MathVista: Evaluating Mathematical Reasoning of Foundation Models in Visual Contexts
Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan Li, Hannaneh Hajishirzi, Hao Cheng, Kai-Wei Chang, Michel Galley, and Jianfeng Gao, in ICLR, 2024.
Oral, 85 out of 7200 submissions, top 1.2%
Code DemoDownload the full text
Abstract
Although Large Language Models (LLMs) and Large Multimodal Models (LMMs) exhibit impressive skills in various domains, their ability for mathematical reasoning within visual contexts has not been formally examined. Equipping LLMs and LMMs with this capability is vital for general-purpose AI assistants and showcases promising potential in education, data analysis, and scientific discovery. To bridge this gap, we present MathVista, a benchmark designed to amalgamate challenges from diverse mathematical and visual tasks. We first taxonomize the key task types, reasoning skills, and visual contexts from the literature to guide our selection from 28 existing math-focused and visual question answering datasets. Then, we construct three new datasets, IQTest, FunctionQA, and PaperQA, to accommodate for missing types of visual contexts. The problems featured often require deep visual understanding beyond OCR or image captioning, and compositional reasoning with rich domain-specific tools, thus posing a notable challenge to existing models. We conduct a comprehensive evaluation of 11 prominent open-source and proprietary foundation models (LLMs, LLMs augmented with tools, and LMMs). The best-performing model, Multimodal Bard, achieves only 58% of human performance (34.8% vs 60.3%), indicating ample room for further improvement. Given this significant gap, MathVista fuels future research in the development of general-purpose AI agents capable of tackling mathematically intensive and visually rich real-world tasks.
🚀Excited to release our 112-page study on math reasoning in visual contexts via #MathVista. For the first time, we provide both quantitative and qualitative evaluations of #GPT4V, #Bard, & 10 other models.
— Pan Lu (@lupantech) October 25, 2023
📄✨Full paper: https://t.co/GaXMmDzP23
🔗Proj: https://t.co/oZsHNVrSTc… pic.twitter.com/CzU1Bb5a6D
Bib Entry
@inproceedings{lu2024mathvista, title = {MathVista: Evaluating Mathematical Reasoning of Foundation Models in Visual Contexts}, author = {Lu, Pan and Bansal, Hritik and Xia, Tony and Liu, Jiacheng and Li, Chunyuan and Hajishirzi, Hannaneh and Cheng, Hao and Chang, Kai-Wei and Galley, Michel and Gao, Jianfeng}, booktitle = {ICLR}, year = {2024} }