Our long-term research goal is to develop models, algorithms, and learning protocols for fair, accountable, and robust language processing technology. Please see our selected recent publications on these topics.
- Multimodal, Multilingual LLM
- Trustworthy NLP (Fairness, Robustness, Accountability)
- Learning, Reasoning, and Inference in Natural Language Processing
- NLP for Social Good Applications
Multimodal, Multilingual Large Language Models
Vison-Language Foundataion Models
-
DesCo: Learning Object Recognition with Rich Language Descriptions
Liunian Harold Li, Zi-Yi Dou, Nanyun Peng, and Kai-Wei Chang, in NeurIPS, 2023.
Full Text Demo Abstract BibTeX Details Ranks 1st at the #OmniLabel Challenge of CVPR2023Recent development in vision-language approaches has instigated a paradigm shift in learning visual recognition models from language supervision. These approaches align objects with language queries (e.g. "a photo of a cat") and improve the models’ adaptability to identify novel objects and domains. Recently, several studies have attempted to query these models with complex language expressions that include specifications of fine-grained semantic details, such as attributes, shapes, textures, and relations. However, simply incorporating language descriptions as queries does not guarantee accurate interpretation by the models. In fact, our experiments show that GLIP, the state-of-the-art vision-language model for object detection, often disregards contextual information in the language descriptions and instead relies heavily on detecting objects solely by their names. To tackle the challenges, we propose a new description-conditioned (DesCo) paradigm of learning object recognition models with rich language descriptions consisting of two major innovations: 1) we employ a large language model as a commonsense knowledge engine to generate rich language descriptions of objects based on object names and the raw image-text caption; 2) we design context-sensitive queries to improve the model’s ability in deciphering intricate nuances embedded within descriptions and enforce the model to focus on context rather than object names alone. On two novel object detection benchmarks, LVIS and OminiLabel, under the zero-shot detection setting, our approach achieves 34.8 APr minival (+9.1) and 29.3 AP (+3.6), respectively, surpassing the prior state-of-the-art models, GLIP and FIBER, by a large margin.
@inproceedings{li2023desco, author = {Li, Liunian Harold and Dou, Zi-Yi and Peng, Nanyun and Chang, Kai-Wei}, title = {DesCo: Learning Object Recognition with Rich Language Descriptions}, booktitle = {NeurIPS}, year = {2023} }
-
Text Encoders are Performance Bottlenecks in Contrastive Vision-Language Models
Amita Kamath, Jack Hessel, and Kai-Wei Chang, in EMNLP, 2023.
Full Text Abstract BibTeX DetailsPerformant vision-language (VL) models like CLIP represent captions using a single vector. How much information about language is lost in this bottleneck? We first curate CompPrompts, a set of increasingly compositional image captions that VL models should be able to capture (e.g., single object, to object+property, to multiple interacting objects). Then, we train text-only recovery probes that aim to reconstruct captions from single-vector text representations produced by several VL models. This approach doesn’t require images, allowing us to test on a broader range of scenes compared to prior work. We find that: 1) CLIP’s text encoder falls short on object relationships, attribute-object association, counting, and negations; 2) some text encoders work significantly better than others; and 3) text-only recovery performance predicts multi-modal matching performance on ControlledImCaps: a new evaluation benchmark we collect+release consisting of fine-grained compositional images+captions. Specifically – our results suggest text-only recoverability is a necessary (but not sufficient) condition for modeling compositional factors in contrastive vision+language models.
@inproceedings{kamath2023text, author = {Kamath, Amita and Hessel, Jack and Chang, Kai-Wei}, title = {Text Encoders are Performance Bottlenecks in Contrastive Vision-Language Models}, booktitle = {EMNLP}, year = {2023} }
-
"What’s ’up’ with vision-language models? Investigating their struggle to understand spatial relations."
Amita Kamath, Jack Hessel, and Kai-Wei Chang, in EMNLP, 2023.
Full Text Abstract BibTeX DetailsRecent vision-language (VL) models have reached human parity on VQAv2 — but does that mean they can distinguish "left" from "right"? We curate three new corpora to precisely quantify model ability to comprehend basic spatial relations: COCO-prep from COCO, GQA-prep from GQA, and RealCLEVR from images we capture ourselves with even tighter controls. Compared to prior evaluations which conflate several types of reasoning, our three tests offer precise evaluations of spatial relations, e.g., our RealCLEVR benchmark is controlled, with only the preposition changing between images within a set, e.g. mug on/under/left of/right of a table. This enables us to evaluate model performance on pairs or sets of prepositions. We evaluate 18 VL models, finding that all fall far behind human performance (despite surpassing human performance on VQAv2, as in the case of BLIP2); most only achieve a few points above random chance across all benchmarks. We then study the LAION-2B dataset, which was used to train OpenCLIP models, to investigate if pre-training data can provide clues as to why spatial relation understanding doesn’t emerge. We find that prepositions are infrequent and often ambiguous in LAION 2B. Based on this corpus analysis, we investigate a few training strategies to address this shortcoming. While up-weighting preposition-containing instances and fine-tuning on IID data improve accuracy slightly, our three spatial relation benchmarks remain challenging for all VL models we test. We will release code and data.
@inproceedings{kamath2023whatsup, title = {"What's 'up' with vision-language models? Investigating their struggle to understand spatial relations."}, author = {Kamath, Amita and Hessel, Jack and Chang, Kai-Wei}, booktitle = {EMNLP}, year = {2023} }
-
REVEAL: Retrieval-Augmented Visual-Language Pre-Training with Multi-Source Multimodal Knowledge
Ziniu Hu, Ahmet Iscen, Chen Sun, Zirui Wang, Kai-Wei Chang, Yizhou Sun, Cordelia Schmid, David A. Ross, and Alireza Fathi, in CVPR, 2023.
Full Text Abstract BibTeX DetailsIn this paper, we propose an end-to-end Retrieval-Augmented Visual Language Model (REVEAL) that learns to encode world knowledge into a large-scale memory, and to retrieve from it to answer knowledge-intensive queries. REVEAL consists of four key components: the memory, the encoder, the retriever and the generator. The large-scale memory encodes various sources of multimodal world knowledge (e.g. image-text pairs, question answering pairs, knowledge graph triplets, etc) via a unified encoder. The retriever finds the most relevant knowledge entries in the memory, and the generator fuses the retrieved knowledge with the input query to produce the output. A key novelty in our approach is that the memory, encoder, retriever and generator are all pre-trained end-to-end on a massive amount of data. Furthermore, our approach can use a diverse set of multimodal knowledge sources, which is shown to result in significant gains. We show that REVEAL achieves state-of-the-art results on visual question answering and image captioning.
@inproceedings{hu2023reveal, author = {Hu, Ziniu and Iscen, Ahmet and Sun, Chen and Wang, Zirui and Chang, Kai-Wei and Sun, Yizhou and Schmid, Cordelia and Ross, David A. and Fathi, Alireza}, title = {REVEAL: Retrieval-Augmented Visual-Language Pre-Training with Multi-Source Multimodal Knowledge}, booktitle = {CVPR}, year = {2023} }
-
Grounded Language-Image Pre-training
Liunian Harold Li, Pengchuan Zhang, Haotian Zhang, Jianwei Yang, Chunyuan Li, Yiwu Zhong, Lijuan Wang, Lu Yuan, Lei Zhang, Jenq-Neng Hwang, Kai-Wei Chang, and Jianfeng Gao, in CVPR, 2022.
Full Text Code Abstract BibTeX Details Best Paper Finallist, 33 out of 8161 submissions, top 0.4%This paper presents a grounded language-image pre-training (GLIP) model for learning object-level, language-aware, and semantic-rich visual representations. GLIP unifies object detection and phrase grounding for pre-training. The unification brings two benefits: 1) it allows GLIP to learn from both detection and grounding data to improve both tasks and bootstrap a good grounding model; 2) GLIP can leverage massive image-text pairs by generating grounding boxes in a self-training fashion, making the learned representation semantic-rich. In our experiments, we pre-train GLIP on 27M grounding data, including 3M human-annotated and 24M web-crawled image-text pairs. The learned representations demonstrate strong zero-shot and few-shot transferability to various object-level recognition tasks. 1) When directly evaluated on COCO and LVIS (without seeing any images in COCO during pre-training), GLIP achieves 49.8 AP and 26.9 AP, respectively, surpassing many supervised baselines. 2) After fine-tuned on COCO, GLIP achieves 60.8 AP on val and 61.5 AP on test-dev, surpassing prior SoTA. 3) When transferred to 13 downstream object detection tasks, a 1-shot GLIP rivals with a fully-supervised Dynamic Head.
@inproceedings{li2022grounded, title = {Grounded Language-Image Pre-training}, author = {Li, Liunian Harold and Zhang, Pengchuan and Zhang, Haotian and Yang, Jianwei and Li, Chunyuan and Zhong, Yiwu and Wang, Lijuan and Yuan, Lu and Zhang, Lei and Hwang, Jenq-Neng and Chang, Kai-Wei and Gao, Jianfeng}, booktitle = {CVPR}, year = {2022} }
-
How Much Can CLIP Benefit Vision-and-Language Tasks?
Sheng Shen, Liunian Harold Li, Hao Tan, Mohit Bansal, Anna Rohrbach, Kai-Wei Chang, Zhewei Yao, and Kurt Keutz, in ICLR, 2022.
Full Text Code Abstract BibTeX Details Top-10 cited paper at ICLR 22Most existing Vision-and-Language (V&L) models rely on pre-trained visual encoders, using a relatively small set of manually-annotated data (as compared to web-crawled data), to perceive the visual world. However, it has been observed that large-scale pretraining usually can result in better generalization performance, e.g., CLIP (Contrastive Language-Image Pre-training), trained on a massive amount of image-caption pairs, has shown a strong zero-shot capability on various vision tasks. To further study the advantage brought by CLIP, we propose to use CLIP as the visual encoder in various V&L models in two typical scenarios: 1) plugging CLIP into task-specific fine-tuning; 2) combining CLIP with V&L pre-training and transferring to downstream tasks. We show that CLIP significantly outperforms widely-used visual encoders trained with in-domain annotated data, such as BottomUp-TopDown. We achieve competitive or better results on diverse V&L tasks, while establishing new state-of-the-art results on Visual Question Answering, Visual Entailment, and V&L Navigation tasks.
@inproceedings{shen2022how, title = { How Much Can CLIP Benefit Vision-and-Language Tasks? }, author = {Shen, Sheng and Li, Liunian Harold and Tan, Hao and Bansal, Mohit and Rohrbach, Anna and Chang, Kai-Wei and Yao, Zhewei and Keutz, Kurt}, booktitle = {ICLR}, year = {2022} }
Text-Code Foundataion Models
-
AVATAR: A Parallel Corpus for Java-Python Program Translation
Wasi Ahmad, Md Golam Rahman Tushar, Saikat Chakraborty, and Kai-Wei Chang, in ACL-Finding (short), 2023.
Full Text Code Abstract BibTeX DetailsProgram translation refers to migrating source code from one programming language to another. It has a tremendous practical value in software development as porting software across different languages is time-consuming and costly. Automating program translation is of paramount importance in software migration, and recently researchers explored unsupervised approaches due to the unavailability of parallel corpora. However, the availability of pre-trained language models for programming languages enable supervised fine-tuning with a small amount of labeled examples. In this work, we present a corpus of 8,475 programming problems and their solutions written in two popular languages, Java and Python. We collect the dataset from competitive programming sites, online platforms, and open source repositories. We present several baselines, including models trained from scratch or pre-trained on large-scale source code collection and fine-tuned on our proposed dataset. Experiment results show that while the models perform relatively well in terms of the lexical match, they lack in generating code that is accurate in terms of syntax and data-flow match.
@inproceedings{ahmad2021avatar, title = {AVATAR: A Parallel Corpus for Java-Python Program Translation}, author = {Ahmad, Wasi and Tushar, Md Golam Rahman and Chakraborty, Saikat and Chang, Kai-Wei}, booktitle = {ACL-Finding (short)}, year = {2023} }
-
Retrieval Augmented Code Generation and Summarization
Md Rizwan Parvez, Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang, in EMNLP-Finding, 2021.
Full Text Abstract BibTeX DetailsSoftware developers write a lot of source code and documentation during software development. Intrinsically, developers often recall parts of source code or code summaries that they had written in the past while implementing software or documenting them. To mimic developers’ code or summary generation behavior, we propose a retrieval augmented framework, \tool, that retrieves relevant code or summaries from a retrieval database and provides them as a supplement to code generation or summarization models. \tool has a couple of uniqueness. First, it extends the state-of-the-art dense retrieval technique to search for relevant code or summaries. Second, it can work with retrieval databases that include unimodal (only code or natural language description) or bimodal instances (code-description pairs). We conduct experiments and extensive analysis on two benchmark datasets of code generation and summarization in Java and Python, and the promising results endorse the effectiveness of our proposed retrieval augmented framework.
@inproceedings{parvez2021retrieval, title = {Retrieval Augmented Code Generation and Summarization}, author = {Parvez, Md Rizwan and Ahmad, Wasi and Chakraborty, Saikat and Ray, Baishakhi and Chang, Kai-Wei}, booktitle = {EMNLP-Finding}, presentation_id = {https://underline.io/events/192/sessions/7923/lecture/38314-retrieval-augmented-code-generation-and-summarization}, year = {2021} }
-
Unified Pre-training for Program Understanding and Generation
Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang, in NAACL, 2021.
Full Text Video Code Abstract BibTeX Details Top-10 cited paper at NAACL 21Code summarization nd generation empower conversion between programming language (PL) and natural language (NL), while code translation avails the migration of legacy code from one PL to another. This paper introduces PLBART, a sequence-to-sequence model capable of performing a broad spectrum of program and language understanding and generation tasks. PLBART is pre-trained on an extensive collection of Java and Python functions and associated NL text via denoising autoencoding. Experiments on code summarization in the English language, code generation, and code translation in seven programming languages show that PLBART outperforms or rivals state-of-the-art models. Moreover, experiments on discriminative tasks, e.g., program repair, clone detection, and vulnerable code detection, demonstrate PLBART’s effectiveness in program understanding. Furthermore, analysis reveals that PLBART learns program syntax, style (e.g., identifier naming convention), logical flow (e.g., if block inside an else block is equivalent to else if block) that are crucial to program semantics and thus excels even with limited annotations.
@inproceedings{ahmad2021unified, title = {Unified Pre-training for Program Understanding and Generation}, author = {Ahmad, Wasi and Chakraborty, Saikat and Ray, Baishakhi and Chang, Kai-Wei}, booktitle = {NAACL}, presentation_id = {https://underline.io/events/122/sessions/4197/lecture/20024-unified-pre-training-for-program-understanding-and-generation}, year = {2021} }
Crosslingual Transfer Learning
-
Multilingual Generative Language Models for Zero-Shot Cross-Lingual Event Argument Extraction
Kuan-Hao Huang, I.-Hung Hsu, Prem Natarajan, Kai-Wei Chang, and Nanyun Peng, in ACL, 2022.
Full Text Code Abstract BibTeX DetailsWe present a study on leveraging multilingual pre-trained generative language models for zero-shot cross-lingual event argument extraction (EAE). By formulating EAE as a language generation task, our method effectively encodes event structures and captures the dependencies between arguments. We design language-agnostic templates to represent the event argument structures, which are compatible with any language, hence facilitating the cross-lingual transfer. Our proposed model finetunes multilingual pre-trained generative language models to generate sentences that fill in the language-agnostic template with arguments extracted from the input passage. The model is trained on source languages and is then directly applied to target languages for event argument extraction. Experiments demonstrate that the proposed model outperforms the current state-of-the-art models on zero-shot cross-lingual EAE. Comprehensive studies and error analyses are presented to better understand the advantages and the current limitations of using generative language models for zero-shot cross-lingual transfer EAE.
@inproceedings{huang2022multilingual, title = {Multilingual Generative Language Models for Zero-Shot Cross-Lingual Event Argument Extraction}, author = {Huang, Kuan-Hao and Hsu, I-Hung and Natarajan, Prem and Chang, Kai-Wei and Peng, Nanyun}, booktitle = {ACL}, year = {2022} }
-
Improving Zero-Shot Cross-Lingual Transfer Learning via Robust Training
Kuan-Hao Huang, Wasi Ahmad, Nanyun Peng, and Kai-Wei Chang, in EMNLP, 2021.
Full Text Code Abstract BibTeX DetailsPre-trained multilingual language encoders, such as multilingual BERT and XLM-R, show great potential for zero-shot cross-lingual transfer. However, these multilingual encoders do not precisely align words and phrases across languages. Especially, learning alignments in the multilingual embedding space usually requires sentence-level or word-level parallel corpora, which are expensive to be obtained for low-resource languages. An alternative is to make the multilingual encoders more robust; when fine-tuning the encoder using downstream task, we train the encoder to tolerate noise in the contextual embedding spaces such that even if the representations of different languages are not aligned well, the model can still achieve good performance on zero-shot cross-lingual transfer. In this work, we propose a learning strategy for training robust models by drawing connections between adversarial examples and the failure cases of zero-shot cross-lingual transfer. We adopt two widely used robust training methods, adversarial training and randomized smoothing, to train the desired robust model. The experimental results demonstrate that robust training improves zero-shot cross-lingual transfer on text classification tasks. The improvement is more significant in the generalized cross-lingual transfer setting, where the pair of input sentences belong to two different languages.
@inproceedings{huang2021improving, title = {Improving Zero-Shot Cross-Lingual Transfer Learning via Robust Training}, author = {Huang, Kuan-Hao and Ahmad, Wasi and Peng, Nanyun and Chang, Kai-Wei}, presentation_id = {https://underline.io/events/192/posters/7783/poster/40656-improving-zero-shot-cross-lingual-transfer-learning-via-robust-training}, booktitle = {EMNLP}, year = {2021} }
-
Syntax-augmented Multilingual BERT for Cross-lingual Transfer
Wasi Ahmad, Haoran Li, Kai-Wei Chang, and Yashar Mehdad, in ACL, 2021.
