X)← source(X).

b(X)← coeff(X,C), K=1/C, K : [followed(Y,X),b(Y)].

In Eq. 7, the product bci ∗ g(Γi ) ∗ 1
Γi

is not recursive and it
depends only on the features of node i. Therefore, the first
rule computes this value for each user. The first goal in this
rule determines the number of neighbors of node X; the next
three goals in the rule compute the increment C that must
be added to X for each of its neighbors who switched to B.
Now, the last rule finds each node X for which the condition
K×C ≥ 1 holds by testing the equivalent conditionK ≥ 1/C.
When this is satisfied b(X) is set to true. ��

The answer to the query ?b(Y) will list all the users that
propagated the tweet that originated from the node specified
by source, as illustrated by the Example 8.1. Consider the
network in Fig. 1 where user u1 tweets about something. We
add the following facts to the program in Example 21 and
compute for each user if he/she will, or will not, retweet the
post.

followed(u1,u2). bc(u1,1). g(1,1.2). source(u1).

followed(u1,u3). bc(u2,0.9). g(2,2.3).

followed(u2,u4). bc(u3,0.5).

followed(u3,u4). bc(u4,1).

From these facts, the program in Example 21 derives the
following atoms:

coeff(u2,1.08), coeff(u3,0.6), coeff(u4,2.3),

b(u1), b(u2), b(u4).

Thus, first u2 and then u4 will retweet u1’s post.

8.2 Markov chains with DatalogF S

A Markov chain is a memory-less stochastic process that is
represented by the transition matrix W of s × s components
where the component wi j is the probability to go from the
state i to state j in one step. For each node i of the Markov
chain we have:

∑s
j=1 wi j = 1. A Markov chain is called

irreducible if for each pair of nodes i, j , the probabilities to
go from node i to node j in one or more steps is greater than
zero.

Computing stabilized probabilities of a Markov chain has
many real-world applications, such as estimating the distri-
bution of population in a region, and determining the Page
Rank of web nodes. Let P be a vector of stabilized proba-
bilities of cardinality s, then for each component pi of P the
following property holds:

pi =
s∑

j=1

w j i · p j (8)

This is the equilibrium condition, defines the Markov chain
equation, that can be expressed using matrices as follows:

P = W · P

Computing the fixpoint solution for this Markov chain equa-
tion is far from trivial. The simplest approach consists in
assigning an initial value (e.g., 1) to all nodes and then
iterating until the computation stabilizes. Unfortunately this
approach could fail to converge even for irreducible chains
that are guaranteed to have a non-trivial equilibrium solution.
As an example consider the simple and irreducible Markov
chain in Fig. 2. The computation of its stabilized probabilities
is the following:
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Step a b c

1st 1.0 1.0 1.0

2nd 0.5 2.0 0.5

3rd 1.0 1.0 1.0

4rd 0.5 2.0 0.5

5rd 1.0 1.0 1.0

· · · ·
∞ · · ·

a b

c

a

b

c

a b c

0.0

0.0

0.0

0.0

0.5

1.0

0.5

0.0 1.0

1.0

1.0

0.5

0.5

Fig. 2 An irreducible Markov chain

We can see that the computation flip-flops between two
states and fails to converge to the equilibrium solution. Thus
we have a Markov chain where the fixpoint algorithm for
Eq. 8 fluctuates.

We will next show that Markov chains can be modeled
quite naturally in DatalogF S, and this approach provides a
simple analysis and efficient algorithms for dealing with
this much-studied problem. Let p_state(X) : K denote
that K is the probability of node X,1 ≤ X ≤ s, and let
w_matrix(Y,X) : W denote that the edge from Y to X has
weight W. Then the following DatalogF S program models the
equilibrium P = W · P in a Markov Chain:

p_state(X) : K← K : [p_state(Y),w_matrix(Y,X)].
w_matrix(1,1) : w11.

w_matrix(1,2) : w12.

...

w_matrix(s,s) : wss.

where the facts in the program are used to assign the initial
weights of edges while the first rule computes Eq. 8.

Thus, we have a positive logic program which comes
endowed with well-known properties, including the fact that
it defines a fixpoint equation that has one or more solutions.
The least fixpoint solution is obtained when all pstate(X)
are false. This is the null solution which is not of any interest
in practice, since it corresponds to every city being empty, or
every page having rank 0. Thus the case of interest is when
there is some non-null solution: if we take a non-null solu-
tion vector and multiply each of its components for the same
constant we obtain another solution vector. We refer to this
transformation as scaling of solutions.

