A Sequential Dual Method for Large Scale Multi-Class Linear SVMs

S. Sathiya Keerthi, S. Sundararajan, Kai-Wei Chang, Cho-Jui Hsieh, and Chih-Jen Lin, in KDD, 2008.

[Full Text]


Efficient training of direct multi-class formulations of linear Support Vector Machines is very useful in applications such as text classification with a huge number examples as well as features. This paper presents a fast dual method for this training. The main idea is to sequentially traverse through the training set and optimize the dual variables associated with one example at a time. The speed of training is enhanced further by shrinking and cooling heuristics. Experiments indicate that our method is much faster than state of the art solvers such as bundle, cutting plane and exponentiated gradient methods

Bib Entry

  author = {Keerthi, S. Sathiya and Sundararajan, S. and Chang, Kai-Wei and Hsieh, Cho-Jui and Lin, Chih-Jen},
  title = {A Sequential Dual Method for Large Scale Multi-Class Linear SVMs},
  booktitle = {KDD},
  year = {2008}