Full Text Video Code Abstract BibTeX DetailsIn recent years, we have seen a colossal effort in pre-training multilingual text encoders using large-scale corpora in many languages to facilitate cross-lingual transfer learning. However, due to typological differences across languages, the cross-lingual transfer is challenging. Nevertheless, language syntax, e.g., syntactic dependencies, can bridge the typological gap. Previous works have shown that pretrained multilingual encoders, such as mBERT (Devlin et al., 2019), capture language syntax, helping cross-lingual transfer. This work shows that explicitly providing language syntax and training mBERT using an auxiliary objective to encode the universal dependency tree structure helps cross-lingual transfer. We perform rigorous experiments on four NLP tasks, including text classification, question answering, named entity recognition, and taskoriented semantic parsing. The experiment results show that syntax-augmented mBERT improves cross-lingual transfer on popular benchmarks, such as PAWS-X and MLQA, by 1.4 and 1.6 points on average across all languages. In the generalized transfer setting, the performance boosted significantly, with 3.9 and 3.1 points on average in PAWS-X and MLQA.
@inproceedings{ahmad2021syntax, title = {Syntax-augmented Multilingual BERT for Cross-lingual Transfer}, author = {Ahmad, Wasi and Li, Haoran and Chang, Kai-Wei and Mehdad, Yashar}, booktitle = {ACL}, year = {2021} }
-
Evaluating the Values of Sources in Transfer Learning
Md Rizwan Parvez and Kai-Wei Chang, in NAACL, 2021.
Full Text Video Code Abstract BibTeX DetailsTransfer learning that adapts a model trained on data-rich sources to low-resource targets has been widely applied in natural language processing (NLP). However, when training a transfer model over multiple sources, not every source is equally useful for the target. To better transfer a model, it is essential to understand the values of the sources. In this paper, we develop SEAL-Shap, an efficient source valuation framework for quantifying the usefulness of the sources (e.g., domains/languages) in transfer learning based on the Shapley value method. Experiments and comprehensive analyses on both cross-domain and cross-lingual transfers demonstrate that our framework is not only effective in choosing useful transfer sources but also the source values match the intuitive source-target similarity.
@inproceedings{parvez2021evaluating, title = {Evaluating the Values of Sources in Transfer Learning}, author = {Parvez, Md Rizwan and Chang, Kai-Wei}, booktitle = {NAACL}, presentation_id = {https://underline.io/events/122/sessions/4261/lecture/19707-evaluating-the-values-of-sources-in-transfer-learning}, year = {2021} }
-
GATE: Graph Attention Transformer Encoder for Cross-lingual Relation and Event Extraction
Wasi Ahmad, Nanyun Peng, and Kai-Wei Chang, in AAAI, 2021.
Full Text Code Abstract BibTeX DetailsPrevalent approaches in cross-lingual relation and event extraction use graph convolutional networks (GCNs) with universal dependency parses to learn language-agnostic representations such that models trained on one language can be applied to other languages. However, GCNs lack in modeling long-range dependencies or disconnected words in the dependency tree. To address this challenge, we propose to utilize the self-attention mechanism where we explicitly fuse structural information to learn the dependencies between words at different syntactic distances. We introduce GATE, a \bf Graph \bf Attention \bf Transformer \bf Encoder, and test its cross-lingual transferability on relation and event extraction tasks. We perform rigorous experiments on the widely used ACE05 dataset that includes three typologically different languages: English, Chinese, and Arabic. The evaluation results show that GATE outperforms three recently proposed methods by a large margin. Our detailed analysis reveals that due to the reliance on syntactic dependencies, GATE produces robust representations that facilitate transfer across languages.
@inproceedings{ahmad2021gate, author = {Ahmad, Wasi and Peng, Nanyun and Chang, Kai-Wei}, title = {GATE: Graph Attention Transformer Encoder for Cross-lingual Relation and Event Extraction}, booktitle = {AAAI}, year = {2021} }
-
Cross-Lingual Dependency Parsing by POS-Guided Word Reordering
Lu Liu, Yi Zhou, Jianhan Xu, Xiaoqing Zheng, Kai-Wei Chang, and Xuanjing Huang, in EMNLP-Finding, 2020.
Full Text Abstract BibTeX DetailsWe propose a novel approach to cross-lingual dependency parsing based on word reordering. The words in each sentence of a source language corpus are rearranged to meet the word order in a target language under the guidance of a part-of-speech based language model (LM). To obtain the highest reordering score under the LM, a population-based optimization algorithm and its genetic operators are designed to deal with the combinatorial nature of such word reordering. A parser trained on the reordered corpus then can be used to parse sentences in the target language. We demonstrate through extensive experimentation that our approach achieves better or comparable results across 25 target languages (1.73% increase in average), and outperforms a baseline by a significant margin on the languages that are greatly different from the source one. For example, when transferring the English parser to Hindi and Latin, our approach outperforms the baseline by 15.3% and 6.7% respectively.
@inproceedings{liu2020cross-lingual, author = {Liu, Lu and Zhou, Yi and Xu, Jianhan and Zheng, Xiaoqing and Chang, Kai-Wei and Huang, Xuanjing}, title = {Cross-Lingual Dependency Parsing by POS-Guided Word Reordering}, booktitle = {EMNLP-Finding}, year = {2020} }
-
Cross-lingual Dependency Parsing with Unlabeled Auxiliary Languages
Wasi Ahmad, Zhisong Zhang, Xuezhe Ma, Kai-Wei Chang, and Nanyun Peng, in CoNLL, 2019.
Full Text Poster Code Abstract BibTeX DetailsCross-lingual transfer learning has become an important weapon to battle the unavailability of annotated resources for low-resource languages. One of the fundamental techniques to transfer across languages is learning language-agnostic representations, in the form of word embeddings or contextual encodings. In this work, we propose to leverage unannotated sentences from auxiliary languages to help learning language-agnostic representations Specifically, we explore adversarial training for learning contextual encoders that produce invariant representations across languages to facilitate cross-lingual transfer. We conduct experiments on cross-lingual dependency parsing where we train a dependency parser on a source language and transfer it to a wide range of target languages. Experiments on 28 target languages demonstrate that adversarial training significantly improves the overall transfer performances under several different settings. We conduct a careful analysis to evaluate the language-agnostic representations resulted from adversarial training.
@inproceedings{ahmad2019crosslingual, author = {Ahmad, Wasi and Zhang, Zhisong and Ma, Xuezhe and Chang, Kai-Wei and Peng, Nanyun}, title = { Cross-lingual Dependency Parsing with Unlabeled Auxiliary Languages}, booktitle = {CoNLL}, year = {2019} }
-
Target Language-Aware Constrained Inference for Cross-lingual Dependency Parsing
Tao Meng, Nanyun Peng, and Kai-Wei Chang, in EMNLP, 2019.
Full Text Poster Code Abstract BibTeX DetailsPrior work on cross-lingual dependency parsing often focuses on capturing the commonalities between source and target languages and overlooks the potential of leveraging linguistic properties of the languages to facilitate the transfer. In this paper, we show that weak supervisions of linguistic knowledge for the target languages can improve a cross-lingual graph-based dependency parser substantially. Specifically, we explore several types of corpus linguistic statistics and compile them into corpus-wise constraints to guide the inference process during the test time. We adapt two techniques, Lagrangian relaxation and posterior regularization, to conduct inference with corpus-statistics constraints. Experiments show that the Lagrangian relaxation and posterior regularization inference improve the performances on 15 and 17 out of 19 target languages, respectively. The improvements are especially significant for target languages that have different word order features from the source language.
@inproceedings{meng2019target, author = {Meng, Tao and Peng, Nanyun and Chang, Kai-Wei}, title = {Target Language-Aware Constrained Inference for Cross-lingual Dependency Parsing}, booktitle = {EMNLP}, year = {2019} }
-
On Difficulties of Cross-Lingual Transfer with Order Differences: A Case Study on Dependency Parsing
Wasi Uddin Ahmad, Zhisong Zhang, Xuezhe Ma, Eduard Hovy, Kai-Wei Chang, and Nanyun Peng, in NAACL, 2019.
Full Text Video Code Abstract BibTeX DetailsDifferent languages might have different wordorders. In this paper, we investigate cross-lingual transfer and posit that an order-agnostic model will perform better when trans-ferring to distant foreign languages. To test ourhypothesis, we train dependency parsers on anEnglish corpus and evaluate their transfer per-formance on 30 other languages. Specifically,we compare encoders and decoders based onRecurrent Neural Networks (RNNs) and mod-ified self-attentive architectures. The formerrelies on sequential information while the lat-ter is more flexible at modeling word order.Rigorous experiments and detailed analysisshows that RNN-based architectures transferwell to languages that are close to English,while self-attentive models have better overallcross-lingual transferability and perform espe-cially well on distant languages.
@inproceedings{ahmad2019difficulties, author = {Ahmad, Wasi Uddin and Zhang, Zhisong and Ma, Xuezhe and Hovy, Eduard and Chang, Kai-Wei and Peng, Nanyun}, title = {On Difficulties of Cross-Lingual Transfer with Order Differences: A Case Study on Dependency Parsing}, booktitle = {NAACL}, year = {2019} }
Trustworthy NLP (fairness, robustness, explanation in NLP)
Our group contributed to the first few studies concerning algorithmic fairness and robustness in NLP.
Governing Societal Bias in Natural Language Generation Models
-
Are Personalized Stochastic Parrots More Dangerous? Evaluating Persona Biases in Dialogue Systems
Yixin Wan, Jieyu Zhao, Aman Chadha, Nanyun Peng, and Kai-Wei Chang, in EMNLP-Finding, 2023.
Full Text Abstract BibTeX DetailsRecent advancements in Large Language Models empower them to follow freeform instructions, including imitating generic or specific demographic personas in conversations. Generic personas refer to a demographic group (e.g. an Asian person), whereas specific personas can be actual names of historical figures. While the adoption of personas allows dialogue systems to be more engaging and approachable to users, it also carries the potential risk of exacerbating social biases in model responses, further causing societal harms through interactions with users. In this paper, we systematically study “persona biases”, which we define to be the sensitivity of harmful dialogue model behaviors to different persona adoptions.We categorize persona biases into biases in harmful expression and harmful agreement, as well as establish a comprehensive evaluation framework to measure persona biases in five aspects: Offensiveness, Toxic Continuation, Regard, Stereotype Agreement, and Toxic Agreement. Additionally, we propose to comprehensively investigate persona biases through experimenting with UniversalPersona, a systematized persona dataset with a comprehensive list of both generic and specific model personas. Through benchmarking on four different models, including Blender, ChatGPT, Alpaca, and Vicuna, our study uncovers significant persona biases in dialogue systems. Findings of our study underscores the immediate need to revisit the use of persona traits in dialogue agents to ensure their safe application.
@inproceedings{wan2023personalized, author = {Wan, Yixin and Zhao, Jieyu and Chadha, Aman and Peng, Nanyun and Chang, Kai-Wei}, title = {Are Personalized Stochastic Parrots More Dangerous? Evaluating Persona Biases in Dialogue Systems}, booktitle = {EMNLP-Finding}, year = {2023} }
-
Kelly is a Warm Person, Joseph is a Role Model: Gender Biases in LLM-Generated Reference Letters
Yixin Wan, George Pu, Jiao Sun, Aparna Garimella, Kai-Wei Chang, and Nanyun Peng, in EMNLP-Findings, 2023.
Full Text Abstract BibTeX DetailsAs generative language models advance, users have started to utilize Large Language Models (LLMs) to assist in writing various types of content, including professional documents such as recommendation letters. Despite their convenience, these applications introduce unprecedented fairness concerns. As generated reference letter might be directly utilized by users in professional or academic scenarios, it has the potential to cause direct harm such as lowering success rates for female applicants. Therefore, it is imminent and necessary to comprehensively study fairness issues and associated harms in such real-world use cases for future mitigation and monitoring. In this paper, we critically examine gender bias in LLM-generated reference letters. Inspired by findings in social science, we specifically design evaluation methods to manifest gender biases in LLM-generated letters through two dimensions: biases in language style and biases in lexical content. Furthermore, we investigate the extent of bias propagation by separately analyze bias amplification in model-hallucinated contents, which we define to be hallucination bias of model-generated documents. Through benchmarking evaluation on 4 popular LLMs, including ChatGPT, Alpaca, Vicuna and StableLM, our study reveal significant gender biases in LLM-generated recommendation letters. Our findings further point towards the importance and imminence to recognize bias in LLM-generated professional documents.
@inproceedings{wan2023kelly, title = {Kelly is a Warm Person, Joseph is a Role Model: Gender Biases in LLM-Generated Reference Letters}, author = {Wan, Yixin and Pu, George and Sun, Jiao and Garimella, Aparna and Chang, Kai-Wei and Peng, Nanyun}, booktitle = {EMNLP-Findings}, year = {2023} }
-
How well can Text-to-Image Generative Models understand Ethical Natural Language Interventions?
Hritik Bansal, Da Yin, Masoud Monajatipoor, and Kai-Wei Chang, in EMNLP (Short), 2022.
Full Text Code Abstract BibTeX DetailsText-to-image generative models have achieved unprecedented success in generating high-quality images based on natural language descriptions. However, it is shown that these models tend to favor specific social groups when prompted with neutral text descriptions (e.g., ’a photo of a lawyer’). Following Zhao et al. (2021), we study the effect on the diversity of the generated images when adding ethical intervention that supports equitable judgment (e.g., ’if all individuals can be a lawyer irrespective of their gender’) in the input prompts. To this end, we introduce an Ethical NaTural Language Interventions in Text-to-Image GENeration (ENTIGEN) benchmark dataset to evaluate the change in image generations conditional on ethical interventions across three social axes – gender, skin color, and culture. Through ENTIGEN framework, we find that the generations from minDALL.E, DALL.E-mini and Stable Diffusion cover diverse social groups while preserving the image quality. Preliminary studies indicate that a large change in the model predictions is triggered by certain phrases such as ’irrespective of gender’ in the context of gender bias in the ethical interventions. We release code and annotated data at https://github.com/Hritikbansal/entigen_emnlp.
@inproceedings{bansal2022how, title = {How well can Text-to-Image Generative Models understand Ethical Natural Language Interventions?}, author = {Bansal, Hritik and Yin, Da and Monajatipoor, Masoud and Chang, Kai-Wei}, booktitle = {EMNLP (Short)}, year = {2022} }
-
On the Intrinsic and Extrinsic Fairness Evaluation Metrics for Contextualized Language Representations
Yang Trista Cao, Yada Pruksachatkun, Kai-Wei Chang, Rahul Gupta, Varun Kumar, Jwala Dhamala, and Aram Galstyan, in ACL (short), 2022.
Full Text Abstract BibTeX DetailsMultiple metrics have been introduced to measure fairness in various natural language processing tasks. These metrics can be roughly categorized into two categories: 1) \emphextrinsic metrics for evaluating fairness in downstream applications and 2) \emphintrinsic metrics for estimating fairness in upstream contextualized language representation models. In this paper, we conduct an extensive correlation study between intrinsic and extrinsic metrics across bias notions using 19 contextualized language models. We find that intrinsic and extrinsic metrics do not necessarily correlate in their original setting, even when correcting for metric misalignments, noise in evaluation datasets, and confounding factors such as experiment configuration for extrinsic metrics.
@inproceedings{trista2022evaluation, title = {On the Intrinsic and Extrinsic Fairness Evaluation Metrics for Contextualized Language Representations}, author = {Cao, Yang Trista and Pruksachatkun, Yada and Chang, Kai-Wei and Gupta, Rahul and Kumar, Varun and Dhamala, Jwala and Galstyan, Aram}, booktitle = {ACL (short)}, year = {2022} }
-
Societal Biases in Language Generation: Progress and Challenges
Emily Sheng, Kai-Wei Chang, Prem Natarajan, and Nanyun Peng, in ACL, 2021.
Full Text Abstract BibTeX DetailsTechnology for language generation has advanced rapidly, spurred by advancements in pre-training large models on massive amounts of data and the need for intelligent agents to communicate in a natural manner. While techniques can effectively generate fluent text, they can also produce undesirable societal biases that can have a disproportionately negative impact on marginalized populations. Language generation presents unique challenges for biases in terms of direct user interaction and the structure of decoding techniques. To better understand these challenges, we present a survey on societal biases in language generation, focusing on how data and techniques contribute to biases and progress towards reducing biases. Motivated by a lack of studies on biases from decoding techniques, we also conduct experiments to quantify the effects of these techniques. By further discussing general trends and open challenges, we call to attention promising directions for research and the importance of fairness and inclusivity considerations for language generation applications.
@inproceedings{sheng2021societal, title = {Societal Biases in Language Generation: Progress and Challenges}, author = {Sheng, Emily and Chang, Kai-Wei and Natarajan, Prem and Peng, Nanyun}, booktitle = {ACL}, year = {2021} }
-
"Nice Try, Kiddo": Investigating Ad Hominems in Dialogue Responses
Emily Sheng, Kai-Wei Chang, Prem Natarajan, and Nanyun Peng, in NAACL, 2021.
Full Text Video Code Abstract BibTeX DetailsAd hominem attacks are those that target some feature of a person’s character instead of the position the person is maintaining. These attacks are harmful because they propagate implicit biases and diminish a person’s credibility. Since dialogue systems respond directly to user input, it is important to study ad hominems in dialogue responses. To this end, we propose categories of ad hominems, compose an annotated dataset, and build a classifier to analyze human and dialogue system responses to English Twitter posts. We specifically compare responses to Twitter topics about marginalized communities (#BlackLivesMatter, #MeToo) versus other topics (#Vegan, #WFH), because the abusive language of ad hominems could further amplify the skew of power away from marginalized populations. Furthermore, we propose a constrained decoding technique that uses salient n-gram similarity as a soft constraint for top-k sampling to reduce the amount of ad hominems generated. Our results indicate that 1) responses from both humans and DialoGPT contain more ad hominems for discussions around marginalized communities, 2) different quantities of ad hominems in the training data can influence the likelihood of generating ad hominems, and 3) we can use constrained decoding techniques to reduce ad hominems in generated dialogue responses.
@inproceedings{sheng2021nice, title = {"Nice Try, Kiddo": Investigating Ad Hominems in Dialogue Responses}, booktitle = {NAACL}, author = {Sheng, Emily and Chang, Kai-Wei and Natarajan, Prem and Peng, Nanyun}, presentation_id = {https://underline.io/events/122/sessions/4137/lecture/19854-%27nice-try,-kiddo%27-investigating-ad-hominems-in-dialogue-responses}, year = {2021} }
-
BOLD: Dataset and metrics for measuring biases in open-ended language generation
Jwala Dhamala, Tony Sun, Varun Kumar, Satyapriya Krishna, Yada Pruksachatkun, Kai-Wei Chang, and Rahul Gupta, in FAccT, 2021.