Now irreducible Markov chains are guaranteed to have
non-null solutions; thus some of their p_state are true,

a b

c

a

b

c

a b c

0.0

0.0

0.0

0.0

1.0

1.0

0.0

0.0 1.0

1.0

1.0
1.0

Fig. 3 A reducible Markov chain

that is, p_state(X) : K holds for some node X and some
K > 0 (i.e., node X has a positive solution). But since
each node is reachable from every other node, via non-
zero probability paths, we have that p_state(X) : Kx
with KX > 0 holds for every node X—that is, our Markov
chain has a positive solution at every node. Now for Markov
chains that have positive solutions at every node, we can use
DatalogF S to express and compute efficiently such solutions.
All is needed is to state baseline facts that assert the same
non-zero multiplicity for each node of our Markov chain. For
instance, we can use the multiplicity of 1 and add the facts:
p_state(j),j = 1, . . . ,s. These will be called baseline
facts, and the resulting program will be called a baseline pro-
gram. Thus, for the example at hand we have the following
DatalogF S program where the three baseline facts are listed
last.

Example 22 A baseline Program for the Markov Chain of
Fig. 3.

p_state(X) : K← K : [p_state(Y),w_matrix(Y,X)].
w_matrix(a,b) : 1.0.

w_matrix(b,a) : 0.5.

w_matrix(b,c) : 0.5.

w_matrix(c,b) : 1.0.

p_state(a).

p_state(b).

p_state(c).

where the last three facts are used to denote that a, b and c
are the nodes in the Markov Chain for which the equilibrium
is computed. ��

The iterative computation of the least fixpoint for the
DatalogF S program in Example 22 is as follows:

Step p_state(a) p_state(b) p_state(c)

1st 1.0 1.0 1.0

2nd 1.0 2 .0 1.0

3rd 1.0 2 .0 1.0

where each line in the table corresponds to an iteration of the
fixpoint operator, and in the first line, we have all 1s because
the baseline is fixed to 1. The iteration converged in three
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steps to a solution that is a fixpoint for the above program
and captures the correct ratio between the probabilities (or
the population) of the various nodes. This might in fact be all
is needed in applications such as page rank where we are pri-
marily interested in determining the rank order of pages. For
other applications, we might need to normalize these results
to satisfy constraints about total population or probabilities.
For instance, assuming that the sum of probabilities must add
up to 1, then the probability for a node X is the final-FS value
of this node divided by the sum of values at all nodes:

p_norm(X,Pr)← K1 =![p_state(X)],K2 =![p_state(Y)],
Pr = K1/K2.

Thus for example at hand, the normalized probability values
are: a = 0.25, b = 0.5 and c = 0.25.

Therefore, in order to find the fixpoints for program P
that models our Markov chain, we added baseline facts and
obtained the baseline program Pbl. Pbl is a DatalogF S

program for which we can compute the least fixpoint effi-
ciently. Moreover every fixpoint of Pbl is also a fixpoint
for P. Indeed, for any interpretation I that contains all the
baseline facts, the respective immediate consequence oper-
ators produce the same results: that is, TP (I ) = TPbl(I ).
Therefore any fixpoint of TP that contains all the baseline
facts is also a fixpoint for TPbl and vice versa. But since, by
its very definition, the least model of Pbl contains all the
baseline facts, we have that every fixpoint for TPbl is also
a fixpoint for TP . The opposite of course is not true since
the null fixpoint of TP , and possibly others, is not fixpoint
for TPbl . However, if TP has a fixpoint that is positive at all
nodes, then by multiplying the frequency at all nodes by a
large enough finite constant, we obtain a fixpoint for TP that
contains all the baseline facts of TPbl . Since each irreducible
Markov chain TP has a finite fixpoint that is null at every
node, then there exists a finite fixpoint for TPbl . Therefore,
the least fixpoint for TPbl is finite. That is, we can state the
following theorem:

Theorem 5 The least fixpoint of the baseline DatalogF S

program that models an irreducible Markov chain is finite.

