Share this page:

Representation Learning for Resource-Constrained Keyphrase Generation

Di Wu, Wasi Uddin Ahmad, Sunipa Dev, and Kai-Wei Chang, in EMNLP-Finding, 2022.

Code

Download the full text


Abstract

State-of-the-art keyphrase generation methods generally depend on large annotated datasets, limiting their performance in domains with limited annotated data. To overcome this challenge, we design a data-oriented approach that first identifies salient information using unsupervised corpus-level statistics, and then learns a task-specific intermediate representation based on a pre-trained language model. We introduce salient span recovery and salient span prediction as denoising training objectives that condense the intra-article and inter-article knowledge essential for keyphrase generation. Through experiments on multiple keyphrase generation benchmarks, we show the effectiveness of the proposed approach for facilitating low-resource and zero-shot keyphrase generation. We further observe that the method especially benefits the generation of absent keyphrases, approaching the performance of models trained with large training sets.


Bib Entry

@inproceedings{wu2022representation,
  title = {Representation Learning for Resource-Constrained Keyphrase Generation},
  author = {Wu, Di and Ahmad, Wasi Uddin and Dev, Sunipa and Chang, Kai-Wei},
  booktitle = {EMNLP-Finding},
  year = {2022}
}

Related Publications

  1. Representation Learning for Resource-Constrained Keyphrase Generation

    Di Wu, Wasi Uddin Ahmad, Sunipa Dev, and Kai-Wei Chang, in EMNLP-Finding, 2022.
    Full Text Code Abstract BibTeX Details
    State-of-the-art keyphrase generation methods generally depend on large annotated datasets, limiting their performance in domains with limited annotated data. To overcome this challenge, we design a data-oriented approach that first identifies salient information using unsupervised corpus-level statistics, and then learns a task-specific intermediate representation based on a pre-trained language model. We introduce salient span recovery and salient span prediction as denoising training objectives that condense the intra-article and inter-article knowledge essential for keyphrase generation. Through experiments on multiple keyphrase generation benchmarks, we show the effectiveness of the proposed approach for facilitating low-resource and zero-shot keyphrase generation. We further observe that the method especially benefits the generation of absent keyphrases, approaching the performance of models trained with large training sets.
    @inproceedings{wu2022representation,
      title = {Representation Learning for Resource-Constrained Keyphrase Generation},
      author = {Wu, Di and Ahmad, Wasi Uddin and Dev, Sunipa and Chang, Kai-Wei},
      booktitle = {EMNLP-Finding},
      year = {2022}
    }
    
    Details
  2. Select, Extract and Generate: Neural Keyphrase Generation with Layer-wise Coverage Attention

    Wasi Ahmad, Xiao Bai, Soomin Lee, and Kai-Wei Chang, in ACL, 2021.
    Full Text Abstract BibTeX Details
    In recent years, deep neural sequence-to-sequence framework has demonstrated promising results in keyphrase generation. However, processing long documents using such deep neural networks requires high computational resources. To reduce the computational cost, the documents are typically truncated before given as inputs. As a result, the models may miss essential points conveyed in a document. Moreover, most of the existing methods are either extractive (identify important phrases from the document) or generative (generate phrases word by word), and hence they do not benefit from the advantages of both modeling techniques. To address these challenges, we propose \emphSEG-Net, a neural keyphrase generation model that is composed of two major components, (1) a selector that selects the salient sentences in a document, and (2) an extractor-generator that jointly extracts and generates keyphrases from the selected sentences. SEG-Net uses a self-attentive architecture, known as, \emphTransformer as the building block with a couple of uniqueness. First, SEG-Net incorporates a novel \emphlayer-wise coverage attention to summarize most of the points discussed in the target document. Second, it uses an \emphinformed copy attention mechanism to encourage focusing on different segments of the document during keyphrase extraction and generation. Besides, SEG-Net jointly learns keyphrase generation and their part-of-speech tag prediction, where the later provides syntactic supervision to the former. The experimental results on seven keyphrase generation benchmarks from scientific and web documents demonstrate that SEG-Net outperforms the state-of-the-art neural generative methods by a large margin in both domains.
    @inproceedings{ahmad2021select,
      title = {Select, Extract and Generate: Neural Keyphrase Generation with Layer-wise Coverage Attention},
      author = {Ahmad, Wasi and Bai, Xiao and Lee, Soomin and Chang, Kai-Wei},
      booktitle = {ACL},
      year = {2021}
    }
    
    Details