Full Text Code Abstract BibTeX DetailsRecent advances in deep learning techniques have enabled machines to generate cohesive open-ended text when prompted with a sequence of words as context. While these models now empower many downstream applications from conversation bots to automatic storytelling, they have been shown to generate texts that exhibit social biases. To systematically study and benchmark social biases in open-ended language generation, we introduce the Bias in Open-Ended Language Generation Dataset (BOLD), a large-scale dataset that consists of 23,679 English text generation prompts for bias benchmarking across five domains: profession, gender, race, religion, and political ideology. We also propose new automated metrics for toxicity, psycholinguistic norms, and text gender polarity to measure social biases in open-ended text generation from multiple angles. An examination of text generated from three popular language models reveals that the majority of these models exhibit a larger social bias than human-written Wikipedia text across all domains. With these results we highlight the need to benchmark biases in open-ended language generation and caution users of language generation models on downstream tasks to be cognizant of these embedded prejudices.
@inproceedings{dhamala2021bold, author = {Dhamala, Jwala and Sun, Tony and Kumar, Varun and Krishna, Satyapriya and Pruksachatkun, Yada and Chang, Kai-Wei and Gupta, Rahul}, title = {BOLD: Dataset and metrics for measuring biases in open-ended language generation}, booktitle = {FAccT}, year = {2021} }
-
Towards Controllable Biases in Language Generation
Emily Sheng, Kai-Wei Chang, Premkumar Natarajan, and Nanyun Peng, in EMNLP-Finding, 2020.
Full Text Code Abstract BibTeX DetailsWe present a general approach towards controllable societal biases in natural language generation (NLG). Building upon the idea of adversarial triggers, we develop a method to induce societal biases in generated text when input prompts contain mentions of specific demographic groups. We then analyze two scenarios: 1) inducing negative biases for one demographic and positive biases for another demographic, and 2) equalizing biases between demographics. The former scenario enables us to detect the types of biases present in the model. Specifically, we show the effectiveness of our approach at facilitating bias analysis by finding topics that correspond to demographic inequalities in generated text and comparing the relative effectiveness of inducing biases for different demographics. The second scenario is useful for mitigating biases in downstream applications such as dialogue generation. In our experiments, the mitigation technique proves to be effective at equalizing the amount of biases across demographics while simultaneously generating less negatively biased text overall.
@inproceedings{sheng2020towards, title = {Towards Controllable Biases in Language Generation}, author = {Sheng, Emily and Chang, Kai-Wei and Natarajan, Premkumar and Peng, Nanyun}, booktitle = {EMNLP-Finding}, year = {2020} }
-
The Woman Worked as a Babysitter: On Biases in Language Generation
Emily Sheng, Kai-Wei Chang, Premkumar Natarajan, and Nanyun Peng, in EMNLP (short), 2019.
Full Text Slides Video Code Abstract BibTeX DetailsWe present a systematic study of biases in natural language generation (NLG) by analyzing text generated from prompts that contain mentions of different demographic groups. In this work, we introduce the notion of the regard towards a demographic, use the varying levels of regard towards different demographics as a defining metric for bias in NLG, and analyze the extent to which sentiment scores are a relevant proxy metric for regard. To this end, we collect strategically-generated text from language models and manually annotate the text with both sentiment and regard scores. Additionally, we build an automatic regard classifier through transfer learning, so that we can analyze biases in unseen text. Together, these methods reveal the extent of the biased nature of language model generations. Our analysis provides a study of biases in NLG, bias metrics and correlated human judgments, and empirical evidence on the usefulness of our annotated dataset.
@inproceedings{sheng2019woman, author = {Sheng, Emily and Chang, Kai-Wei and Natarajan, Premkumar and Peng, Nanyun}, title = {The Woman Worked as a Babysitter: On Biases in Language Generation}, booktitle = {EMNLP (short)}, vimeo_id = {426366363}, year = {2019} }
Governing Societal Bias in Natural Language Understanidng Models
-
Measuring Fairness of Text Classifiers via Prediction Sensitivity
Satyapriya Krishna, Rahul Gupta, Apurv Verma, Jwala Dhamala, Yada Pruksachatkun, and Kai-Wei Chang, in ACL, 2022.
Full Text Abstract BibTeX DetailsWith the rapid growth in language processing applications, fairness has emerged as an important consideration in data-driven solutions. Although various fairness definitions have been explored in the recent literature, there is lack of consensus on which metrics most accurately reflect the fairness of a system. In this work, we propose a new formulation : ACCUMULATED PREDICTION SENSITIVITY, which measures fairness in machine learning models based on the model’s prediction sensitivity to perturbations in input features. The metric attempts to quantify the extent to which a single prediction depends on a protected attribute, where the protected attribute encodes the membership status of an individual in a protected group. We show that the metric can be theoretically linked with a specific notion of group fairness (statistical parity) and individual fairness. It also correlates well with humans’ perception of fairness. We conduct experiments on two text classification datasets : JIGSAW TOXICITY, and BIAS IN BIOS, and evaluate the correlations between metrics and manual annotations on whether the model produced a fair outcome. We observe that the proposed fairness metric based on prediction sensitivity is statistically significantly more correlated with human annotation than the existing counterfactual fairness metric.
@inproceedings{krishna2022measuring, title = {Measuring Fairness of Text Classifiers via Prediction Sensitivity}, author = {Krishna, Satyapriya and Gupta, Rahul and Verma, Apurv and Dhamala, Jwala and Pruksachatkun, Yada and Chang, Kai-Wei}, booktitle = {ACL}, year = {2022} }
-
Does Robustness Improve Fairness? Approaching Fairness with Word Substitution Robustness Methods for Text Classification
Yada Pruksachatkun, Satyapriya Krishna, Jwala Dhamala, Rahul Gupta, and Kai-Wei Chang, in ACL-Finding, 2021.
Full Text Code Abstract BibTeX DetailsExisting bias mitigation methods to reduce disparities in model outcomes across cohorts have focused on data augmentation, debiasing model embeddings, or adding fairness-based optimization objectives during training. Separately, certified word substitution robustness methods have been developed to decrease the impact of spurious features and synonym substitutions on model predictions. While their end goals are different, they both aim to encourage models to make the same prediction for certain changes in the input. In this paper, we investigate the utility of certified word substitution robustness methods to improve equality of odds and equality of opportunity on multiple text classification tasks. We observe that certified robustness methods improve fairness, and using both robustness and bias mitigation methods in training results in an improvement in both fronts.
@inproceedings{pruksachatkun2021robustness, title = {Does Robustness Improve Fairness? Approaching Fairness with Word Substitution Robustness Methods for Text Classification}, author = {Pruksachatkun, Yada and Krishna, Satyapriya and Dhamala, Jwala and Gupta, Rahul and Chang, Kai-Wei}, booktitle = {ACL-Finding}, year = {2021} }
-
LOGAN: Local Group Bias Detection by Clustering
Jieyu Zhao and Kai-Wei Chang, in EMNLP (short), 2020.
Full Text Code Abstract BibTeX DetailsMachine learning techniques have been widely used in natural language processing (NLP). However, as revealed by many recent studies, machine learning models often inherit and amplify the societal biases in data. Various metrics have been proposed to quantify biases in model predictions. In particular, several of them evaluate disparity in model performance between protected groups and advantaged groups in the test corpus. However, we argue that evaluating bias at the corpus level is not enough for understanding how biases are embedded in a model. In fact, a model with similar aggregated performance between different groups on the entire data may behave differently on instances in a local region. To analyze and detect such local bias, we propose LOGAN, a new bias detection technique based on clustering. Experiments on toxicity classification and object classification tasks show that LOGAN identifies bias in a local region and allows us to better analyze the biases in model predictions.
@inproceedings{zhao2020logan, author = {Zhao, Jieyu and Chang, Kai-Wei}, title = {LOGAN: Local Group Bias Detection by Clustering}, booktitle = {EMNLP (short)}, presentation_id = {https://virtual.2020.emnlp.org/paper_main.2886.html}, year = {2020} }
-
Towards Understanding Gender Bias in Relation Extraction
Andrew Gaut, Tony Sun, Shirlyn Tang, Yuxin Huang, Jing Qian, Mai ElSherief, Jieyu Zhao, Diba Mirza, Elizabeth Belding, Kai-Wei Chang, and William Yang Wang, in ACL, 2020.
Full Text Abstract BibTeX DetailsRecent developments in Neural Relation Extraction (NRE) have made significant strides towards automated knowledge base construction. While much attention has been dedicated towards improvements in accuracy, there have been no attempts in the literature to evaluate social biases exhibited in NRE systems. In this paper, we create WikiGenderBias, a distantly supervised dataset composed of over 45,000 sentences including a 10% human annotated test set for the purpose of analyzing gender bias in relation extraction systems. We find that when extracting spouse and hypernym (i.e., occupation) relations, an NRE system performs differently when the gender of the target entity is different. However, such disparity does not appear when extracting relations such as birth date or birth place. We also analyze two existing bias mitigation techniques, word embedding debiasing and data augmentation. Unfortunately, due to NRE models relying heavily on surface level cues, we find that existing bias mitigation approaches have a negative effect on NRE. Our analysis lays groundwork for future quantifying and mitigating bias in relation extraction.
@inproceedings{gaut2020towards, author = {Gaut, Andrew and Sun, Tony and Tang, Shirlyn and Huang, Yuxin and Qian, Jing and ElSherief, Mai and Zhao, Jieyu and Mirza, Diba and Belding, Elizabeth and Chang, Kai-Wei and Wang, William Yang}, title = {Towards Understanding Gender Bias in Relation Extraction}, booktitle = {ACL}, year = {2020}, presentation_id = {https://virtual.acl2020.org/paper_main.265.html} }
-
Mitigating Gender Bias Amplification in Distribution by Posterior Regularization
Shengyu Jia, Tao Meng, Jieyu Zhao, and Kai-Wei Chang, in ACL (short), 2020.
Full Text Slides Video Code Abstract BibTeX DetailsAdvanced machine learning techniques have boosted the performance of natural language processing. Nevertheless, recent studies, e.g., Zhao et al. (2017) show that these techniques inadvertently capture the societal bias hiddenin the corpus and further amplify it. However,their analysis is conducted only on models’ top predictions. In this paper, we investigate thegender bias amplification issue from the distribution perspective and demonstrate that thebias is amplified in the view of predicted probability distribution over labels. We further propose a bias mitigation approach based on posterior regularization. With little performance loss, our method can almost remove the bias amplification in the distribution. Our study sheds the light on understanding the bias amplification.
@inproceedings{jia2020mitigating, author = {Jia, Shengyu and Meng, Tao and Zhao, Jieyu and Chang, Kai-Wei}, title = {Mitigating Gender Bias Amplification in Distribution by Posterior Regularization}, booktitle = {ACL (short)}, year = {2020}, presentation_id = {https://virtual.acl2020.org/paper_main.264.html} }
-
Mitigating Gender in Natural Language Processing: Literature Review
Tony Sun, Andrew Gaut, Shirlyn Tang, Yuxin Huang, Mai ElSherief, Jieyu Zhao, Diba Mirza, Kai-Wei Chang, and William Yang Wang, in ACL, 2019.
Full Text Slides Video Abstract BibTeX DetailsAs Natural Language Processing (NLP) and Machine Learning (ML) tools rise in popularity, it becomes increasingly vital to recognize the role they play in shaping societal biases and stereotypes. Although NLP models have shown success in modeling various applications, they propagate and may even amplify gender bias found in text corpora. While the study of bias in artificial intelligence is not new, methods to mitigate gender bias in NLP are relatively nascent. In this paper, we review contemporary studies on recognizing and mitigating gender bias in NLP. We discuss gender bias based on four forms of representation bias and analyze methods recognizing gender bias. Furthermore, we discuss the advantages and drawbacks of existing gender debiasing methods. Finally, we discuss future studies for recognizing and mitigating gender bias in NLP.
@inproceedings{sun2019mitigating, author = {Sun, Tony and Gaut, Andrew and Tang, Shirlyn and Huang, Yuxin and ElSherief, Mai and Zhao, Jieyu and Mirza, Diba and Chang, Kai-Wei and Wang, William Yang}, title = {Mitigating Gender in Natural Language Processing: Literature Review}, booktitle = {ACL}, vimeo_id = {384482151}, year = {2019} }
-
Gender Bias in Coreference Resolution: Evaluation and Debiasing Methods
Jieyu Zhao, Tianlu Wang, Mark Yatskar, Vicente Ordonez, and Kai-Wei Chang, in NAACL (short), 2018.
Full Text Poster Code Abstract BibTeX Details Top-10 cited paper at NAACL 18In this paper, we introduce a new benchmark for co-reference resolution focused on gender bias, WinoBias. Our corpus contains Winograd-schema style sentences with entities corresponding to people referred by their occupation (e.g. the nurse, the doctor, the carpenter). We demonstrate that a rule-based, a feature-rich, and a neural coreference system all link gendered pronouns to pro-stereotypical entities with higher accuracy than anti-stereotypical entities, by an average difference of 21.1 in F1 score. Finally, we demonstrate a data-augmentation approach that, in combination with existing word-embedding debiasing techniques, removes the bias demonstrated by these systems in WinoBias without significantly affecting their performance on existing datasets.
@inproceedings{zhao2018gender, author = {Zhao, Jieyu and Wang, Tianlu and Yatskar, Mark and Ordonez, Vicente and Chang, Kai-Wei}, title = {Gender Bias in Coreference Resolution: Evaluation and Debiasing Methods}, booktitle = {NAACL (short)}, press_url = {https://www.stitcher.com/podcast/matt-gardner/nlp-highlights/e/55861936}, year = {2018} }
-
Men Also Like Shopping: Reducing Gender Bias Amplification using Corpus-level Constraints
Jieyu Zhao, Tianlu Wang, Mark Yatskar, Vicente Ordonez, and Kai-Wei Chang, in EMNLP, 2017.
Full Text Slides Code Abstract BibTeX Details EMNLP 2017 Best Long Paper Award; Top-10 cited paper at EMNLP 17Language is increasingly being used to define rich visual recognition problems with supporting image collections sourced from the web. Structured prediction models are used in these tasks to take advantage of correlations between co-occuring labels and visual input but risk inadvertently encoding social biases found in web corpora. In this work, we study data and models associated with multilabel object classification and visual semantic role labeling. We find that (a) datasets for these tasks contain significant gender bias and (b) models trained on these datasets further amplify existing bias. For example, the activity cooking is over 33% more likely to involve females than males in a training set, but a trained model amplifies the disparity to 68% at test time. We propose to inject corpus-level constraints for calibrating existing structured prediction models and design an algorithm based on Lagrangian relaxation for the resulting inference problems. Our method results in no performance loss for the underlying recognition task but decreases the magnitude of bias amplification by 33.3% and 44.9% for multilabel classification and visual semantic role labeling, respectively.
@inproceedings{zhao2017men, author = {Zhao, Jieyu and Wang, Tianlu and Yatskar, Mark and Ordonez, Vicente and Chang, Kai-Wei}, title = {Men Also Like Shopping: Reducing Gender Bias Amplification using Corpus-level Constraints}, booktitle = {EMNLP}, year = {2017} }
Governing Societal Bias in Representation
-
Mitigating Gender Bias in Distilled Language Models via Counterfactual Role Reversal
Umang Gupta, Jwala Dhamala, Varun Kumar, Apurv Verma, Yada Pruksachatkun, Satyapriya Krishna, Rahul Gupta, Kai-Wei Chang, Greg Ver Steeg, and Aram Galstyan, in ACL Finding, 2022.
Full Text Abstract BibTeX DetailsLanguage models excel at generating coherent text, and model compression techniques such as knowledge distillation have enabled their use in resource-constrained settings. However, these models can be biased in multiple ways, including the unfounded association of male and female genders with gender-neutral professions. Therefore, knowledge distillation without any fairness constraints may preserve or exaggerate the teacher model’s biases onto the distilled model. To this end, we present a novel approach to mitigate gender disparity in text generation by learning a fair model during knowledge distillation. We propose two modifications to the base knowledge distillation based on counterfactual role reversal – modifying teacher probabilities and augmenting the training set. We evaluate gender polarity across professions in open-ended text generated from the resulting distilled and finetuned GPT-2models and demonstrate a substantial reduction in gender disparity with only a minor compromise in utility. Finally, we observe that language models that reduce gender polarity in language generation do not improve embedding fairness or downstream classification fairness.
@inproceedings{gupta2022equitable, title = {Mitigating Gender Bias in Distilled Language Models via Counterfactual Role Reversal}, author = {Gupta, Umang and Dhamala, Jwala and Kumar, Varun and Verma, Apurv and Pruksachatkun, Yada and Krishna, Satyapriya and Gupta, Rahul and Chang, Kai-Wei and Steeg, Greg Ver and Galstyan, Aram}, booktitle = {ACL Finding}, year = {2022} }
-
Harms of Gender Exclusivity and Challenges in Non-Binary Representation in Language Technologies
Sunipa Dev, Masoud Monajatipoor, Anaelia Ovalle, Arjun Subramonian, Jeff Phillips, and Kai-Wei Chang, in EMNLP, 2021.
Full Text Slides Poster Abstract BibTeX DetailsGender is widely discussed in the context of language tasks and when examining the stereotypes propagated by language models. However, current discussions primarily treat gender as binary, which can perpetuate harms such as the cyclical erasure of non-binary gender identities. These harms are driven by model and dataset biases, which are consequences of the non-recognition and lack of understanding of non-binary genders in society. In this paper, we explain the complexity of gender and language around it, and survey non-binary persons to understand harms associated with the treatment of gender as binary in English language technologies. We also detail how current language representations (e.g., GloVe, BERT) capture and perpetuate these harms and related challenges that need to be acknowledged and addressed for representations to equitably encode gender information.
@inproceedings{dev2021harms, title = {Harms of Gender Exclusivity and Challenges in Non-Binary Representation in Language Technologies}, author = {Dev, Sunipa and Monajatipoor, Masoud and Ovalle, Anaelia and Subramonian, Arjun and Phillips, Jeff and Chang, Kai-Wei}, presentation_id = {https://underline.io/events/192/sessions/7788/lecture/37320-harms-of-gender-exclusivity-and-challenges-in-non-binary-representation-in-language-technologies}, blog_url = {https://uclanlp.medium.com/harms-of-gender-exclusivity-and-challenges-in-non-binary-representation-in-language-technologies-5f89891b5aee}, booktitle = {EMNLP}, year = {2021} }
-
Gender Bias in Multilingual Embeddings and Cross-Lingual Transfer
Jieyu Zhao, Subhabrata Mukherjee, Saghar Hosseini, Kai-Wei Chang, and Ahmed Hassan Awadallah, in ACL, 2020.