The operation of multiplying the frequency of the solution
at each node by a positive constant will be called scaling. Now
since irreducible programs have positive solutions at every
node we can state the following theorem:

Theorem 6 Every non-null solution of an irreducible
Markov chain can be obtained by scaling the least fixpoint
solution of its baseline DatalogF S model.

In summary, while there has been a significant amount
of previous work on Markov chains, the use of DatalogF S

provides us with a model and a simple computation algorithm
which is valid for all irreducible Markov chains, including
periodic ones.

Obviously there are many Markov chains that are not
irreducible, including the one in Fig. 3 where, using 0.1
as base line, the computation of the least fixpoint is as
follows:

Step a b c

1st 0.1 0.1 0.1

2nd 0.1 0.2 0.1

3rd 0.1 0.2 0.2

4rd 0.1 0.3 0.2

5rd 0.1 0.3 0.3

· · · ·
∞ 0.1 ∞ ∞

Thus, the computation only converges at the first ordinal,
producing infinite values and the corresponding least fixpoint
is not finite. A practical solution for these situations, which is
used for example, in the Page Rank algorithm, is to introduce
a damping factor that transforms the chain into an irreducible
chain. We are also investigating a different approach, where
instead of modifying the network configuration, we use tech-
niques inspired by the computation of greatest fixpoints. This
research line is still at its initial stage and will be discussed
in future reports.

9 Related work

Logic-based query languages were quintessential in the intro-
duction of the relational data model by E.F. Codd in the
70s; through major efforts in scalable implementation and
query optimization this led to the development of relational
DBMS in the 80s. Over time, the excitement generated
by the extraordinary success of relational DBMS, on both
research and business fronts, gave way to the realization
that query languages more expressive than relational alge-
bra and SQL-2 were needed; this motivated the work on
Datalog and related languages that support rules and recur-
sive queries. Recursive Datalog programs come with a simple
and elegant least fixpoint semantics, which is also equivalent
to both the logic-based model-theoretic and proof-theore-
tic semantics of the program clauses [9,25]. Furthermore,
the least fixpoint semantics can be efficiently supported by
the iterated execution of the rules enhanced by techniques
such as the differential fixpoint (a.k.a. seminaive fixpoint)
method [18,25,32,33]. This optimization step avoids redun-
dant execution of rules in a bottom-up computation, that
is, from the database to the rule goals. In addition to this
method, techniques such as Magic-Sets and specialization
of left/right recursive rules, are also applicable when some
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arguments in query goals are required to satisfy certain con-
straints [18,25,32,33].

However, these desirable properties only hold when
the rules define monotonic transformations (w.r.t.
set-containment), and negation or aggregates in rules com-
promise their monotonicity, along with the nice properties
above, and the ability of supporting complex applications via
recursion. Much research work has therefore sought ways to
generalize (i) the semantics of Datalog and (ii) its efficient
implementation when negation and aggregates are used in the
rules. This work has produced the notion of stratification that
satisfies both properties, and is also quite simple for users to
master [18,25,32,33]. Unfortunately, Datalog programs that
are stratified with respect to negation and contain no function
symbols cannot support (i) the expression of many queries,
including the simple game query discussed in [20], and the
summarized part explosion problem discussed in [22], and
(ii) the efficient formulation of many other graph optimiza-
tion algorithms, which typically require the computation of
extrema and counts in recursion.

The importance of optimization and graph applications
have motivated much research work seeking to solve these
problems. In general, said proposals follow three main
approaches. The first consists in supporting infinite levels of
stratifications using Datalog1S programs [25,34,35]; a sec-
ond approach instead attempts to preserve the fixpoint com-
putation via continuous aggregates and non-deterministic
choice constructs [24,36–38]. Finally, the third approach
seeks to achieve monotonicity by using partial orders that
are more general than set-containment [8,19]. The ingenious
solutions proposed in these papers were of limited gener-
ality and often required very sophisticated users and com-
pilers (e.g., it was quite difficult for the compiler to decide
if the program at hand is monotonic [10]). DatalogF S does
not suffer from these problems as we have shown in the
paper.