Full Text Slides Video Abstract BibTeX DetailsMultilingual representations embed words from many languages into a single semantic space such that words with similar meanings are close to each other regardless of the language. These embeddings have been widely used in various settings, such as cross-lingual transfer, where a natural language processing (NLP) model trained on one language is deployed to another language. While the cross-lingual transfer techniques are powerful, they carry gender bias from the source to target languages. In this paper, we study gender bias in multilingual embeddings and how it affects transfer learning for NLP applications. We create a multilingual dataset for bias analysis and propose several ways for quantifying bias in multilingual representations from both the intrinsic and extrinsic perspectives. Experimental results show that the magnitude of bias in the multilingual representations changes differently when we align the embeddings to different target spaces and that the alignment direction can also have an influence on the bias in transfer learning. We further provide recommendations for using the multilingual word representations for downstream tasks.
@inproceedings{zhao2020gender, author = {Zhao, Jieyu and Mukherjee, Subhabrata and Hosseini, Saghar and Chang, Kai-Wei and Awadallah, Ahmed Hassan}, title = {Gender Bias in Multilingual Embeddings and Cross-Lingual Transfer}, booktitle = {ACL}, year = {2020}, presentation_id = {https://virtual.acl2020.org/paper_main.260.html} }
-
Examining Gender Bias in Languages with Grammatical Gender
Pei Zhou, Weijia Shi, Jieyu Zhao, Kuan-Hao Huang, Muhao Chen, Ryan Cotterell, and Kai-Wei Chang, in EMNLP, 2019.
Full Text Poster Code Abstract BibTeX DetailsRecent studies have shown that word embeddings exhibit gender bias inherited from the training corpora. However, most studies to date have focused on quantifying and mitigating such bias only in English. These analyses cannot be directly extended to languages that exhibit morphological agreement on gender, such as Spanish and French. In this paper, we propose new metrics for evaluating gender bias in word embeddings of these languages and further demonstrate evidence of gender bias in bilingual embeddings which align these languages with English. Finally, we extend an existing approach to mitigate gender bias in word embeddings under both monolingual and bilingual settings. Experiments on modified Word Embedding Association Test, word similarity, word translation, and word pair translation tasks show that the proposed approaches effectively reduce the gender bias while preserving the utility of the embeddings.
@inproceedings{zhou2019examining, author = {Zhou, Pei and Shi, Weijia and Zhao, Jieyu and Huang, Kuan-Hao and Chen, Muhao and Cotterell, Ryan and Chang, Kai-Wei}, title = {Examining Gender Bias in Languages with Grammatical Gender}, booktitle = {EMNLP}, year = {2019} }
-
Balanced Datasets Are Not Enough: Estimating and Mitigating Gender Bias in Deep Image Representations
Tianlu Wang, Jieyu Zhao, Mark Yatskar, Kai-Wei Chang, and Vicente Ordonez, in ICCV, 2019.
Full Text Code Demo Abstract BibTeX DetailsIn this work, we present a framework to measure and mitigate intrinsic biases with respect to protected variables –such as gender– in visual recognition tasks. We show that trained models significantly amplify the association of target labels with gender beyond what one would expect from biased datasets. Surprisingly, we show that even when datasets are balanced such that each label co-occurs equally with each gender, learned models amplify the association between labels and gender, as much as if data had not been balanced! To mitigate this, we adopt an adversarial approach to remove unwanted features corresponding to protected variables from intermediate representations in a deep neural network – and provide a detailed analysis of its effectiveness. Experiments on two datasets: the COCO dataset (objects), and the imSitu dataset (actions), show reductions in gender bias amplification while maintaining most of the accuracy of the original models.
@inproceedings{wang2019balanced, author = {Wang, Tianlu and Zhao, Jieyu and Yatskar, Mark and Chang, Kai-Wei and Ordonez, Vicente}, title = {Balanced Datasets Are Not Enough: Estimating and Mitigating Gender Bias in Deep Image Representations}, booktitle = {ICCV}, year = {2019} }
-
Gender Bias in Contextualized Word Embeddings
Jieyu Zhao, Tianlu Wang, Mark Yatskar, Ryan Cotterell, Vicente Ordonez, and Kai-Wei Chang, in NAACL (short), 2019.
Full Text Slides Video Abstract BibTeX DetailsDespite the great success of contextualized word embeddings on downstream applications, these representations potentially embed the societal biases exhibited in their training corpus. In this paper, we quantify, analyze and mitigate the gender bias exhibited in ELMo contextualized word vectors. We first demonstrate that the vectors encode and propagate information about genders unequally and then conduct a principal component analysis to visualize the geometry of the gender information in the embeddings. Then we show that ELMo works unequally well for men and women in down-stream tasks. Finally, we explore a variety of methods to remove such gender bias and demonstrate that it can be reduced through data augmentation.
@inproceedings{zhao2019gender, author = {Zhao, Jieyu and Wang, Tianlu and Yatskar, Mark and Cotterell, Ryan and Ordonez, Vicente and Chang, Kai-Wei}, title = {Gender Bias in Contextualized Word Embeddings}, booktitle = {NAACL (short)}, year = {2019} }
-
Learning Gender-Neutral Word Embeddings
Jieyu Zhao, Yichao Zhou, Zeyu Li, Wei Wang, and Kai-Wei Chang, in EMNLP (short), 2018.
Full Text Code Abstract BibTeX DetailsWord embeddings have become a fundamental component in a wide range of Natu-ral Language Processing (NLP) applications.However, these word embeddings trained onhuman-generated corpora inherit strong gen-der stereotypes that reflect social constructs.In this paper, we propose a novel word em-bedding model, De-GloVe, that preserves gen-der information in certain dimensions of wordvectors while compelling other dimensions tobe free of gender influence. Quantitative andqualitative experiments demonstrate that De-GloVe successfully isolates gender informa-tion without sacrificing the functionality of theembedding model.
@inproceedings{zhao2018learning, author = {Zhao, Jieyu and Zhou, Yichao and Li, Zeyu and Wang, Wei and Chang, Kai-Wei}, title = {Learning Gender-Neutral Word Embeddings}, booktitle = {EMNLP (short)}, year = {2018} }
-
Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings
Tolga Bolukbasi, Kai-Wei Chang, James Zou, Venkatesh Saligrama, and Adam Kalai, in NeurIPS, 2016.
Full Text Code Abstract BibTeX Details Top-10 cited paper at NeurIPS 16The blind application of machine learning runs the risk of amplifying biases present in data. Such a danger is facing us with word embedding, a popular framework to represent text data as vectors which has been used in many machine learning and natural language processing tasks. We show that even word embeddings trained on Google News articles exhibit female/male gender stereotypes to a disturbing extent. This raises concerns because their widespread use, as we describe, often tends to amplify these biases. Geometrically, gender bias is first shown to be captured by a direction in the word embedding. Second, gender neutral words are shown to be linearly separable from gender definition words in the word embedding. Using these properties, we provide a methodology for modifying an embedding to remove gender stereotypes, such as the association between between the words receptionist and female, while maintaining desired associations such as between the words queen and female. We define metrics to quantify both direct and indirect gender biases in embeddings, and develop algorithms to "debias" the embedding. Using crowd-worker evaluation as well as standard benchmarks, we empirically demonstrate that our algorithms significantly reduce gender bias in embeddings while preserving the its useful properties such as the ability to cluster related concepts and to solve analogy tasks. The resulting embeddings can be used in applications without amplifying gender bias.
@inproceedings{bolukbasi2016man, author = {Bolukbasi, Tolga and Chang, Kai-Wei and Zou, James and Saligrama, Venkatesh and Kalai, Adam}, title = {Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings}, booktitle = {NeurIPS}, year = {2016} }
Governing Societal Bias in Natural Language Understanidng Models
-
GIVL: On Improving Geographical Inclusivity of Vision-and-Language Models with Pre-Training Methods
Da Yin, Feng Gao, Govind Thattai, Michael Johnston, and Kai-Wei Chang, in CVPR, 2023.
Full Text Abstract BibTeX DetailsA key goal for the advancement of AI is to develop technologies that serve the needs not just of one group but of all communities regardless of their geographical region. In fact, a significant proportion of knowledge is locally shared by people from certain regions but may not apply equally in other regions because of cultural differences. If a model is unaware of regional characteristics, it may lead to performance disparity across regions and result in bias against underrepresented groups. We propose GIVL, a Geographically Inclusive Vision-and-Language Pre-trained model. There are two attributes of geo-diverse visual concepts which can help to learn geo-diverse knowledge: 1) concepts under similar categories have unique knowledge and visual characteristics, 2) concepts with similar visual features may fall in completely different categories. Motivated by the attributes, we design new pre-training objectives Image Knowledge Matching (IKM) and Image Edit Checking (IEC) to pre-train GIVL. Compared with similar-size models pre-trained with similar scale of data, GIVL achieves state-of-the-art (SOTA) and more balanced performance on geo-diverse V&L tasks.
@inproceedings{yin2023givl, author = {Yin, Da and Gao, Feng and Thattai, Govind and Johnston, Michael and Chang, Kai-Wei}, title = {GIVL: On Improving Geographical Inclusivity of Vision-and-Language Models with Pre-Training Methods}, booktitle = {CVPR}, year = {2023} }
-
GeoMLAMA: Geo-Diverse Commonsense Probing on Multilingual Pre-Trained Language Models
Da Yin, Hritik Bansal, Masoud Monajatipoor, Liunian Harold Li, and Kai-Wei Chang, in EMNLP, 2022.
Full Text Code Abstract BibTeX DetailsRecent work has shown that Pre-trained Language Models (PLMs) have the ability to store the relational knowledge from pre-training data in their model parameters. However, it is not clear up to what extent do PLMs store geo-diverse commonsense knowledge, the knowledge associated with a culture and only shared locally. For instance, the color of bridal dress is white in American weddings whereas it is red in Chinese weddings. Here, we wish to probe if PLMs can predict red and white as the color of the bridal dress when queried for American and Chinese weddings, respectively. To this end, we introduce a framework for geo-diverse commonsense probing on multilingual PLMs (mPLMs) and introduce a corresponding benchmark Geo-diverse Commonsense Multilingual Language Model Analysis (GeoMLAMA) dataset. GeoMLAMA contains 3125 prompts in English, Chinese, Hindi, Persian, and Swahili, with a wide coverage of concepts shared by people from American, Chinese, Indian, Iranian and Kenyan cultures. We benchmark 11 standard mPLMs which include variants of mBERT, XLM, mT5, and XGLM on GeoMLAMA. Interestingly, we find that 1) larger mPLM variants do not necessarily store geo-diverse concepts better than its smaller variant; 2) mPLMs are not intrinsically biased towards knowledge from the Western countries (the United States); 3) the native language of a country may not be the best language to probe its knowledge and 4) a language may better probe knowledge about a non-native country than its native country.
@inproceedings{yin2022geomlama, title = {GeoMLAMA: Geo-Diverse Commonsense Probing on Multilingual Pre-Trained Language Models}, author = {Yin, Da and Bansal, Hritik and Monajatipoor, Masoud and Li, Liunian Harold and Chang, Kai-Wei}, booktitle = {EMNLP}, year = {2022} }
Robustness in NLP
-
VideoCon: Robust video-language alignment via contrast captions
Hritik Bansal, Yonatan Bitton, Idan Szpektor, Kai-Wei Chang, and Aditya Grover, in CVPR, 2024.
Full Text Code Demo Abstract BibTeX Details Best paper at DPFM workshop at ICLRDespite being (pre)trained on a massive amount of data, state-of-the-art video-language alignment models are not robust to semantically-plausible contrastive changes in the video captions. Our work addresses this by identifying a broad spectrum of contrast misalignments, such as replacing entities, actions, and flipping event order, which alignment models should be robust against. To this end, we introduce the VideoCon, a video-language alignment dataset constructed by a large language model that generates plausible contrast video captions and explanations for differences between original and contrast video captions. Then, a generative video-language model is finetuned with VideoCon to assess video-language entailment and generate explanations. Our VideoCon-based alignment model significantly outperforms current models. It exhibits a 12-point increase in AUC for the video-language alignment task on human-generated contrast captions. Finally, our model sets new state of the art zero-shot performance in temporally-extensive video-language tasks such as text-to-video retrieval (SSv2-Temporal) and video question answering (ATP-Hard). Moreover, our model shows superior performance on novel videos and human-crafted captions and explanations.
@inproceedings{bansal2023videocon, author = {Bansal, Hritik and Bitton, Yonatan and Szpektor, Idan and Chang, Kai-Wei and Grover, Aditya}, title = {VideoCon: Robust video-language alignment via contrast captions}, booktitle = {CVPR}, year = {2024} }
-
Red Teaming Language Model Detectors with Language Models
Zhouxing Shi, Yihan Wang, Fan Yin, Xiangning Chen, Kai-Wei Chang, and Cho-Jui Hsieh, in TACL, 2023.
Full Text Code Abstract BibTeX DetailsThe prevalence and high capacity of large language models (LLMs) present significant safety and ethical risks when malicious users exploit them for automated content generation. To prevent the potentially deceptive usage of LLMs, recent works have proposed several algorithms to detect machine-generated text. In this paper, we systematically test the reliability of the existing detectors, by designing two types of attack strategies to fool the detectors: 1) replacing words with their synonyms based on the context; 2) altering the writing style of generated text. These strategies are implemented by instructing LLMs to generate synonymous word substitutions or writing directives that modify the style without human involvement, and the LLMs leveraged in the attack can also be protected by detectors. Our research reveals that our attacks effectively compromise the performance of all tested detectors, thereby underscoring the urgent need for the development of more robust machine-generated text detection systems.
@inproceedings{shi2023red, author = {Shi, Zhouxing and Wang, Yihan and Yin, Fan and Chen, Xiangning and Chang, Kai-Wei and Hsieh, Cho-Jui}, title = {Red Teaming Language Model Detectors with Language Models}, booktitle = {TACL}, year = {2023} }
-
CleanCLIP: Mitigating Data Poisoning Attacks in Multimodal Contrastive Learning
Hritik Bansal, Nishad Singhi, Yu Yang, Fan Yin, Aditya Grover, and Kai-Wei Chang, in ICCV, 2023.
Full Text Code Abstract BibTeX Details Best Paper Award at ICLR Workshop, Oral at ICCV (195 out of 8088 submissions, top 2.5%)Multimodal contrastive pretraining has been used to train multimodal representation models, such as CLIP, on large amounts of paired image-text data. However, previous studies have revealed that such models are vulnerable to backdoor attacks. Specifically, when trained on backdoored examples, CLIP learns spurious correlations between the embedded backdoor trigger and the target label, aligning their representations in the joint embedding space. Injecting even a small number of poisoned examples, such as 75 examples in 3 million pretraining data, can significantly manipulate the model’s behavior, making it difficult to detect or unlearn such correlations. To address this issue, we propose CleanCLIP, a finetuning framework that weakens the learned spurious associations introduced by backdoor attacks by independently re-aligning the representations for individual modalities. We demonstrate that unsupervised finetuning using a combination of multimodal contrastive and unimodal self-supervised objectives for individual modalities can significantly reduce the impact of the backdoor attack. We show empirically that CleanCLIP maintains model performance on benign examples while erasing a range of backdoor attacks on multimodal contrastive learning.
@inproceedings{bansal2023cleanclip, author = {Bansal, Hritik and Singhi, Nishad and Yang, Yu and Yin, Fan and Grover, Aditya and Chang, Kai-Wei}, title = {CleanCLIP: Mitigating Data Poisoning Attacks in Multimodal Contrastive Learning}, booktitle = {ICCV}, year = {2023} }
-
ADDMU: Detection of Far-Boundary Adversarial Examples with Data and Model Uncertainty Estimation
Fan Yin, Yao Li, Cho-Jui Hsieh, and Kai-Wei Chang, in EMNLP, 2022.
Full Text Abstract BibTeX DetailsAdversarial Examples Detection (AED) is a crucial defense technique against adversarial attacks and has drawn increasing attention from the Natural Language Processing (NLP) community. Despite the surge of new AED methods, our studies show that existing methods heavily rely on a shortcut to achieve good performance. In other words, current search-based adversarial attacks in NLP stop once model predictions change, and thus most adversarial examples generated by those attacks are located near model decision boundaries. To surpass this shortcut and fairly evaluate AED methods, we propose to test AED methods with Far Boundary (FB) adversarial examples. Existing methods show worse than random guess performance under this scenario. To overcome this limitation, we propose a new technique, ADDMU, adversary detection with data and model uncertainty, which combines two types of uncertainty estimation for both regular and FB adversarial example detection. Our new method outperforms previous methods by 3.6 and 6.0 AUC points under each scenario. Finally, our analysis shows that the two types of uncertainty provided by ADDMU can be leveraged to characterize adversarial examples and identify the ones that contribute most to model’s robustness in adversarial training.
@inproceedings{yin2022addmu, title = {ADDMU: Detection of Far-Boundary Adversarial Examples with Data and Model Uncertainty Estimation}, author = {Yin, Fan and Li, Yao and Hsieh, Cho-Jui and Chang, Kai-Wei}, booktitle = {EMNLP}, year = {2022} }
-
Investigating Ensemble Methods for Model Robustness Improvement of Text Classifiers
Jieyu Zhao, Xuezhi Wang, Yao Qin, Jilin Chen, and Kai-Wei Chang, in EMNLP-Finding (short), 2022.
Full Text BibTeX Details@inproceedings{zhao2022investigating, title = { Investigating Ensemble Methods for Model Robustness Improvement of Text Classifiers}, author = {Zhao, Jieyu and Wang, Xuezhi and Qin, Yao and Chen, Jilin and Chang, Kai-Wei}, booktitle = {EMNLP-Finding (short)}, year = {2022} }
-
Unsupervised Syntactically Controlled Paraphrase Generation with Abstract Meaning Representations
Kuan-Hao Huang, Varun Iyer, Anoop Kumar, Sriram Venkatapathy, Kai-Wei Chang, and Aram Galstyan, in EMNLP-Finding (short), 2022.
Full Text BibTeX Details@inproceedings{huang2022unsupervised, title = {Unsupervised Syntactically Controlled Paraphrase Generation with Abstract Meaning Representations}, author = {Huang, Kuan-Hao and Iyer, Varun and Kumar, Anoop and Venkatapathy, Sriram and Chang, Kai-Wei and Galstyan, Aram}, booktitle = {EMNLP-Finding (short)}, year = {2022} }
-
Improving the Adversarial Robustness of NLP Models by Information Bottleneck
Cenyuan Zhang, Xiang Zhou, Yixin Wan, Xiaoqing Zheng, Kai-Wei Chang, and Cho-Jui Hsieh, in ACL-Finding, 2022.
Full Text Abstract BibTeX DetailsExisting studies have demonstrated that adversarial examples can be directly attributed to the presence of non-robust features, which are highly predictive, but can be easily manipulated by adversaries to fool NLP models. In this study, we explore the feasibility of capturing task-specific robust features, while eliminating the non-robust ones by using the information bottleneck theory. Through extensive experiments, we show that the models trained with our information bottleneck-based method are able to achieve a significant improvement in robust accuracy, exceeding performances of all the previously reported defense methods while suffering almost no performance drop in clean accuracy on SST-2, AGNEWS and IMDB datasets.
@inproceedings{zhang2022improving, title = {Improving the Adversarial Robustness of NLP Models by Information Bottleneck}, author = {Zhang, Cenyuan and Zhou, Xiang and Wan, Yixin and Zheng, Xiaoqing and Chang, Kai-Wei and Hsieh, Cho-Jui}, booktitle = {ACL-Finding}, year = {2022} }
-
Searching for an Effiective Defender: Benchmarking Defense against Adversarial Word Substitution
Zongyi Li, Jianhan Xu, Jiehang Zeng, Linyang Li, Xiaoqing Zheng, Qi Zhang, Kai-Wei Chang, and Cho-Jui Hsieh, in EMNLP, 2021.
Full Text Abstract BibTeX DetailsRecent studies have shown that deep neural networks are vulnerable to intentionally crafted adversarial examples, and various methods have been proposed to defend against adversarial word-substitution attacks for neural NLP models. However, there is a lack of systematic study on comparing different defense approaches under the same attacking setting. In this paper, we seek to fill the gap of systematic studies through comprehensive researches on understanding the behavior of neural text classifiers trained by various defense methods under representative adversarial attacks. In addition, we propose an effective method to further improve the robustness of neural text classifiers against such attacks and achieved the highest accuracy on both clean and adversarial examples on AGNEWS and IMDB datasets by a significant margin.
@inproceedings{li2021searching, title = {Searching for an Effiective Defender: Benchmarking Defense against Adversarial Word Substitution}, author = {Li, Zongyi and Xu, Jianhan and Zeng, Jiehang and Li, Linyang and Zheng, Xiaoqing and Zhang, Qi and Chang, Kai-Wei and Hsieh, Cho-Jui}, presentation_id = {https://underline.io/events/192/posters/8225/poster/38025-searching-for-an-effective-defender-benchmarking-defense-against-adversarial-word-substitution}, booktitle = {EMNLP}, year = {2021} }
-
On the Transferability of Adversarial Attacks against Neural Text Classifier
Liping Yuan, Xiaoqing Zheng, Yi Zhou, Cho-Jui Hsieh, and Kai-Wei Chang, in EMNLP, 2021.
Full Text Abstract BibTeX DetailsDeep neural networks are vulnerable to adversarial attacks, where a small perturbation to an input alters the model prediction. In many cases, malicious inputs intentionally crafted for one model can fool another model. In this paper, we present the first study to systematically investigate the transferability of adversarial examples for text classification models and explore how various factors, including network architecture, tokenization scheme, word embedding, and model capacity, affect the transferability of adversarial examples. Based on these studies, we propose a genetic algorithm to find an ensemble of models that can be used to induce adversarial examples to fool almost all existing models. Such adversarial examples reflect the defects of the learning process and the data bias in the training set. Finally, we derive word replacement rules that can be used for model diagnostics from these adversarial examples.
@inproceedings{yuan2021on, title = {On the Transferability of Adversarial Attacks against Neural Text Classifier}, author = {Yuan, Liping and Zheng, Xiaoqing and Zhou, Yi and Hsieh, Cho-Jui and Chang, Kai-Wei}, presentation_id = {https://underline.io/events/192/posters/8223/poster/38067-on-the-transferability-of-adversarial-attacks-against-neural-text-classifier}, booktitle = {EMNLP}, year = {2021} }
-
Defense against Synonym Substitution-based Adversarial Attacks via Dirichlet Neighborhood Ensemble
Yi Zhou, Xiaoqing Zheng, Cho-Jui Hsieh, Kai-Wei Chang, and Xuanjing Huang, in ACL, 2021.
Full Text Code Abstract BibTeX DetailsAlthough deep neural networks have achieved prominent performance on many NLP tasks, they are vulnerable to adversarial examples. We propose Dirichlet Neighborhood Ensemble (DNE), a randomized method for training a robust model to defense synonym substitutionbased attacks. During training, DNE forms virtual sentences by sampling embedding vectors for each word in an input sentence from a convex hull spanned by the word and its synonyms, and it augments them with the training data. In such a way, the model is robust to adversarial attacks while maintaining the performance on the original clean data. DNE is agnostic to the network architectures and scales to large models (e.g., BERT) for NLP applications. Through extensive experimentation, we demonstrate that our method consistently outperforms recently proposed defense methods by a significant margin across different network architectures and multiple data sets.
@inproceedings{zhou2021defense, title = {Defense against Synonym Substitution-based Adversarial Attacks via Dirichlet Neighborhood Ensemble}, author = {Zhou, Yi and Zheng, Xiaoqing and Hsieh, Cho-Jui and Chang, Kai-Wei and Huang, Xuanjing}, booktitle = {ACL}, year = {2021} }
-
Double Perturbation: On the Robustness of Robustness and Counterfactual Bias Evaluation
Chong Zhang, Jieyu Zhao, Huan Zhang, Kai-Wei Chang, and Cho-Jui Hsieh, in NAACL, 2021.
Full Text Video Code Abstract BibTeX DetailsRobustness and counterfactual bias are usually evaluated on a test dataset. However, are these evaluations robust? If the test dataset is perturbed slightly, will the evaluation results keep the same? In this paper, we propose a "double perturbation" framework to uncover model weaknesses beyond the test dataset. The framework first perturbs the test dataset to construct abundant natural sentences similar to the test data, and then diagnoses the prediction change regarding a single-word substitution. We apply this framework to study two perturbation-based approaches that are used to analyze models’ robustness and counterfactual bias in English. (1) For robustness, we focus on synonym substitutions and identify vulnerable examples where prediction can be altered. Our proposed attack attains high success rates (96.0%-99.8%) in finding vulnerable examples on both original and robustly trained CNNs and Transformers. (2) For counterfactual bias, we focus on substituting demographic tokens (e.g., gender, race) and measure the shift of the expected prediction among constructed sentences. Our method is able to reveal the hidden model biases not directly shown in the test dataset.
@inproceedings{zhang2021double, title = { Double Perturbation: On the Robustness of Robustness and Counterfactual Bias Evaluation}, booktitle = {NAACL}, author = {Zhang, Chong and Zhao, Jieyu and Zhang, Huan and Chang, Kai-Wei and Hsieh, Cho-Jui}, year = {2021}, presentation_id = {https://underline.io/events/122/sessions/4229/lecture/19609-double-perturbation-on-the-robustness-of-robustness-and-counterfactual-bias-evaluation} }
-
Provable, Scalable and Automatic Perturbation Analysis on General Computational Graphs
Kaidi Xu, Zhouxing Shi, Huan Zhang, Yihan Wang, Kai-Wei Chang, Minlie Huang, Bhavya Kailkhura, Xue Lin, and Cho-Jui Hsieh, in NeurIPS, 2020.
Full Text Code Abstract BibTeX DetailsLinear relaxation based perturbation analysis (LiRPA) for neural networks, which computes provable linear bounds of output neurons given a certain amount of input perturbation, has become a core component in robustness verification and certified defense. The majority of LiRPA-based methods only consider simple feed-forward networks and it needs particular manual derivations and implementations when extended to other architectures. In this paper, we develop an automatic framework to enable perturbation analysis on any neural network structures, by generalizing exiting LiRPA algorithms such as CROWN to operate on general computational graphs. The flexibility, differentiability and ease of use of our framework allow us to obtain state-of-the-art results on LiRPA based certified defense on fairly complicated networks like DenseNet, ResNeXt and Transformer that are not supported by prior work. Our framework also enables loss fusion, a technique that significantly reduces the computational complexity of LiRPA for certified defense. For the first time, we demonstrate LiRPA based certified defense on Tiny ImageNet and Downscaled ImageNet where previous approaches cannot scale to due to the relatively large number of classes. Our work also yields an open-source library for the community to apply LiRPA to areas beyond certified defense without much LiRPA expertise, e.g., we create a neural network with a provably flat optimization landscape. Our open source library is available at https://github.com/KaidiXu/auto_LiRPA
@inproceedings{xu2020provable, author = {Xu, Kaidi and Shi, Zhouxing and Zhang, Huan and Wang, Yihan and Chang, Kai-Wei and Huang, Minlie and Kailkhura, Bhavya and Lin, Xue and Hsieh, Cho-Jui}, title = {Provable, Scalable and Automatic Perturbation Analysis on General Computational Graphs}, booktitle = {NeurIPS}, year = {2020} }
-
On the Robustness of Language Encoders against Grammatical Errors
Fan Yin, Quanyu Long, Tao Meng, and Kai-Wei Chang, in ACL, 2020.
Full Text Slides Video Code Abstract BibTeX DetailsWe conduct a thorough study to diagnose the behaviors of pre-trained language encoders (ELMo, BERT, and RoBERTa) when confronted with natural grammatical errors. Specifically, we collect real grammatical errors from non-native speakers and conduct adversarial attacks to simulate these errors on clean text data. We use this approach to facilitate debugging models on downstream applications. Results confirm that the performance of all tested models is affected but the degree of impact varies. To interpret model behaviors, we further design a linguistic acceptability task to reveal their abilities in identifying ungrammatical sentences and the position of errors. We find that fixed contextual encoders with a simple classifier trained on the prediction of sentence correctness are able to locate error positions. We also design a cloze test for BERT and discover that BERT captures the interaction between errors and specific tokens in context. Our results shed light on understanding the robustness and behaviors of language encoders against grammatical errors.
@inproceedings{yin2020robustness, author = {Yin, Fan and Long, Quanyu and Meng, Tao and Chang, Kai-Wei}, title = {On the Robustness of Language Encoders against Grammatical Errors}, booktitle = {ACL}, presentation_id = {https://virtual.acl2020.org/paper_main.310.html}, year = {2020} }
-
Robustness Verification for Transformers
Zhouxing Shi, Huan Zhang, Kai-Wei Chang, Minlie Huang, and Cho-Jui Hsieh, in ICLR, 2020.
Full Text Video Code Abstract BibTeX DetailsRobustness verification that aims to formally certify the prediction behavior of neural networks has become an important tool for understanding the behavior of a given model and for obtaining safety guarantees. However, previous methods are usually limited to relatively simple neural networks. In this paper, we consider the robustness verification problem for Transformers. Transformers have complex self-attention layers that pose many challenges for verification, including cross-nonlinearity and cross-position dependency, which have not been discussed in previous work. We resolve these challenges and develop the first verification algorithm for Transformers. The certified robustness bounds computed by our method are significantly tighter than those by naive Interval Bound Propagation. These bounds also shed light on interpreting Transformers as they consistently reflect the importance of words in sentiment analysis.
@inproceedings{shi2020robustness, author = {Shi, Zhouxing and Zhang, Huan and Chang, Kai-Wei and Huang, Minlie and Hsieh, Cho-Jui}, title = {Robustness Verification for Transformers}, booktitle = {ICLR}, year = {2020} }
-
Learning to Discriminate Perturbations for Blocking Adversarial Attacks in Text Classification
Yichao Zhou, Jyun-Yu Jiang, Kai-Wei Chang, and Wei Wang, in EMNLP, 2019.
Full Text Code Abstract BibTeX DetailsAdversarial attacks against machine learning models have threatened various real-world applications such as spam filtering and sentiment analysis. In this paper, we propose a novel framework, learning to DIScriminate Perturbations (DISP), to identify and adjust malicious perturbations, thereby blocking adversarial attacks for text classification models. To identify adversarial attacks, a perturbation discriminator validates how likely a token in the text is perturbed and provides a set of potential perturbations. For each potential perturbation, an embedding estimator learns to restore the embedding of the original word based on the context and a replacement token is chosen based on approximate kNN search. DISP can block adversarial attacks for any NLP model without modifying the model structure or training procedure. Extensive experiments on two benchmark datasets demonstrate that DISP significantly outperforms baseline methods in blocking adversarial attacks for text classification. In addition, in-depth analysis shows the robustness of DISP across different situations.
@inproceedings{zhou2019learning, author = {Zhou, Yichao and Jiang, Jyun-Yu and Chang, Kai-Wei and Wang, Wei}, title = {Learning to Discriminate Perturbations for Blocking Adversarial Attacks in Text Classification}, booktitle = {EMNLP}, year = {2019} }
-
Retrofitting Contextualized Word Embeddings with Paraphrases
Weijia Shi, Muhao Chen, Pei Zhou, and Kai-Wei Chang, in EMNLP (short), 2019.
Full Text Slides Video Code Abstract BibTeX DetailsContextualized word embedding models, such as ELMo, generate meaningful representations of words and their context. These models have been shown to have a great impact on downstream applications. However, in many cases, the contextualized embedding of a word changes drastically when the context is paraphrased. As a result, the downstream model is not robust to paraphrasing and other linguistic variations. To enhance the stability of contextualized word embedding models, we propose an approach to retrofitting contextualized embedding models with paraphrase contexts. Our method learns an orthogonal transformation on the input space, which seeks to minimize the variance of word representations on paraphrased contexts. Experiments show that the retrofitted model significantly outperforms the original ELMo on various sentence classification and language inference tasks.
@inproceedings{shi2019retrofitting, author = {Shi, Weijia and Chen, Muhao and Zhou, Pei and Chang, Kai-Wei}, title = {Retrofitting Contextualized Word Embeddings with Paraphrases}, booktitle = {EMNLP (short)}, vimeo_id = {430797636}, year = {2019} }
-
Generating Natural Language Adversarial Examples
Moustafa Alzantot, Yash Sharma, Ahmed Elgohary, Bo-Jhang Ho, Mani Srivastava, and Kai-Wei Chang, in EMNLP (short), 2018.
Full Text Code Abstract BibTeX Details Top-10 cited paper at EMNLP 18Deep neural networks (DNNs) are vulnerable to adversarial examples, perturbations to correctly classified examples which can cause the network to misclassify. In the image domain, these perturbations can often be made virtually indistinguishable to human perception, causing humans and state-of-the-art models to disagree. However, in the natural language domain, small perturbations are clearly perceptible, and the replacement of a single word can drastically alter the semantics of the document. Given these challenges, we use a population-based optimization algorithm to generate semantically and syntactically similar adversarial examples. We demonstrate via a human study that 94.3% of the generated examples are classified to the original label by human evaluators, and that the examples are perceptibly quite similar. We hope our findings encourage researchers to pursue improving the robustness of DNNs in the natural language domain.
@inproceedings{alzanto2018generating, author = {Alzantot, Moustafa and Sharma, Yash and Elgohary, Ahmed and Ho, Bo-Jhang and Srivastava, Mani and Chang, Kai-Wei}, title = {Generating Natural Language Adversarial Examples}, booktitle = {EMNLP (short)}, year = {2018} }
Explanation in NLP
-
On the Sensitivity and Stability of Model Interpretations
Fan Yin, Zhouxing Shi, Cho-Jui Hsieh, and Kai-Wei Chang, in ACL, 2022.
Full Text Abstract BibTeX DetailsRecent years have witnessed the emergence of a variety of post-hoc interpretations that aim to uncover how natural language processing (NLP) models make predictions. Despite the surge of new interpretation methods, it remains an open problem how to define and quantitatively measure the faithfulness of interpretations, i.e., to what extent interpretations reflect the reasoning process by a model. We propose two new criteria, sensitivity and stability, that provide complementary notions of faithfulness to the existed removal-based criteria. Our results show that the conclusion for how faithful interpretations are could vary substantially based on different notions. Motivated by the desiderata of sensitivity and stability, we introduce a new class of interpretation methods that adopt techniques from adversarial robustness. Empirical results show that our proposed methods are effective under the new criteria and overcome limitations of gradient-based methods on removal-based criteria. Besides text classification, we also apply interpretation methods and metrics to dependency parsing. Our results shed light on understanding the diverse set of interpretations.
@inproceedings{yin2022on, title = {On the Sensitivity and Stability of Model Interpretations}, author = {Yin, Fan and Shi, Zhouxing and Hsieh, Cho-Jui and Chang, Kai-Wei}, booktitle = {ACL}, year = {2022} }
Learning, Reasoning, and Inference in Natural Language Processing
We contributed to building fundamental statistical tools for processing text at scale.
Reasoning in LLMs
-
AVIS: Autonomous Visual Information Seeking with Large Language Models
Ziniu Hu, Ahmet Iscen, Chen Sun, Kai-Wei Chang, Yizhou Sun, Cordelia Schmid, David A. Ross, and Alireza Fathi, in NeurIPS, 2023.
Full Text Abstract BibTeX DetailsIn this paper, we propose an autonomous information seeking visual question answering framework, AVIS. Our method leverages a Large Language Model (LLM) to dynamically strategize the utilization of external tools and to investigate their outputs, thereby acquiring the indispensable knowledge needed to provide answers to the posed questions. Responding to visual questions that necessitate external knowledge, such as "What event is commemorated by the building depicted in this image?", is a complex task. This task presents a combinatorial search space that demands a sequence of actions, including invoking APIs, analyzing their responses, and making informed decisions. We conduct a user study to collect a variety of instances of human decision-making when faced with this task. This data is then used to design a system comprised of three components: an LLM-powered planner that dynamically determines which tool to use next, an LLM-powered reasoner that analyzes and extracts key information from the tool outputs, and a working memory component that retains the acquired information throughout the process. The collected user behavior serves as a guide for our system in two key ways. First, we create a transition graph by analyzing the sequence of decisions made by users. This graph delineates distinct states and confines the set of actions available at each state. Second, we use examples of user decision-making to provide our LLM-powered planner and reasoner with relevant contextual instances, enhancing their capacity to make informed decisions. We show that AVIS achieves state-of-the-art results on knowledge-intensive visual question answering benchmarks such as Infoseek and OK-VQA.