10 Conclusion

In this paper, we studied the important problem of allow-
ing aggregates in recursive Datalog rules, and proposed
a solution of surprising simplicity for this challenge. Our
DatalogF S approach is based on using continuous aggregate-
like functions that allow us to query and reason on the fre-
quency with which predicates and conjunctions of predicates
occur. Thus, we extended the declarative semantics of the
logic-based paradigm, and showed that DatalogF S programs
have very efficient bottom-up execution via a general-
ized seminaive fixpoint and the Max-based optimization
introduced in Sect. 6.2. In particular, we showed that
DatalogF S entails concise formulations and efficient imple-
mentations for algorithms that require aggregates in logic

programs. In fact, DatalogF S supports recursive programs
with (i) monotonic counts (Examples 8, 9, 10), (ii) extrema
aggregates (Examples 19, 20), and (iii) sum aggregates over
positive number (Examples 15, 1). Finally, in the Appendix,
we show that aggregates on negative numbers can also be
expressed in DatalogF S. These findings suggest that simpler
unified notations for aggregates in DatalogF S and Datalog
are possible and desirable in practice, and this will be a topic
of future work.

The formal results and many examples presented in this
paper illustrate that the application range of deductive data-
bases is now significantly wider since (i) queries that are
provably not expressible in Datalog with stratified negation
and aggregates [20,22] can now be expressed in DatalogF S,
and (ii) DatalogF S also entails the efficient formulations of
many queries for which only sub-optimal formulations were
possible using Datalog with stratified negation and aggre-
gates. Even more significant is perhaps the fact that queries
that had not been considered within the natural applica-
tion domain of Datalog can now be concisely formulated
and efficiently supported. In fact, the treatment of Markov
Chains presented in Sect. 9 demonstrates that, by providing
a simple and effective model for the analysis and solution
of complex problems, DatalogF S can also enrich our under-
standing of application domains. Exploring this opportunity
provides a topic for future research, which will also address
the parallel executions of DatalogF S queries for advanced
analytics.

In conclusion, the theoretical results and several applica-
tions presented in the paper prove that DatalogF S entails con-
cise formulations and efficient implementations for a large
class of algorithms that could not be supported efficiently
or could not be expressed at all in Datalog. These major
improvements in power and generality were achieved by
adding the monotonic Running-FS construct to Datalog with
stratified negation, which is the basic non-monotonic con-
struct that can found in most versions and implementations
of this great language.
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Appendix A: Abstract semantics by example

The abstract semantics of a DatalogF S program P is defined
by its translation into a set of Horn clauses called the expan-
sion of P. For example, let us consider the query in Example
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11 that counts how many copies of each basic part are con-
tained in assemblies:

cassb(Part,Sub) : Qty ← assbl(Part,Sub,Qty).

cbasic(Pno) : 1← basic(Pno, _).

cbasic(Part) : K← K : [cassb(Part,Sub),cbasic(Sub)].

We rewrite all multi-occuring predicates using
lessthan, obtaining

cassb(Part,Sub,J)← assbl(Part,Sub,Qty),

lessthan(J,Qty).

cbasic(Pno,J)← lessthan(J,1),basic(Pno, _).

cbasic(Part,J)← lessthan(J,K),

K : [cassb(Part,Sub,J1),cbasic(Sub,J2)].

The third rule evaluates the join ofcassb(Part,Sub, _)

and cbasic(Sub, _) on Sub, and from their multiplicity
of the two operands derives the counts associated with each
Part. But in terms of formal abstract semantics no count
aggregate is used: we instead use theconj predicate specific
to each b-expression. For the case at hand we obtain (using
lists to assemble the values of the three local variables into
an object):

conj(1,Part, [[Sub,J1,J2]])← cassb(Part,Sub,J1),

cbasic(Sub,J2).

conj(N1,Part, [[Sub,J1,J2]|T])← cassb(Part,Sub,J1),

cbasic(Sub,J2),

conj(N,Part,T),

notin([Sub,J1,J2],T),

N1 = N+ 1.

notin(Z, [ ]).
notin(Z, [V|T])← Z �= V,notin(Z,T).