@inproceedings{hu2023avis, author = {Hu, Ziniu and Iscen, Ahmet and Sun, Chen and Chang, Kai-Wei and Sun, Yizhou and Schmid, Cordelia and Ross, David A and Fathi, Alireza}, booktitle = {NeurIPS}, title = {AVIS: Autonomous Visual Information Seeking with Large Language Models}, year = {2023} }
-
Chameleon: Plug-and-Play Compositional Reasoning with Large Language Models
Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai-Wei Chang, Ying Nian Wu, Song-Chun Zhu, and Jianfeng Gao, in NeurIPS, 2023.
Full Text Code Abstract BibTeX DetailsLarge language models (LLMs) have achieved remarkable progress in solving various natural language processing tasks due to emergent reasoning abilities. However, LLMs have inherent limitations as they are incapable of accessing up-to-date information (stored on the Web or in task-specific knowledge bases), using external tools, and performing precise mathematical and logical reasoning. In this paper, we present Chameleon, an AI system that mitigates these limitations by augmenting LLMs with plug-and-play modules for compositional reasoning. Chameleon synthesizes programs by composing various tools (e.g., LLMs, off-the-shelf vision models, web search engines, Python functions, and heuristic-based modules) for accomplishing complex reasoning tasks. At the heart of Chameleon is an LLM-based planner that assembles a sequence of tools to execute to generate the final response. We showcase the effectiveness of Chameleon on two multi-modal knowledge-intensive reasoning tasks: ScienceQA and TabMWP. Chameleon, powered by GPT-4, achieves an 86.54% overall accuracy on ScienceQA, improving the best published few-shot result by 11.37%. On TabMWP, GPT-4-powered Chameleon improves the accuracy by 17.0%, lifting the state of the art to 98.78%. Our analysis also shows that the GPT-4-powered planner exhibits more consistent and rational tool selection via inferring potential constraints from instructions, compared to a ChatGPT-powered planner.
@inproceedings{lu2023chameleon, author = {Lu, Pan and Peng, Baolin and Cheng, Hao and Galley, Michel and Chang, Kai-Wei and Wu, Ying Nian and Zhu, Song-Chun and Gao, Jianfeng}, title = {Chameleon: Plug-and-Play Compositional Reasoning with Large Language Models}, booktitle = {NeurIPS}, year = {2023} }
-
A Survey of Deep Learning for Mathematical Reasoning
Pan Lu, Liang Qiu, Wenhao Yu, Sean Welleck, and Kai-Wei Chang, in ACL, 2023.
Full Text Abstract BibTeX DetailsMathematical reasoning is a fundamental aspect of human intelligence and is applicable in various fields, including science, engineering, finance, and everyday life. The development of artificial intelligence (AI) systems capable of solving math problems and proving theorems has garnered significant interest in the fields of machine learning and natural language processing. For example, mathematics serves as a testbed for aspects of reasoning that are challenging for powerful deep learning models, driving new algorithmic and modeling advances. On the other hand, recent advances in large-scale neural language models have opened up new benchmarks and opportunities to use deep learning for mathematical reasoning. In this survey paper, we review the key tasks, datasets, and methods at the intersection of mathematical reasoning and deep learning over the past decade. We also evaluate existing benchmarks and methods, and discuss future research directions in this domain.
@inproceedings{lu2023survey, author = {Lu, Pan and Qiu, Liang and Yu, Wenhao and Welleck, Sean and Chang, Kai-Wei}, title = {A Survey of Deep Learning for Mathematical Reasoning}, booktitle = {ACL}, year = {2023}, presentation_id = {https://underline.io/events/395/posters/15337/poster/76360-a-survey-of-deep-learning-for-mathematical-reasoning} }
-
Symbolic Chain-of-Thought Distillation: Small Models Can Also "Think" Step-by-Step
Liunian Harold Li, Jack Hessel, Youngjae Yu, Xiang Ren, Kai-Wei Chang, and Yejin Choi, in ACL, 2023.
Full Text Abstract BibTeX DetailsChain-of-thought prompting (e.g., "Let’s think step-by-step") primes large language models to verbalize rationalization for their predictions. While chain-of-thought can lead to dramatic performance gains, benefits appear to emerge only for sufficiently large models (beyond 50B parameters). We show that orders-of-magnitude smaller models (125M – 1.3B parameters) can still benefit from chain-of-thought prompting. To achieve this, we introduce Symbolic Chain-of-Thought Distillation (SCoTD), a method to train a smaller student model on rationalizations sampled from a significantly larger teacher model. Experiments across several commonsense benchmarks show that: 1) SCoTD enhances the performance of the student model in both supervised and few-shot settings, and especially for challenge sets; 2) sampling many reasoning chains per instance from the teacher is paramount; and 3) after distillation, student chain-of-thoughts are judged by humans as comparable to the teacher, despite orders of magnitude fewer parameters. We test several hypotheses regarding what properties of chain-of-thought samples are important, e.g., diversity vs. teacher likelihood vs. open-endedness. We release our corpus of chain-of-thought samples and code.
@inproceedings{li2023symbolic, title = {Symbolic Chain-of-Thought Distillation: Small Models Can Also "Think" Step-by-Step}, author = {Li, Liunian Harold and Hessel, Jack and Yu, Youngjae and Ren, Xiang and Chang, Kai-Wei and Choi, Yejin}, booktitle = {ACL}, presentation_id = {https://underline.io/events/395/posters/15197/poster/77090-symbolic-chain-of-thought-distillation-small-models-can-also-think-step-by-step?tab=poster}, year = {2023} }
-
On the Paradox of Learning to Reason from Data
Honghua Zhang, Liunian Harold Li, Tao Meng, Kai-Wei Chang, and Guy Van den Broeck., in IJCAI, 2023.
Full Text Code Abstract BibTeX Details Top-10 cited paper at IJCAI 23Logical reasoning is needed in a wide range of NLP tasks. Can a BERT model be trained end-to-end to solve logical reasoning problems presented in natural language? We attempt to answer this question in a confined problem space where there exists a set of parameters that perfectly simulates logical reasoning. We make observations that seem to contradict each other: BERT attains near-perfect accuracy on in-distribution test examples while failing to generalize to other data distributions over the exact same problem space. Our study provides an explanation for this paradox: instead of learning to emulate the correct reasoning function, BERT has in fact learned statistical features that inherently exist in logical reasoning problems. We also show that it is infeasible to jointly remove statistical features from data, illustrating the difficulty of learning to reason in general. Our result naturally extends to other neural models and unveils the fundamental difference between learning to reason and learning to achieve high performance on NLP benchmarks using statistical features.
@inproceedings{zhang2023on, title = {On the Paradox of Learning to Reason from Data}, author = {Zhang, Honghua and Li, Liunian Harold and Meng, Tao and Chang, Kai-Wei and den Broeck., Guy Van}, booktitle = {IJCAI}, year = {2023} }
-
Dynamic Prompt Learning via Policy Gradient for Semi-structured Mathematical Reasoning
Pan Lu, Liang Qiu, Kai-Wei Chang, Ying Nian Wu, Song-Chun Zhu, Tanmay Rajpurohit, Peter Clark, and Ashwin Kalyan, in ICLR, 2023.
Full Text Abstract BibTeX DetailsMathematical reasoning, a core ability of human intelligence, presents unique challenges for machines in abstract thinking and logical reasoning. Recent large pre-trained language models such as GPT-3 have achieved remarkable progress on mathematical reasoning tasks written in text form, such as math word problems (MWP). However, it is unknown if the models can handle more complex problems that involve math reasoning over heterogeneous information, such as tabular data. To fill the gap, we present Tabular Math Word Problems (TabMWP), a new dataset containing 38,431 open-domain grade-level problems that require mathematical reasoning on both textual and tabular data. Each question in TabMWP is aligned with a tabular context, which is presented as an image, semi-structured text, and a structured table. There are two types of questions: free-text and multi-choice, and each problem is annotated with gold solutions to reveal the multi-step reasoning process. We evaluate different pre-trained models on TabMWP, including the GPT-3 model in a few-shot setting. As earlier studies suggest, since few-shot GPT-3 relies on the selection of in-context examples, its performance is unstable and can degrade to near chance. The unstable issue is more severe when handling complex problems like TabMWP. To mitigate this, we further propose a novel approach, PromptPG, which utilizes policy gradient to learn to select in-context examples from a small amount of training data and then constructs the corresponding prompt for the test example. Experimental results show that our method outperforms the best baseline by 5.31% on the accuracy metric and reduces the prediction variance significantly compared to random selection, which verifies its effectiveness in the selection of in-context examples.
@inproceedings{lu2023dynamic, author = {Lu, Pan and Qiu, Liang and Chang, Kai-Wei and Wu, Ying Nian and Zhu, Song-Chun and Rajpurohit, Tanmay and Clark, Peter and Kalyan, Ashwin}, title = {Dynamic Prompt Learning via Policy Gradient for Semi-structured Mathematical Reasoning}, booktitle = {ICLR}, year = {2023} }
-
Learn to Explain: Multimodal Reasoning via Thought Chains for Science Question Answering
Pan Lu, Swaroop Mishra, Tony Xia, Liang Qiu, Kai-Wei Chang, Song-Chun Zhu, Oyvind Tafjord, Peter Clark, and Ashwin Kalyan, in NeurIPS, 2022.
Full Text BibTeX Details Top-15 cited paper at NeurIPS 22@inproceedings{lu2022learn, title = {Learn to Explain: Multimodal Reasoning via Thought Chains for Science Question Answering}, author = {Lu, Pan and Mishra, Swaroop and Xia, Tony and Qiu, Liang and Chang, Kai-Wei and Zhu, Song-Chun and Tafjord, Oyvind and Clark, Peter and Kalyan, Ashwin}, booktitle = {NeurIPS}, github_url = {https://github.com/lupantech/ScienceQA}, year = {2022} }
-
Semantic Probabilistic Layers for Neuro-Symbolic Learning
Kareem Ahmed, Stefano Teso, Kai-Wei Chang, Guy Van den Broeck, and Antonio Vergari, in NeurIPS, 2022.
Full Text BibTeX Details@inproceedings{ahmed2022semantic, title = {Semantic Probabilistic Layers for Neuro-Symbolic Learning}, author = {Ahmed, Kareem and Teso, Stefano and Chang, Kai-Wei and den Broeck, Guy Van and Vergari, Antonio}, booktitle = {NeurIPS}, year = {2022} }
-
Neuro-Symbolic Entropy Regularization
Kareem Ahmed, Eric Wang, Kai-Wei Chang, and Guy Van den Broeck, in UAI, 2022.
Full Text Abstract BibTeX DetailsIn structured prediction, the goal is to jointly predict many output variables that together encode a structured object – a path in a graph, an entity-relation triple, or an ordering of objects. Such a large output space makes learning hard and requires vast amounts of labeled data. Different approaches leverage alternate sources of supervision. One approach – entropy regularization – posits that decision boundaries should lie in low-probability regions. It extracts supervision from unlabeled examples, but remains agnostic to the structure of the output space. Conversely, neuro-symbolic approaches exploit the knowledge that not every prediction corresponds to a valid structure in the output space. Yet, they does not further restrict the learned output distribution. This paper introduces a framework that unifies both approaches. We propose a loss, neuro-symbolic entropy regularization, that encourages the model to confidently predict a valid object. It is obtained by restricting entropy regularization to the distribution over only valid structures. This loss is efficiently computed when the output constraint is expressed as a tractable logic circuit. Moreover, it seamlessly integrates with other neuro-symbolic losses that eliminate invalid predictions. We demonstrate the efficacy of our approach on a series of semi-supervised and fully-supervised structured-prediction experiments, where we find that it leads to models whose predictions are more accurate and more likely to be valid.
@inproceedings{ahmadneuro2022, title = {Neuro-Symbolic Entropy Regularization}, author = {Ahmed, Kareem and Wang, Eric and Chang, Kai-Wei and den Broeck, Guy Van}, booktitle = {UAI}, year = {2022} }
Learning and Inference with Constraints
-
A Pseudo-Semantic Loss for Deep Generative Models with Logical Constraints
Kareem Ahmed, Kai-Wei Chang, and Guy Van den Broeck, in NeurIPS, 2023.
Full Text Abstract BibTeX DetailsNeuro-symbolic approaches bridge the gap between purely symbolic and neural approaches to learning. This often requires maximizing the probability of a symbolic constraint in the neural network’s output. However, output distributions are typically assumed to be fully-factorized, which prohibits the application of neurosymbolic learning to more expressive output distributions, such as autoregressive deep generative models. There, such probability computation is #P-hard, even for simple constraints. Instead, we propose to locally approximate the probability of the symbolic constraint under the pseudolikelihood distribution – the product of its full conditionals given a sample from the model. This allows our pseudo-semantic loss function to enforce the symbolic constraint. Our method bears relationship to several classical approximation schemes, including hogwild Gibbs sampling, consistent pseudolikelihood learning, and contrastive divergence. We test our proposed approach on three distinct settings: Sudoku, shortest-path prediction, and detoxifying large language models. Experiments show that pseudo-semantic loss greatly improves upon the base model’s ability to satisfy the desired logical constraint in its output distribution.
@inproceedings{ahmed2023neuro, title = { A Pseudo-Semantic Loss for Deep Generative Models with Logical Constraints}, author = {Ahmed, Kareem and Chang, Kai-Wei and den Broeck, Guy Van}, booktitle = {NeurIPS}, year = {2023} }
-
Semantic Strengthening of Neuro-Symbolic Learning
Kareem Ahmed, Kai-Wei Chang, and Guy Van den Broeck, in AISTATS, 2023.
Full Text Code Abstract BibTeX DetailsNumerous neuro-symbolic approaches have recently been proposed typically with the goal of adding symbolic knowledge to the output layer of a neural network. Ideally, such losses maximize the probability that the neural network’s predictions satisfy the underlying domain. Unfortunately, this type of probabilistic inference is often computationally infeasible. Neuro-symbolic approaches therefore commonly resort to fuzzy approximations of this probabilistic objective, sacrificing sound probabilistic semantics, or to sampling which is very seldom feasible. We approach the problem by first assuming the constraint decomposes conditioned on the features learned by the network. We iteratively strengthen our approximation, restoring the dependence between the constraints most responsible for degrading the quality of the approximation. This corresponds to computing the mutual information between pairs of constraints conditioned on the network’s learned features, and may be construed as a measure of how well aligned the gradients of two distributions are. We show how to compute this efficiently for tractable circuits. We test our approach on three tasks: predicting a minimum-cost path in Warcraft, predicting a minimum-cost perfect matching, and solving Sudoku puzzles, observing that it improves upon the baselines while sidestepping intractability.
@inproceedings{ahmed2023semantic, author = {Ahmed, Kareem and Chang, Kai-Wei and Van den Broeck, Guy}, title = {Semantic Strengthening of Neuro-Symbolic Learning}, booktitle = {AISTATS}, year = {2023} }
-
Controllable Text Generation with Neurally-Decomposed Oracle
Tao Meng, Sidi Lu, Nanyun Peng, and Kai-Wei Chang, in NeurIPS, 2022.
Full Text Code Abstract BibTeX Details Oral Presentation, 201 out of 10411, top 1.9%We propose a general and efficient framework to control auto-regressive generation models with NeurAlly-Decomposed Oracle (NADO). Given a pre-trained base language model and a sequence-level boolean oracle function, we propose to decompose the oracle function into token-level guidance to steer the base model in text generation. Specifically, the token-level guidance is approximated by a neural model trained with examples sampled from the base model, demanding no additional auxiliary labeled data. We present the closed-form optimal solution to incorporate the token-level guidance into the base model for controllable generation. We further provide a theoretical analysis of how the approximation quality of NADO affects the controllable generation results. Experiments conducted on two applications: (1) text generation with lexical constraints and (2) machine translation with formality control demonstrate that our framework efficiently guides the base model towards the given oracle while maintaining high generation quality.
@inproceedings{meng2022controllable, title = {Controllable Text Generation with Neurally-Decomposed Oracle}, author = {Meng, Tao and Lu, Sidi and Peng, Nanyun and Chang, Kai-Wei}, booktitle = {NeurIPS}, year = {2022} }
Instruction Fine-Tuning in LLMs
-
Dynosaur: A Dynamic Growth Paradigm for Instruction-Tuning Data Curation
Da Yin, Xiao Liu, Fan Yin, Ming Zhong, Hritik Bansal, Jiawei Han, and Kai-Wei Chang, in EMNLP, 2023.
Full Text Code Abstract BibTeX DetailsInstruction tuning has emerged to enhance the capabilities of large language models (LLMs) in providing appropriate outputs based on input instructions. However, existing methods for collecting instruction-tuning data suffer from limitations in scalability and affordability. In this paper, we propose Dynosaur, a dynamic growth paradigm for instruction-tuning data curation. Built upon the metadata of existing NLP datasets, we generate multiple task instructions applicable to various NLP datasets and determine the relevant data fields for constructing instruction-tuning data with LLMs. Dynosaur offers several advantages: 1) lower generation costs (less than $12 for generating 800K instruction-tuning data), 2) good quality of instruction-tuning data (better performance than Alpaca and Instruction GPT-4 on Super-NI with comparable data sizes), and 3) the ability to grow dynamically by incorporating new datasets from Huggingface Datasets Platform. We further investigate continual learning as an approach to learning with the ever-growing instruction-tuning dataset. We demonstrate that replay methods not only help mitigate forgetting issues but help generalize to unseen tasks better. As a novel continual learning scenario for instruction tuning, selecting tasks based on instruction representations can be an effective replaying strategy.
@inproceedings{yin2023dynosaur, author = {Yin, Da and Liu, Xiao and Yin, Fan and Zhong, Ming and Bansal, Hritik and Han, Jiawei and Chang, Kai-Wei}, title = {Dynosaur: A Dynamic Growth Paradigm for Instruction-Tuning Data Curation}, booktitle = {EMNLP}, year = {2023} }
Efficient Joint Prediction Models
-
Distributed Block-diagonal Approximation Methods for Regularized Empirical Risk Minimization
Ching-pei Lee and Kai-Wei Chang, in Machine Learning Journal, 2019.
Full Text Code Abstract BibTeX DetailsDesigning distributed algorithms for empirical risk minimization (ERM) has become an active research topic in recent years because of the practical need to deal with the huge volume of data. In this paper, we propose a general framework for training an ERM model via solving its dual problem in parallel over multiple machines. Our method provides a versatile approach for many large-scale machine learning problems, including linear binary/multi-class classification, regression, and structured prediction. Comparing with existing approaches, we show that our method has faster convergence under weaker conditions both theoretically and empirically.