Therefore, the semantic-defining rewriting of our FS-literals
expand our DatalogF S program into standard Horn Clauses,
for which model-theoretic, proof-theoretic and fixpoint
semantics exist and are equivalent. Thus the FS terms can be
used freely in recursive rules. However this rewriting does
not provide a good starting point for implementation since
it is extremely inefficient. Thus, in the example above, we
have triples[Sub, J1, J2], and we build all lists of such
triplets without repetitions; as we do that, we also count the
N elements in each of the N! lists.10

Efficient implementations that are fully consistent with
the formal semantics, are however possible starting directly
from the FS constructs in the rules and we suggest that this
is the approach that should be taken in actual implemen-
tations of DatalogF S. In fact, working directly with the FS
constructs in the rules is much preferable in terms of perfor-
mance and it also more attractive in terms of usability. Indeed,
concepts such as multiplicity are simple and enough that
users would rather program with running-FS and FS-assert
terms, rather than their abstract definitions based on lists and
recursive predicates. Although Prolog-like implementation

10 A somewhat more efficient computation could be achieved via
ordered lists. This approach however is undesirable inasmuch as it
requires a totally ordered universe and compromises genericity [18].

approaches are also possible, in this paper we focused on
Datalog implementation technology.

Appendix B: The expressive power of running-FS

In Sect. 5, we claimed that the increased expressive power of
stratified DatalogF S is due only to the running-FS construct.
In this section we prove such assertion by showing that final-
FS goals and FS-assert constructs can be rewritten using only
running-FS goals and stratified negation.

In Sects. 3.3 and 3.4 we have shown the rewriting in logic
programming without lists of final-FS goals and FS-assert,
respectively. However, the rewritings that we have shown
use integer comparisons (operator > for final-FS goals) and
the sum operator (for FS-assert constructs). Now we will
show how it is possible to rewrite final-FS goals and FS-
assert constructs using only running-FS goals without integer
comparison and built-in integer operation as the sum.

As shown in Sect. 3.4, a final-FS goal
Kj =![exprj(Xj,Yj)] is rewritten as the conjunction:

Kj : [exprj(Xj,Yj)],¬morethan(Yj,K)

where the predicate morethan is defined as follows:

morethan(Yj,K)← K1 : [exprj(_,Yj)],K1 > K.

this rule uses the integer comparison > and this could lead
to think that its use adds expressive power to our language.
However, this is not the case and in the following we provide
a further rewriting that only uses the inequality operator �=:

morethan(Yj,K)← exprj(Zj,Yj),
K : [exprj(Xj,Yj),Xj �= Zj].

Similarly, in the case of FS-assert constructs we have
shown, in Sect. 3.3, their rewriting which uses integer com-
parison and the sum operator as follows:

lessthan(1,K)← K ≥ 1.

lessthan(J1,K)←lessthan(J,K),K>J,J1 = J+ 1.

these rules can be rewritten as follows:

a(1,0).

a(1,1).

a(K,1)← K : [a(K1,X)].
b(1,K,0)← a(K,1).

b(1,K,1)← a(K,1).

b(K,K1,1)← a(K1, _),K : [b(K2,K1,X),K1 �= K2].
lessthan(K,K1)← b(K,K1,1).

where predicate a generates all integer numbers from 1 until
the maximum precision (as the first rule of the lessthan
predicate in the previous two rules). Then, the 4th and 5th
rule, generate, for each integer, two b predicates and the 6th
rule, given a number K1, generates as many occurrences of
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predicate b as K1. Finally, the last rule will generate as many
predicates lessthan as the required K.

Appendix C: Stratified aggregates

The expressive power of Da on unordered domains (gener-
icity), is also of significant theoretical interest. This issue
has been studied by Mumick and Shmueli in [22], where the
basic arithmetic functions (+,−, ∗, . . .) were also allowed
as built-in. Even with these extensions, Da cannot express
the generalized part explosion query of Example 15. In the
rest of this section, we will express Datalog aggregates in
DatalogF S. Then, from Example 15 we can conclude that,
for unordered domains:

Theorem 7 Da � DatalogF S

Let us now discuss how to express Da in DatalogF S.
Mumick and Shmueli describe Datalog with stratified aggre-
gates as an extension of Datalog that permits a “Groupby”
predicates of the form

GROUPBY(r(t), [Y1,Y2,...,Ym],Z1 = A1(E1(t)), . . . ,Zn = An(En(t)))

to appear as subgoals in Datalog body rules. The “Groupby”
predicate takes as arguments: a predicate r with its attribute
list t, a grouping list [Y1,Y2,...,Ym] contained in t and a
set of aggregation terms Z1 = A1(E1), . . . ,Zn = An(En).
For each aggregation term Zi = Ai(Ei(t)),Zi is a new
variable, Ei(t) is an arithmetic expression that uses the vari-
ables t and Ai is an aggregate operator, for example sum,
count, max, min and avg. Stratification means that if
a derived relation r1 is defined by applying aggregation on
a derived relation r2, then r2’s definition does not depend,
syntactically, on relation r1.