@inproceedings{LD17, author = {Lee, Ching-pei and Chang, Kai-Wei}, title = {Distributed Block-diagonal Approximation Methods for Regularized Empirical Risk Minimization}, booktitle = {Machine Learning Journal}, year = {2019} }
-
Robust Text Classifier on Test-Time Budgets
Md Rizwan Parvez, Tolga Bolukbasi, Kai-Wei Chang, and Venkatesh Saligrama, in EMNLP (short), 2019.
Full Text Slides Code Abstract BibTeX DetailsWe propose a generic and interpretable learning framework for building robust text classification model that achieves accuracy comparable to full models under test-time budget constraints. Our approach learns a selector to identify words that are relevant to the prediction tasks and passes them to the classifier for processing. The selector is trained jointly with the classifier and directly learns to incorporate with the classifier. We further propose a data aggregation scheme to improve the robustness of the classifier. Our learning framework is general and can be incorporated with any type of text classification model. On real-world data, we show that the proposed approach improves the performance of a given classifier and speeds up the model with a mere loss in accuracy performance.
@inproceedings{parvez2019robust, author = {Parvez, Md Rizwan and Bolukbasi, Tolga and Chang, Kai-Wei and Saligrama, Venkatesh}, title = {Robust Text Classifier on Test-Time Budgets}, booktitle = {EMNLP (short)}, year = {2019} }
-
Efficient Contextual Representation Learning With Continuous Outputs
Liunian Harold Li, Patrick H. Chen, Cho-Jui Hsieh, and Kai-Wei Chang, in TACL, 2019.
Full Text Slides Video Abstract BibTeX DetailsContextual representation models have achieved great success in improving various downstream natural language processing tasks. However, these language-model-based encoders are difficult to train due to their large parameter size and high computational complexity. By carefully examining the training procedure, we observe that the softmax layer, which predicts a distribution of the target word, often induces significant overhead, especially when the vocabulary size is large. Therefore, we revisit the design of the output layer and consider directly predicting the pre-trained embedding of the target word for a given context. When applied to ELMo, the proposed approach achieves a 4 times speedup and eliminates 80% trainable parameters while achieving competitive performance on downstream tasks. Further analysis shows that the approach maintains the speed advantage under various settings, even when the sentence encoder is scaled up.
@inproceedings{li2019efficient, author = {Li, Liunian Harold and Chen, Patrick H. and Hsieh, Cho-Jui and Chang, Kai-Wei}, title = {Efficient Contextual Representation Learning With Continuous Outputs}, booktitle = {TACL}, year = {2019} }
-
Structured Prediction with Test-time Budget Constraints
Tolga Bolukbasi, Kai-Wei Chang, Joseph Wang, and Venkatesh Saligrama, in AAAI, 2017.
Full Text Slides Abstract BibTeX DetailsWe study the problem of structured prediction under test-time budget constraints. We propose a novel approach applicable to a wide range of structured prediction problems in computer vision and natural language processing. Our approach seeks to adaptively generate computationally costly features during test-time in order to reduce the computational cost of prediction while maintaining prediction performance. We show that training the adaptive feature generation system can be reduced to a series of structured learning problems, resulting in efficient training using existing structured learning algorithms. This framework provides theoretical justification for several existing heuristic approaches found in literature. We evaluate our proposed adaptive system on two real-world structured prediction tasks, optical character recognition (OCR) and dependency parsing. For OCR our method cuts the feature acquisition time by half coming within a 1% margin of top accuracy. For dependency parsing we realize an overall runtime gain of 20% without significant loss in performance.
@inproceedings{bolukbasi2017structured, author = {Bolukbasi, Tolga and Chang, Kai-Wei and Wang, Joseph and Saligrama, Venkatesh}, title = {Structured Prediction with Test-time Budget Constraints}, booktitle = {AAAI}, year = {2017} }
-
A Credit Assignment Compiler for Joint Prediction
Kai-Wei Chang, He He, Hal Daume III, John Langford, and Stephane Ross, in NeurIPS, 2016.
Full Text Code Abstract BibTeX DetailsMany machine learning applications involve jointly predicting multiple mutually dependent output variables. Learning to search is a family of methods where the complex decision problem is cast into a sequence of decisions via a search space. Although these methods have shown promise both in theory and in practice, implementing them has been burdensomely awkward. In this paper, we show the search space can be defined by an arbitrary imperative program, turning learning to search into a credit assignment compiler. Altogether with the algorithmic improvements for the compiler, we radically reduce the complexity of programming and the running time. We demonstrate the feasibility of our approach on multiple joint prediction tasks. In all cases, we obtain accuracies as high as alternative approaches, at drastically reduced execution and programming time.
@inproceedings{chang2016credit, author = {Chang, Kai-Wei and He, He and III, Hal Daume and Langford, John and Ross, Stephane}, title = {A Credit Assignment Compiler for Joint Prediction}, booktitle = {NeurIPS}, year = {2016} }
-
Learning to Search Better Than Your Teacher
Kai-Wei Chang, Akshay Krishnamurthy, Alekh Agarwal, Hal Daume; III, and John Langford, in ICML, 2015.
Full Text Video Code Abstract BibTeX DetailsMethods for learning to search for structured prediction typically imitate a reference policy, with existing theoretical guarantees demonstrating low regret compared to that reference. This is unsatisfactory in many applications where the reference policy is suboptimal and the goal of learning is to improve upon it. Can learning to search work even when the reference is poor? We provide a new learning to search algorithm, LOLS, which does well relative to the reference policy, but additionally guarantees low regret compared to deviations from the learned policy: a local-optimality guarantee. Consequently, LOLS can improve upon the reference policy, unlike previous algorithms. This enables us to develop structured contextual bandits, a partial information structured prediction setting with many potential applications.
@inproceedings{chang2015learninh, author = {Chang, Kai-Wei and Krishnamurthy, Akshay and Agarwal, Alekh and III, Hal Daume; and Langford, John}, title = {Learning to Search Better Than Your Teacher}, booktitle = {ICML}, year = {2015} }
-
Structural Learning with Amortized Inference
Kai-Wei Chang, Shyam Upadhyay, Gourab Kundu, and Dan Roth, in AAAI, 2015.
Full Text Poster Abstract BibTeX DetailsTraining a structured prediction model involves performing several loss-augmented inference steps. Over the lifetime of the training, many of these inference problems, although different, share the same solution. We propose AI-DCD, an Amortized Inference framework for Dual Coordinate Descent method, an approximate learning algorithm, that accelerates the training process by exploiting this redundancy of solutions, without compromising the performance of the model. We show the efficacy of our method by training a structured SVM using dual coordinate descent for an entity-relation extraction task. Our method learns the same model as an exact training algorithm would, but call the inference engine only in 10% . 24% of the inference problems encountered during training. We observe similar gains on a multi-label classification task and with a Structured Perceptron model for the entity-relation task.
@inproceedings{chang2015structural, author = {Chang, Kai-Wei and Upadhyay, Shyam and Kundu, Gourab and Roth, Dan}, title = {Structural Learning with Amortized Inference}, booktitle = {AAAI}, year = {2015} }
Learning with Auxiliary Supervision and Word Knowledge
-
Relation-Guided Pre-Training for Open-Domain Question Answering
Ziniu Hu, Yizhou Sun, and Kai-Wei Chang, in EMNLP-Finding, 2021.
Full Text Abstract BibTeX DetailsAnswering complex open-domain questions requires understanding the latent relations between involving entities. However, we found that the existing QA datasets are extremely imbalanced in some types of relations, which hurts the generalization performance over questions with long-tail relations. To remedy this problem, in this paper, we propose a Relation-Guided Pre-Training (RGPT-QA) framework. We first generate a relational QA dataset covering a wide range of relations from both the Wikidata triplets and Wikipedia hyperlinks. We then pre-train a QA model to infer the latent relations from the question, and then conduct extractive QA to get the target answer entity. We demonstrate that by pretraining with propoed RGPT-QA techique, the popular open-domain QA model, Dense Passage Retriever (DPR), achieves 2.2%, 2.4%, and 6.3% absolute improvement in Exact Match accuracy on Natural Questions, TriviaQA, and WebQuestions. Particularly, we show that RGPT-QA improves significantly on questions with long-tail relations
@inproceedings{hu2021relation, title = {Relation-Guided Pre-Training for Open-Domain Question Answering}, author = {Hu, Ziniu and Sun, Yizhou and Chang, Kai-Wei}, presentation_id = {https://underline.io/events/192/sessions/7932/lecture/38507-relation-guided-pre-training-for-open-domain-question-answering}, booktitle = {EMNLP-Finding}, year = {2021} }
-
An Integer Linear Programming Framework for Mining Constraints from Data
Tao Meng and Kai-Wei Chang, in ICML, 2021.
Full Text Video Code Abstract BibTeX DetailsVarious structured output prediction problems (e.g., sequential tagging) involve constraints over the output space. By identifying these constraints, we can filter out infeasible solutions and build an accountable model. To this end, we present a general integer linear programming (ILP) framework for mining constraints from data. We model the inference of structured output prediction as an ILP problem. Then, given the coefficients of the objective function and the corresponding solution, we mine the underlying constraints by estimating the outer and inner polytopes of the feasible set. We verify the proposed constraint mining algorithm in various synthetic and real-world applications and demonstrate that the proposed approach successfully identifies the feasible set at scale. In particular, we show that our approach can learn to solve 9x9 Sudoku puzzles and minimal spanning tree problems from examples without providing the underlying rules. We also demonstrate results on hierarchical multi-label classification and conduct a theoretical analysis on how close the mined constraints are from the ground truth.
@inproceedings{meng2020integer, author = {Meng, Tao and Chang, Kai-Wei}, title = {An Integer Linear Programming Framework for Mining Constraints from Data}, booktitle = {ICML}, year = {2021} }
-
Generating Syntactically Controlled Paraphrases without Using Annotated Parallel Pairs
Kuan-Hao Huang and Kai-Wei Chang, in EACL, 2021.
Full Text Slides Poster Code Abstract BibTeX DetailsParaphrase generation plays an essential role in natural language process (NLP), and it has many downstream applications. However, training supervised paraphrase models requires many annotated paraphrase pairs, which are usually costly to obtain. On the other hand, the paraphrases generated by existing unsupervised approaches are usually syntactically similar to the source sentences and are limited in diversity. In this paper, we demonstrate that it is possible to generate syntactically various paraphrases without the need for annotated paraphrase pairs. We propose Syntactically controlled Paraphrase Generator (SynPG), an encoder-decoder based model that learns to disentangle the semantics and the syntax of a sentence from a collection of unannotated texts. The disentanglement enables SynPG to control the syntax of output paraphrases by manipulating the embedding in the syntactic space. Extensive experiments using automatic metrics and human evaluation show that SynPG performs better syntactic control than unsupervised baselines, while the quality of the generated paraphrases is competitive. We also demonstrate that the performance of SynPG is competitive or even better than supervised models when the unannotated data is large. Finally, we show that the syntactically controlled paraphrases generated by SynPG can be utilized for data augmentation to improve the robustness of NLP models.
@inproceedings{huang2021generating, author = {Huang, Kuan-Hao and Chang, Kai-Wei}, title = {Generating Syntactically Controlled Paraphrases without Using Annotated Parallel Pairs}, booktitle = {EACL}, year = {2021} }
-
Clinical Temporal Relation Extraction with Probabilistic Soft Logic Regularization and Global Inference
Yichao Zhou, Yu Yan, Rujun Han, J. Harry Caufield, Kai-Wei Chang, Yizhou Sun, Peipei Ping, and Wei Wang, in AAAI, 2021.
Full Text Code Abstract BibTeX DetailsThere has been a steady need in the medical community to precisely extract the temporal relations between clinical events. In particular, temporal information can facilitate a variety of downstream applications such as case report retrieval and medical question answering. However, existing methods either require expensive feature engineering or are incapable of modeling the global relational dependencies among theevents. In this paper, we propose Clinical Temporal Relation Exaction with Probabilistic Soft Logic Regularization and Global Inference (CTRL-PG), a novel method to tackle the problem at the document level. Extensive experiments on two benchmark datasets, I2B2-2012 and TB-Dense, demonstrate that CTRL-PG significantly outperforms baseline methodsfor temporal relation extraction.
@inproceedings{zhou2021clinical, author = {Zhou, Yichao and Yan, Yu and Han, Rujun and Caufield, J. Harry and Chang, Kai-Wei and Sun, Yizhou and Ping, Peipei and Wang, Wei}, title = {Clinical Temporal Relation Extraction with Probabilistic Soft Logic Regularization and Global Inference}, booktitle = {AAAI}, year = {2021} }
-
PolicyQA: A Reading Comprehension Dataset for Privacy Policies
Wasi Ahmad, Jianfeng Chi, Yuan Tian, and Kai-Wei Chang, in EMNLP-Finding (short), 2020.
Full Text Code Abstract BibTeX DetailsPrivacy policy documents are long and verbose. A question answering (QA) system can assist users in finding the information that is relevant and important to them. Prior studies in this domain frame the QA task as retrieving the most relevant text segment or a list of sentences from the policy document given a question. On the contrary, we argue that providing users with a short text span from policy documents reduces the burden of searching the target information from a lengthy text segment. In this paper, we present PolicyQA, a dataset that contains 25,017 reading comprehension style examples curated from an existing corpus of 115 website privacy policies. PolicyQA provides 714 human-annotated questions written for a wide range of privacy practices. We evaluate two existing neural QA models and perform rigorous analysis to reveal the advantages and challenges offered by PolicyQA.
@inproceedings{ahmad2020policyqa, author = {Ahmad, Wasi and Chi, Jianfeng and Tian, Yuan and Chang, Kai-Wei}, title = {PolicyQA: A Reading Comprehension Dataset for Privacy Policies}, booktitle = {EMNLP-Finding (short)}, year = {2020} }
-
GPT-GNN: Generative Pre-Training of Graph Neural Networks
Ziniu Hu, Yuxiao Dong, Kuansan Wang, Kai-Wei Chang, and Yizhou Sun, in KDD, 2020.
Full Text Video Code Abstract BibTeX Details Top-10 cited paper at KDD 20Graph neural networks (GNNs) have been demonstrated to besuccessful in modeling graph-structured data. However, training GNNs requires abundant task-specific labeled data, which is often arduously expensive to obtain. One effective way to reduce labeling effort is to pre-train an expressive GNN model on unlabelled data with self-supervision and then transfer the learned knowledge to downstream models. In this paper, we present the GPT-GNN’s framework to initialize GNNs by generative pre-training. GPT-GNN introduces a self-supervised attributed graph generation task to pre-train a GNN,which allows the GNN to capture the intrinsic structural and semantic properties of the graph. We factorize the likelihood of graph generation into two components: 1) attribute generation, and 2) edgegeneration. By modeling both components, GPT-GNN captures the inherent dependency between node attributes and graph structure during the generative process. Comprehensive experiments on thebillion-scale academic graph and Amazon recommendation data demonstrate that GPT-GNN significantly outperforms state-of-the-art base GNN models without pre-training by up to 9.1% across different downstream tasks.
@inproceedings{hu2020gptgnn, author = {Hu, Ziniu and Dong, Yuxiao and Wang, Kuansan and Chang, Kai-Wei and Sun, Yizhou}, title = {GPT-GNN: Generative Pre-Training of Graph Neural Networks}, booktitle = {KDD}, slide_url = {https://acbull.github.io/pdf/gpt.pptx}, year = {2020} }
-
SentiBERT: A Transferable Transformer-Based Architecture for Compositional Sentiment Semantics
Da Yin, Tao Meng, and Kai-Wei Chang, in ACL, 2020.
Full Text Slides Video Code Abstract BibTeX DetailsWe propose SentiBERT, a variant of BERT that effectively captures compositional sentiment semantics. The model incorporates contextualized representation with binary constituency parse tree to capture semantic composition. Comprehensive experiments demonstrate that SentiBERT achieves competitive performance on phrase-level sentiment classification. We further demonstrate that the sentiment composition learned from the phrase-level annotations on SST can be transferred to other sentiment analysis tasks as well as related tasks, such as emotion classification tasks. Moreover, we conduct ablation studies and design visualization methods to understand SentiBERT. We show that SentiBERT is better than baseline approaches in capturing negation and the contrastive relation and model the compositional sentiment semantics.
@inproceedings{yin2020sentibert, author = {Yin, Da and Meng, Tao and Chang, Kai-Wei}, title = {SentiBERT: A Transferable Transformer-Based Architecture for Compositional Sentiment Semantics}, booktitle = {ACL}, year = {2020}, presentation_id = {https://virtual.acl2020.org/paper_main.341.html} }
-
Building Language Models for Text with Named Entities
Md Rizwan Parvez, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang, in ACL, 2018.
Full Text Poster Code Abstract BibTeX DetailsText in many domains involves a significant amount of named entities. Predicting the entity names is often challenging for a language model as they appear less frequent on the training corpus. In this paper, we propose a novel and effective approach to building a language model which can learn the entity names by leveraging their entity type information. We also introduce two benchmark datasets based on recipes and Java programming codes, on which we evaluate the proposed model. Experimental results show that our model achieves 52.2% better perplexity in recipe generation and 40.3% on code generation than state-of-the-art language models.
@inproceedings{parvez2018building, author = {Parvez, Md Rizwan and Chakraborty, Saikat and Ray, Baishakhi and Chang, Kai-Wei}, title = {Building Language Models for Text with Named Entities}, booktitle = {ACL}, year = {2018} }
-
Learning from Explicit and Implicit Supervision Jointly For Algebra Word Problems
Shyam Upadhyay, Ming-Wei Chang, Kai-Wei Chang, and Wen-tau Yih, in EMNLP, 2016.
Full Text Abstract BibTeX DetailsAutomatically solving algebra word problems has raised considerable interest recently. Existing state-of-the-art approaches mainly rely on learning from human annotated equations. In this paper, we demonstrate that it is possible to efficiently mine algebra problems and their numerical solutions with little to no manual effort. To leverage the mined dataset, we propose a novel structured-output learning algorithm that aims to learn from both explicit (e.g., equations) and implicit (e.g., solutions) supervision signals jointly. Enabled by this new algorithm, our model gains 4.6% absolute improvement in accuracy on the ALG-514 benchmark compared to the one without using implicit supervision. The final model also outperforms the current state-of-the-art approach by 3%. Dataset
@inproceedings{BCWS16, author = {Upadhyay, Shyam and Chang, Ming-Wei and Chang, Kai-Wei and Yih, Wen-tau}, title = {Learning from Explicit and Implicit Supervision Jointly For Algebra Word Problems}, booktitle = {EMNLP}, year = {2016} }
Representation Learning in NLP
-
Few-Shot Representation Learning for Out-Of-Vocabulary Words
Ziniu Hu, Ting Chen, Kai-Wei Chang, and Yizhou Sun, in ACL, 2019.