Example 23 Stratified aggregate.

p(Y,Z1,Z2)← GROUPBY(r(_,Y,F), [Y],Z1 = avg(F),Z2 = sum(F)).

This program returns for each Y value in r the average and
sum of value assumed by F in r. ��

We can express the predicate “Groupby” by using
DatalogF S. Without loss of generality we can consider only
one aggregation term. In fact for each rule of the form

p(Y1, . . . ,Ym,Z1, . . . ,Zn)← GROUPBY(r(t), [Y1, . . . ,Ym],
Z1 = A1(E1(t)), . . . ,Zn = An(En(t))).

we can rewrite the program in the following way:
r0 : p(Y1, . . . ,Ym,Z1, . . . ,Zn)← p1(Y1, . . . ,Ym,Z1), . . .

. . . ,pn(Y1, . . . ,Ym,Zn).

r1 : p1(Y1, . . . ,Ym,Z1)← GROUPBY(r(t), [Y1, . . . ,Ym],Z1 = A1(E1(t))).

.

.

.

rn : pn(Y1, . . . ,Ym,Zn)← GROUPBY(r(t), [Y1, . . . ,Ym],Zn = An(En(t))).

where r1, . . . , rn are rules with “GROUPBY” predicate with
only one aggregation term.

Count aggregate We start by showing how the “GROUPBY”
predicate with count aggregate can be express in DatalogF S.
Consider the following rule

p(y,Z)← GROUPBY(r(_,y,x), [y],Z = count(x)).

where y is the list of grouping variables, x is the list of count
variables. The following program can be rewrite in this way:

p(y,Z)← r(_,y, _),Z =![r′(y,x)].
r′(y,x)← r(_,y,x).

where the rule with predicate r ′ represents a projection over
relation r.

Sum aggregate The next step consists to show how to use the
aggregate sum on decimal number. Suppose that we have the
scale-up factor d = 10n that represent the decimal precision
number (see Sect. 7) where n is large enough to represent the
decimal numbers used. The rule with sum aggregate has the
following form:

p(y,Z)← GROUPBY(r(_,y,x), [y],Z = sum(E(y,x)).

where E is a expression composed by built-in functions
(+,−, ∗, . . .) that use some variables in y and x. Initially,
we compute for each fact of relation r the expression E(y,x)

and we convert such value in a multiplicity by distinguishing
its sign.

r′′(y,x,+) : K← r(_,y,x),Z = E(y,x),Z > 0,K = Z ∗ d.

r′′(y,x,−) : K← r(_,y,x),Z = E(y,x),Z < 0,K = −Z ∗ d.

As last we obtain the sum aggregate value by subtract the sum
Z− of negative numbers from the sum of positive numbers
Z+ in the following way:

p(y,Z)← r(_,y, _),Z+ =![r′′(y,x,+)],
Z− =![r′′(y,x,−)],Z = (Z+ − Z−)/D.

Note that the result value is scaled up by using a factor D.

Average aggregate The average aggregate can be obtained
by combining the sum and count aggregate. Thus given the
average aggregate rule:

p(y,Z)← GROUPBY(r(_,y,x), [y],Z = avg(E(y,x)).

it is possible to rewrite it in DatalogF S by using the following
rule:

p(y,Z)← r(_,y, _),Z+ =![r′′(y,x,+)],Z− =![r′′(y,x,−)],
K =![r(_,y,x)],Z = (Z+ − Z−)/(K ∗ D).

where the rule that defines the predicates r ′′ is the rule used
in sum aggregate.
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Min and max aggregates For min and max aggregate it is
sufficient to use the Negation-stratified Datalog. It follows
that for the min aggregate rule:

p(y,Z)← GROUPBY(r(_,y,x), [y],Z = min(E(y,x)).

we have the following Negation-stratified Datalog:

p(y,Z)← r(_,y,x),Z = E(y,x),¬p′(y,x).

p′(y,x)← r(_,y,x),r(_,y,x′),E(y,x′) < E(y,x).

We can obtain the max aggregate by change the E(y,x′) <

E(y,x) atom in the second rule with E(y,x′) > E(y, x).
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