Full Text Poster Code Abstract BibTeX DetailsExisting approaches for learning word embeddings often assume there are sufficient occurrences for each word in the corpus, such that the representation of words can be accurately estimated from their contexts. However, in real-world scenarios, out-of-vocabulary (a.k.a. OOV) words that do not appear in training corpus emerge frequently. It is challenging to learn accurate representations of these words with only a few observations. In this paper, we formulate the learning of OOV embeddings as a few-shot regression problem, and address it by training a representation function to predict the oracle embedding vector (defined as embedding trained with abundant observations) based on limited observations. Specifically, we propose a novel hierarchical attention-based architecture to serve as the neural regression function, with which the context information of a word is encoded and aggregated from K observations. Furthermore, our approach can leverage Model-Agnostic Meta-Learning (MAML) for adapting the learned model to the new corpus fast and robustly. Experiments show that the proposed approach significantly outperforms existing methods in constructing accurate embeddings for OOV words, and improves downstream tasks where these embeddings are utilized.
@inproceedings{hu2019fewshot, author = {Hu, Ziniu and Chen, Ting and Chang, Kai-Wei and Sun, Yizhou}, title = {Few-Shot Representation Learning for Out-Of-Vocabulary Words}, booktitle = {ACL}, year = {2019} }
-
Learning Word Embeddings for Low-resource Languages by PU Learning
Chao Jiang, Hsiang-Fu Yu, Cho-Jui Hsieh, and Kai-Wei Chang, in NAACL, 2018.
Full Text Slides Video Code Abstract BibTeX DetailsWord embedding has been used as a key component in many downstream applications in processing natural languages. Existing approaches often assume the existence of a large collection of text for learning effective word embedding. However, such a corpus may not be available for some low-resource languages. In this paper, we study how to effectively learn a word embedding model on a corpus with only a few million tokens. In such a situation, the co-occurrence matrix is very sparse because many word pairs are not observed to co-occur. In contrast to existing approaches, we argue that the zero entries in the co-occurrence matrix also provide valuable information and design a Positive-Unlabeled Learning (PU-Learning) approach to factorize the co-occurrence matrix. The experimental results demonstrate that the proposed approach requires a smaller amount of training text to obtain a reasonable word embedding model.
@inproceedings{jiang2018learning, author = {Jiang, Chao and Yu, Hsiang-Fu and Hsieh, Cho-Jui and Chang, Kai-Wei}, title = {Learning Word Embeddings for Low-resource Languages by PU Learning}, booktitle = {NAACL}, vimeo_id = {277670013}, year = {2018} }
-
Co-training Embeddings of Knowledge Graphs and Entity Descriptions for Cross-lingual Entity Alignment
Muhao Chen, Yingtao Tian, Kai-Wei Chang, Steven Skiena, and Carlo Zaniolo, in IJCAI, 2018.
Full Text Slides Code Abstract BibTeX DetailsMultilingual knowledge graph (KG) embeddings provide latent semantic representations of entities and structured knowledge enabled with cross-lingual inferences that benefit various knowledge-driven cross-lingual NLP tasks. However, precisely learning such cross-lingual inferences is usually hindered by the low coverage of entity alignment in many KGs. Since many multilingual KGs also provide literal descriptions of entities, in this paper, we introduce an embedding-based approach which leverages a weakly aligned multilingual KG for semi-supervised cross-lingual learning using entity descriptions. Our approach performs co-training of two embedding models, i.e. a multilingual KG embedding model and a multilingual literal description embedding model. The models are trained on a large Wikipedia-based trilingual dataset where most entity alignment is unknown to training. Experimental results show that the performance of the proposed approach on the entity alignment task improves at each iteration of co-training, and eventually reaches a stage at which it significantly surpasses previous approaches. We also show that our approach has promising abilities for zero-shot entity alignment, and cross-lingual KG completion.
@inproceedings{chen2018multilingual, author = {Chen, Muhao and Tian, Yingtao and Chang, Kai-Wei and Skiena, Steven and Zaniolo, Carlo}, title = {Co-training Embeddings of Knowledge Graphs and Entity Descriptions for Cross-lingual Entity Alignment}, booktitle = {IJCAI}, year = {2018} }
-
Beyond Bilingual: Multi-sense Word Embeddings using Multilingual Context
Shyam Upadhyay, Kai-Wei Chang, Matt Taddy, Adam Kalai, and James Zou, in ACL RepL4NLP Workshop, 2017.
Full Text Abstract BibTeX Details Best Paper AwardWord embeddings, which represent a word as a point in a vector space, have become ubiquitous to several NLP tasks. A recent line of work uses bilingual (two languages) corpora to learn a different vector for each sense of a word, by exploiting crosslingual signals to aid sense identification. We present a multi-view Bayesian non-parametric algorithm which improves multi-sense word embeddings by (a) using multilingual (i.e., more than two languages) corpora to significantly improve sense embeddings beyond what one achieves with bilingual information, and (b) uses a principled approach to learn a variable number of senses per word, in a data-driven manner. Ours is the first approach with the ability to leverage multilingual corpora efficiently for multi-sense representation learning. Experiments show that multilingual training significantly improves performance over monolingual and bilingual training, by allowing us to combine different parallel corpora to leverage multilingual context. Multilingual training yields comparable performance to a state of the art monolingual model trained on five times more training data.
@inproceedings{upadhyay2017beyond, author = {Upadhyay, Shyam and Chang, Kai-Wei and Taddy, Matt and Kalai, Adam and Zou, James}, title = {Beyond Bilingual: Multi-sense Word Embeddings using Multilingual Context}, booktitle = {ACL RepL4NLP Workshop}, year = {2017} }
NLP for Social Good Applications
Information Extraction</h3>
-
DEGREE: A Data-Efficient Generative Event Extraction Model
I.-Hung Hsu, Kuan-Hao Huang, Elizabeth Boschee, Scott Miller, Prem Natarajan, Kai-Wei Chang, and Nanyun Peng, in NAACL, 2022.
Full Text
Abstract
BibTeX
Details
Event extraction (EE), the task that identifies event triggers and their arguments in text, is usually formulated as a classification or structured prediction problem. Such models usually reduce labels to numeric identifiers, making them unable to take advantage of label semantics (e.g. an event type named Arrest is related to words like arrest, detain, or apprehend). This prevents the generalization to new event types. In this work, we formulate EE as a natural language generation task and propose GenEE, a model that not only captures complex dependencies within an event but also generalizes well to unseen or rare event types. Given a passage and an event type, GenEE is trained to generate a natural sentence following a predefined template for that event type. The generated output is then decoded into trigger and argument predictions. The autoregressive generation process naturally models the dependencies among the predictions – each new word predicted depends on those already generated in the output sentence. Using carefully designed input prompts during generation, GenEE is able to capture label semantics, which enables the generalization to new event types. Empirical results show that our model achieves strong performance on event extraction tasks under all zero-shot, few-shot, and high-resource scenarios. Especially, in the high-resource setting, GenEE outperforms the state-of-the-art model on argument extraction and gets competitive results with the current best on end-to-end EE tasks.
@inproceedings{hsu2021degree,
title = {DEGREE: A Data-Efficient Generative Event Extraction Model},
author = {Hsu, I-Hung and Huang, Kuan-Hao and Boschee, Elizabeth and Miller, Scott and Natarajan, Prem and Chang, Kai-Wei and Peng, Nanyun},
booktitle = {NAACL},
year = {2022}
}
Details
-
Intent Classification and Slot Filling for Privacy Policies
Wasi Ahmad, Jianfeng Chi, Tu Le, Thomas Norton, Yuan Tian, and Kai-Wei Chang, in ACL, 2021.
Full Text
Video
Code
Abstract
BibTeX
Details
Understanding privacy policies is crucial for users as it empowers them to learn about the information that matters to them. Sentences written in a privacy policy document explain privacy practices, and the constituent text spans convey further specific information about that practice. We refer to predicting the privacy practice explained in a sentence as intent classification and identifying the text spans sharing specific information as slot filling. In this work, we propose PolicyIE, a corpus consisting of 5,250 intent and 11,788 slot annotations spanning 31 privacy policies of websites and mobile applications. PolicyIE corpus is a challenging benchmark with limited labeled examples reflecting the cost of collecting large-scale annotations. We present two alternative neural approaches as baselines: (1) formulating intent classification and slot filling as a joint sequence tagging and (2) modeling them as a sequence-to-sequence (Seq2Seq) learning task. Experiment results show that both approaches perform comparably in intent classification, while the Seq2Seq method outperforms the sequence tagging approach in slot filling by a large margin. Error analysis reveals the deficiency of the baseline approaches, suggesting room for improvement in future works. We hope the PolicyIE corpus will stimulate future research in this domain.
@inproceedings{ahmad2021intent,
title = {Intent Classification and Slot Filling for Privacy Policies},
author = {Ahmad, Wasi and Chi, Jianfeng and Le, Tu and Norton, Thomas and Tian, Yuan and Chang, Kai-Wei},
booktitle = {ACL},
year = {2021}
}
Details
Keyphrase Generation </h3>
-
Representation Learning for Resource-Constrained Keyphrase Generation
Di Wu, Wasi Uddin Ahmad, Sunipa Dev, and Kai-Wei Chang, in EMNLP-Finding, 2022.
Full Text
Code
Abstract
BibTeX
Details
State-of-the-art keyphrase generation methods generally depend on large annotated datasets, limiting their performance in domains with limited annotated data. To overcome this challenge, we design a data-oriented approach that first identifies salient information using unsupervised corpus-level statistics, and then learns a task-specific intermediate representation based on a pre-trained language model. We introduce salient span recovery and salient span prediction as denoising training objectives that condense the intra-article and inter-article knowledge essential for keyphrase generation. Through experiments on multiple keyphrase generation benchmarks, we show the effectiveness of the proposed approach for facilitating low-resource and zero-shot keyphrase generation. We further observe that the method especially benefits the generation of absent keyphrases, approaching the performance of models trained with large training sets.
@inproceedings{wu2022representation,
title = {Representation Learning for Resource-Constrained Keyphrase Generation},
author = {Wu, Di and Ahmad, Wasi Uddin and Dev, Sunipa and Chang, Kai-Wei},
booktitle = {EMNLP-Finding},
year = {2022}
}
Details
-
Select, Extract and Generate: Neural Keyphrase Generation with Layer-wise Coverage Attention
Wasi Ahmad, Xiao Bai, Soomin Lee, and Kai-Wei Chang, in ACL, 2021.
Full Text
Abstract
BibTeX
Details
In recent years, deep neural sequence-to-sequence framework has demonstrated promising results in keyphrase generation. However, processing long documents using such deep neural networks requires high computational resources. To reduce the computational cost, the documents are typically truncated before given as inputs. As a result, the models may miss essential points conveyed in a document. Moreover, most of the existing methods are either extractive (identify important phrases from the document) or generative (generate phrases word by word), and hence they do not benefit from the advantages of both modeling techniques. To address these challenges, we propose \emphSEG-Net, a neural keyphrase generation model that is composed of two major components, (1) a selector that selects the salient sentences in a document, and (2) an extractor-generator that jointly extracts and generates keyphrases from the selected sentences. SEG-Net uses a self-attentive architecture, known as, \emphTransformer as the building block with a couple of uniqueness. First, SEG-Net incorporates a novel \emphlayer-wise coverage attention to summarize most of the points discussed in the target document. Second, it uses an \emphinformed copy attention mechanism to encourage focusing on different segments of the document during keyphrase extraction and generation. Besides, SEG-Net jointly learns keyphrase generation and their part-of-speech tag prediction, where the later provides syntactic supervision to the former. The experimental results on seven keyphrase generation benchmarks from scientific and web documents demonstrate that SEG-Net outperforms the state-of-the-art neural generative methods by a large margin in both domains.
@inproceedings{ahmad2021select,
title = {Select, Extract and Generate: Neural Keyphrase Generation with Layer-wise Coverage Attention},
author = {Ahmad, Wasi and Bai, Xiao and Lee, Soomin and Chang, Kai-Wei},
booktitle = {ACL},
year = {2021}
}
Details
DEGREE: A Data-Efficient Generative Event Extraction Model
I.-Hung Hsu, Kuan-Hao Huang, Elizabeth Boschee, Scott Miller, Prem Natarajan, Kai-Wei Chang, and Nanyun Peng, in NAACL, 2022.Full Text Abstract BibTeX Details
Event extraction (EE), the task that identifies event triggers and their arguments in text, is usually formulated as a classification or structured prediction problem. Such models usually reduce labels to numeric identifiers, making them unable to take advantage of label semantics (e.g. an event type named Arrest is related to words like arrest, detain, or apprehend). This prevents the generalization to new event types. In this work, we formulate EE as a natural language generation task and propose GenEE, a model that not only captures complex dependencies within an event but also generalizes well to unseen or rare event types. Given a passage and an event type, GenEE is trained to generate a natural sentence following a predefined template for that event type. The generated output is then decoded into trigger and argument predictions. The autoregressive generation process naturally models the dependencies among the predictions – each new word predicted depends on those already generated in the output sentence. Using carefully designed input prompts during generation, GenEE is able to capture label semantics, which enables the generalization to new event types. Empirical results show that our model achieves strong performance on event extraction tasks under all zero-shot, few-shot, and high-resource scenarios. Especially, in the high-resource setting, GenEE outperforms the state-of-the-art model on argument extraction and gets competitive results with the current best on end-to-end EE tasks.
@inproceedings{hsu2021degree, title = {DEGREE: A Data-Efficient Generative Event Extraction Model}, author = {Hsu, I-Hung and Huang, Kuan-Hao and Boschee, Elizabeth and Miller, Scott and Natarajan, Prem and Chang, Kai-Wei and Peng, Nanyun}, booktitle = {NAACL}, year = {2022} }
Intent Classification and Slot Filling for Privacy Policies
Wasi Ahmad, Jianfeng Chi, Tu Le, Thomas Norton, Yuan Tian, and Kai-Wei Chang, in ACL, 2021.Full Text Video Code Abstract BibTeX Details
Understanding privacy policies is crucial for users as it empowers them to learn about the information that matters to them. Sentences written in a privacy policy document explain privacy practices, and the constituent text spans convey further specific information about that practice. We refer to predicting the privacy practice explained in a sentence as intent classification and identifying the text spans sharing specific information as slot filling. In this work, we propose PolicyIE, a corpus consisting of 5,250 intent and 11,788 slot annotations spanning 31 privacy policies of websites and mobile applications. PolicyIE corpus is a challenging benchmark with limited labeled examples reflecting the cost of collecting large-scale annotations. We present two alternative neural approaches as baselines: (1) formulating intent classification and slot filling as a joint sequence tagging and (2) modeling them as a sequence-to-sequence (Seq2Seq) learning task. Experiment results show that both approaches perform comparably in intent classification, while the Seq2Seq method outperforms the sequence tagging approach in slot filling by a large margin. Error analysis reveals the deficiency of the baseline approaches, suggesting room for improvement in future works. We hope the PolicyIE corpus will stimulate future research in this domain.
@inproceedings{ahmad2021intent, title = {Intent Classification and Slot Filling for Privacy Policies}, author = {Ahmad, Wasi and Chi, Jianfeng and Le, Tu and Norton, Thomas and Tian, Yuan and Chang, Kai-Wei}, booktitle = {ACL}, year = {2021} }
-
Representation Learning for Resource-Constrained Keyphrase Generation
Di Wu, Wasi Uddin Ahmad, Sunipa Dev, and Kai-Wei Chang, in EMNLP-Finding, 2022.
Full Text Code Abstract BibTeX DetailsState-of-the-art keyphrase generation methods generally depend on large annotated datasets, limiting their performance in domains with limited annotated data. To overcome this challenge, we design a data-oriented approach that first identifies salient information using unsupervised corpus-level statistics, and then learns a task-specific intermediate representation based on a pre-trained language model. We introduce salient span recovery and salient span prediction as denoising training objectives that condense the intra-article and inter-article knowledge essential for keyphrase generation. Through experiments on multiple keyphrase generation benchmarks, we show the effectiveness of the proposed approach for facilitating low-resource and zero-shot keyphrase generation. We further observe that the method especially benefits the generation of absent keyphrases, approaching the performance of models trained with large training sets.
@inproceedings{wu2022representation, title = {Representation Learning for Resource-Constrained Keyphrase Generation}, author = {Wu, Di and Ahmad, Wasi Uddin and Dev, Sunipa and Chang, Kai-Wei}, booktitle = {EMNLP-Finding}, year = {2022} }
-
Select, Extract and Generate: Neural Keyphrase Generation with Layer-wise Coverage Attention
Wasi Ahmad, Xiao Bai, Soomin Lee, and Kai-Wei Chang, in ACL, 2021.
Full Text Abstract BibTeX DetailsIn recent years, deep neural sequence-to-sequence framework has demonstrated promising results in keyphrase generation. However, processing long documents using such deep neural networks requires high computational resources. To reduce the computational cost, the documents are typically truncated before given as inputs. As a result, the models may miss essential points conveyed in a document. Moreover, most of the existing methods are either extractive (identify important phrases from the document) or generative (generate phrases word by word), and hence they do not benefit from the advantages of both modeling techniques. To address these challenges, we propose \emphSEG-Net, a neural keyphrase generation model that is composed of two major components, (1) a selector that selects the salient sentences in a document, and (2) an extractor-generator that jointly extracts and generates keyphrases from the selected sentences. SEG-Net uses a self-attentive architecture, known as, \emphTransformer as the building block with a couple of uniqueness. First, SEG-Net incorporates a novel \emphlayer-wise coverage attention to summarize most of the points discussed in the target document. Second, it uses an \emphinformed copy attention mechanism to encourage focusing on different segments of the document during keyphrase extraction and generation. Besides, SEG-Net jointly learns keyphrase generation and their part-of-speech tag prediction, where the later provides syntactic supervision to the former. The experimental results on seven keyphrase generation benchmarks from scientific and web documents demonstrate that SEG-Net outperforms the state-of-the-art neural generative methods by a large margin in both domains.
@inproceedings{ahmad2021select, title = {Select, Extract and Generate: Neural Keyphrase Generation with Layer-wise Coverage Attention}, author = {Ahmad, Wasi and Bai, Xiao and Lee, Soomin and Chang, Kai-Wei}, booktitle = {ACL}, year = {2021} }